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Introduction
Zinc is a structural constituent of a great number of proteins, 

including enzymes belonging to cellular signaling pathways 

and transcription factors, and it is essential for their biological 

activity (Vallee and Auld, 1993; Prasad, 1995). Zinc has a vari-

ety of effects on the immune and nervous systems in vivo and 

vitro, and these effects mainly depend on the zinc concentration 

(Rink and Gabriel, 2000; Frederickson et al., 2005). Many re-

searchers have reported that immune function decreases after 

zinc depletion. Zinc-defi cient mice exhibit reduced natural killer 

cell–mediated cytotoxic activity, antibody-mediated responses, 

and host defense against pathogens and tumors (Fernandes 

et al., 1979; Fraker et al., 1982; Keen and Gershwin, 1990). The 

requirement for zinc is most likely because of its essential 

constitutive role in maintaining the conformation or enzymatic 

activity of many important components of these processes, in-

cluding enzymes, transcription factors, and signaling  molecules. 

On the other hand, zinc itself is cytotoxic: zinc induces apoptosis 

in T and B cells (Telford and Fraker, 1995; Ibs and Rink, 

2003) and neuronal death (Koh et al., 1996; Sensi and Jeng, 

2004). Therefore, the intracellular zinc concentration is tightly 

controlled by zinc importers (ZIPs/SLA39s; Eide, 2004), 

 exporters (zinc transporters/SLC30s; Palmiter and Huang, 2004), 

and binding proteins such as metallothioneins (Vallee, 1995). 

In addition, zinc-sensing molecules such as metal response 

element–binding transcription factor-1 respond to free zinc lev-

els by regulating gene expression to maintain zinc homeostasis 

(Andrews, 2001).

Zinc has been shown to act as a neurotransmitter (Colvin 

et al., 2003; Frederickson, 2003). In neurons, exocytotic stimuli 

induce zinc release into the surrounding milieu and its uptake 

into the cytoplasm through gated zinc channels on neighboring 

cells. Synaptically released zinc probably travels to adjacent 

cells such as postsynaptic neurons and glial cells and functions 

as a modulator and mediator of cell-to-cell signaling (Xie and 

Smart, 1994; Hershfi nkel et al., 2001; Li et al., 2001). In this 

role, zinc acts as an autocrine or paracrine, transcellular, trans-

membrane signaling factor, like a neurotransmitter.

Zinc mimics the actions of hormones, growth factors, and 

cytokines, which suggests that zinc may act on intracellular sig-

naling molecules (Beyersmann and Haase, 2001). In fact, zinc 

is a well-known inhibitor of protein tyrosine phosphatases 

(Brautigan et al., 1981). The inhibition constant is reported to be 

in the nanomolar range (Maret et al., 1999). In addition, zinc af-

fects the regulation of transcription factors. Zinc can induce the 

expression of some genes, including those coding for molecules 

involved in zinc homeostasis, like zinc transporters and metallo-

thioneins (Palmiter, 2004). The gene expression of metallothio-

neins by zinc is regulated by metal response element–binding 
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Z
inc is an essential trace element required for en-

zymatic activity and for maintaining the confor-

mation of many transcription factors; thus, zinc 

homeostasis is tightly regulated. Although zinc affects sev-

eral signaling molecules and may act as a neurotransmitter, 

it remains unknown whether zinc acts as an intracellular 

second messenger capable of transducing extracellular 

stimuli into intracellular signaling events. In this study, we 

report that the cross-linking of the high affi nity immuno-

globin E receptor (Fcε receptor I [FcεRI]) induced a release 

of free zinc from the perinuclear area, including the endo-

plasmic reticulum in mast cells, a phenomenon we call 

the zinc wave. The zinc wave was dependent on calcium 

infl ux and mitogen-activated protein kinase/extracellular 

signal-regulated kinase kinase activation. The results sug-

gest that the zinc wave is involved in intracellular sig-

naling events, at least in part by modulating the duration 

and strength of FcεRI-mediated signaling. Collectively, 

our fi ndings indicate that zinc is a novel intracellular sec-

ond messenger.
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transcription factor-1 (Lichtlen and Schaffner, 2001). We previ-

