Skip to main content

Main menu

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Meeting Collections
  • Reviews & Opinions
    • Editorials
    • In Focus
    • People & Ideas
    • Spotlights
    • Viewpoints
    • Reviews
    • biosights podcast
  • Alerts
  • About
    • History
    • Editors & Staff
    • Permissions & Licensing
    • Advertise
    • Contact Us
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA

User menu

  • Log in

Search

  • Advanced search
JCB
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA
  • Log in
JCB

Advanced Search

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Meeting Collections
  • Reviews & Opinions
    • Editorials
    • In Focus
    • People & Ideas
    • Spotlights
    • Viewpoints
    • Reviews
    • biosights podcast
  • Alerts
  • About
    • History
    • Editors & Staff
    • Permissions & Licensing
    • Advertise
    • Contact Us
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions

You are here

jcb Home » 1994 Archive » 1 April » 125 (1): 113
Article

A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form.

M C Lopez, J M Nicaud, H B Skinner, C Vergnolle, J C Kader, V A Bankaitis, C Gaillardin
M C Lopez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Nicaud
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H B Skinner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Vergnolle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J C Kader
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V A Bankaitis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Gaillardin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1083/jcb.125.1.113 | Published April 1, 1994
  • Article
  • Info
  • Metrics
  • Preview PDF
Loading

Abstract

The SEC14SC gene encodes the phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) of Saccharomyces cerevisiae. The SEC14SC gene product (SEC14pSC) is associated with the Golgi complex as a peripheral membrane protein and plays an essential role in stimulating Golgi secretory function. We report the characterization of SEC14YL, the structural gene for the PI/PC-TP of the dimorphic yeast Yarrowia lipolytica. SEC14YL encodes a primary translation product (SEC14YL) that is predicted to be a 497-residue polypeptide of which the amino-terminal 300 residues are highly homologous to the entire SEC14pSC, and the carboxyl-terminal 197 residues define a dispensible domain that is not homologous to any known protein. In a manner analogous to the case for SEC14pSC, SEC14pYL localizes to punctate cytoplasmic structures in Y. lipolytica that likely represent Golgi bodies. However, SEC14pYL is neither required for the viability of Y. lipolytica nor is it required for secretory pathway function in this organism. This nonessentiality of SEC14pYL for growth and secretion is probably not the consequence of a second PI/PC-TP activity in Y. lipolytica as cell-free lysates prepared from delta sec14YL strains are devoid of measurable PI/PC-TP activity in vitro. Phenotypic analyses demonstrate that SEC14pYL dysfunction results in the inability of Y. lipolytica to undergo the characteristic dimorphic transition from the yeast to the mycelial form that typifies this species. Rather, delta sec14YL mutants form aberrant pseudomycelial structures as cells enter stationary growth phase. The collective data indicate a role for SEC14pYL in promoting the differentiation of Y. lipolytica cells from yeast to mycelia, and demonstrate that PI/PC-TP function is utilized in diverse ways by different organisms.

© 1994 Rockefeller University Press
Previous articleNext article
Back to top
Download PDF
Citation Tools
A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form.
M C Lopez, J M Nicaud, H B Skinner, C Vergnolle, J C Kader, V A Bankaitis, C Gaillardin
The Journal of Cell Biology Apr 1994, 125 (1) 113-127; DOI: 10.1083/jcb.125.1.113

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts
Sign In to Email Alerts with your Email Address

Email logo Twitter logo Facebook logo Mendeley logo Reddit logo CiteULike logo LinkedIn logo
The Journal of Cell Biology: 217 (9)

Current Issue

September 3, 2018
Volume 217, No. 9

  • Table of Contents
  • All Issues

Jump To

  • Article
  • Info
  • Metrics
  • Preview PDF
 

ARTICLES

  • Current Issue
  • Newest Articles
  • Archive
  • Alerts
  • RSS feeds

FOR AUTHORS

  • Submit a Manuscript
  • Instructions for Authors

ABOUT

  • About JCB
  • Editors & Staff
  • Permissions & Licensing
  • Advertise
  • Contact Us
  • Feedback
  • Newsroom
  • Privacy Policy

CONNECT WITH JCB

  • Email
  • Facebook
  • Twitter
  • RSS
  • Instagram

Online ISSN: 1540-8140
Print ISSN: 0021-9525

Copyright © 2018 JCB by Rockefeller University Press