The three-dimensional structure of the Z-band in fish white muscle has been investigated by electron microscopy. This Z-band is described as simple, since in longitudinal sections it has the appearance of a single zigzag pattern connecting the ends of actin filaments of opposite polarity from adjacent sarcomeres. The reconstruction shows two pairs of links, the Z-links, between one actin filament and the facing four actin filaments in the adjacent sarcomere. The members of each pair have nearly diametrically opposed origins. In relation to one actin filament, one pair of links appears to bind along the final 10 nm of the actin filament (proximal site) and the other pair binds along a region extending from 5 to 20 nm from the filament end (distal site). Between one pair and the other, there is a rotation of approximately 80 degrees round the filament axis. A Z-link with a proximal site at the end of one actin filament attaches at a distal site on the oppositely oriented actin filaments of the facing sarcomere and vice versa. The length of each Z-link is consistent with the length of an alpha-actinin molecule. An additional set of links located 10-15 nm from the center of the Z-band occurs between actin filaments of the same polarity. These polar links connect the actin filaments along the same direction on each side of the Z-band. The three-dimensional structure appears to have twofold screw symmetry about the central plane of the Z-band. Only approximate twofold rotational symmetry is observed in directions parallel to the actin filaments. Previous models of the Z-band in which four identical and rotationally symmetrical links emanate from the end of one actin filament and span across to the ends of four actin filaments in the adjacent sarcomere are therefore incorrect.

This content is only available as a PDF.