Newest Articles
- Dynamics of sister chromatid resolution
Stanyte et al. use dCas9-mEGFP labelling to image endogenous genomic loci and show that sister loci separate shortly after their replication and rapidly equilibrate their relative position, thereby establishing a sister chromatid resolution topology in G2 that largely reflects the DNA replication program. The data suggest that cohesin enrichment sites are not persistent cohesive sites in human cells.
- Revisiting LAMP1 as a marker for neuronal lysosome
Cheng et al. combine quantitative immunoelectron microscopy and light imaging microscopy to comprehensively analyze LAMP1 subcellular distribution in neurons. The data show that a significant portion of LAMP1-positive organelles are not degradative, illustrating the need for additional lysosomal and endocytic markers to define endolysosomal compartments in the nervous system.
- Nucleolar 60S ribosomal subunit remodeling events
Ribosome biogenesis involves numerous pre-rRNA processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Biedka et al. show that ribosomal proteins and assembly factors remodel several neighborhoods, including two 60S ribosomal subunit functional centers, during removal of the ITS2 spacer RNA.
- PI(4,5)P2 enrichment regulates the mechanical force–induced B cell activation
Antigens deliver mechanical forces to B cell receptors (BCRs) to initiate B cell activation. Using mechanical force biosensors, Wan et al. show that the enrichment of PI(4,5)P2 within the IgG-BCR membrane microdomain determines the threshold of mechanical force–induced B cell activation.
- Kif18b walks to microtubule ends and shortens them
Kinesin-8 Kif18b shortens astral microtubules in mitosis. Combining cell biology and biochemical reconstitution, McHugh et al. show that Kif18b walks and accumulates to microtubule plus ends in a phosphospecific manner to regulate astral microtubule dynamics and center the mitotic spindle.
- Chaperones manage misfolded proteins in the nucleus
Quality control (QC) pathways for misfolded proteins depend on E3 ubiquitin ligases and associated chaperones. Prasad et al. show that Hsp40/70/110 chaperones traffic and manage misfolded proteins in the nucleus, extending the nuclear protein QC pathway to include cytosolic clients.
- Lymphatic exosomes enhance directional migration
Inflammation stimulates lymphatic endothelial cells to release exosomes, which accumulate in the perivascular stroma. Brown et al. show that these exosomes promote the directional migration of dendritic cells along guidance cues in complex environments by enhancing dynamic cellular protrusions in a CX3CL1-dependent manner.
Hoefig and Heissmeyer review how microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate T helper cell differentiation downstream of transcription.