ously reported that the nuclear localization of the transcription 

factor Snail is dependent on the zinc transporter Zip6, suggesting 

that zinc plays a role in the nuclear localization of Snail and 

may act as an intracellular signaling molecule (Yamashita et al., 

2004). This notion was further supported by the fi nding that 

toll-like receptor 4–mediated dendritic cell maturation is, at 

least in part, dependent on a toll-like receptor 4–induced de-

crease in intracellular free zinc (Kitamura et al., 2006). Collec-

tively, this evidence suggests that zinc may act as an intracellular 

signaling molecule. However, the toll-like receptor 4–mediated 

decrease in intracellular free zinc is dependent on the change in 

the expression profi le of zinc transporters. Therefore, it remains 

unknown whether zinc acts as an intracellular second messenger 

like calcium and cAMP. A second messenger is defi ned as a 

molecule whose intracellular status is directly altered by extra-

cellular stimuli and that can transduce the extracellular stimuli 

into intracellular signaling events.

In this study, we report that an extracellular stimulus such 

as high affi nity IgE receptor (Fcε receptor I [FcεRI]) cross-

linking directly induces a release of free zinc from the area of 

the ER in mast cells, a phenomenon we call the zinc wave. The 

zinc wave occurred in a manner dependent on calcium infl ux 

and MAPK/extracellular signal-regulated kinase (ERK) kinase 

(MEK) activation. Based on our results, we suggest that one of 

the roles of the zinc wave is to inhibit phosphatase activity, 

resulting in the modulation of MAPK activation and the ex-

pression of the genes for interleukin-6 (IL-6) and TNFα in 

mast cells. Our results show that zinc is a novel intracellular 

second messenger.

Results
Increase in intracellular free zinc after 
Fc𝛆RI activation in mast cells
To investigate whether the level of intracellular free zinc changes 

after FcεRI stimulation, we observed its level over time using 

the zinc indicator Newport green DCF. The fl uorescent signal 

was observed mainly in the cytoplasm, and a gradual enhance-

ment of fl uorescence intensity was observed several minutes after 

stimulation in the center of the cell rather than in its peripheral 

region, suggesting that the zinc was released from intracellular 

stores (Fig. 1, A and B; and Video 1, available at http://www.jcb

.org/cgi/content/full/jcb.200702081/DC1). No obvious change 

was seen in the absence of stimulation (Fig. 1 B and Video 2). 

The cell-impermeable zinc chelator diethylenetriaminepenta-

acetic acid (DTPA) did not inhibit the enhancement of the New-

port green fl uorescence, further supporting the idea that the zinc 

was released from intracellular stores (Fig. 1 C). Treatment of 

the cells by 10 μM of cell-permeable metal chelator N,N,N,N-

tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) decreased 

the enhancement of Newport green fl uorescence, but 10 μM 

of chelators for copper (ammonium tetrathiomolybdate), iron 

(2,2'-dipyridyl), or manganese (p-aminosalicylic acid) did not, 

indicating that the increased fluorescence was specific for 

changes in zinc levels (Fig. 1 D). These results were supported 

by the relative increase of fluorescence intensity of Newport 

green for each metal ion (for Zn2+ = 1.0, Cu2+ = −0.35, Fe2+ = 

0.30, and Mn2+ = 0.22, respectively). This increase in intra-

cellular free zinc was observed several minutes after the stimu-

lation, in contrast to the rapid increase in intracellular calcium, 

which occurred seconds afterward (Fig. 1 E). These results in-

dicated that the FcεRI stimulation induced an increase in intra-

cellular free zinc. We called this phenomenon the zinc wave.

FcεRI-mediated signal transduction occurs by two path-

ways: the Lyn–Syk–SLP-76–PLCγ2 pathway and the Fyn–Gab2 

(Grb2-associated binder 2) pathway (Rivera, 2002; Nishida 

et al., 2005). The Lyn–Syk–SLP-76–PLCγ2 pathway is required 

for inositol 1,4,5-triphosphate receptor (IP3R)–dependent calcium 

release (Turner and Kinet, 1999), whereas the Fyn–Gab2 path-

way has little or no effect on intracellular calcium (Parravicini 

et al., 2002). To investigate which pathway is required for the 

FcεRI-induced zinc wave, we used mast cells defective in 

various signaling molecules. As shown in Fig. 1 (F–H), the zinc 

wave was diminished in Syk- and PLCγ2-defi cient mast cells 

but not in Gab2-defi cient mast cells. Thus, the zinc wave was 

induced by FcεRI via the Syk–PLCγ2-dependent pathway.

Both calcium and MAPK activation 
are required for the zinc wave
Because Syk–PLCγ2 is required for calcium signaling and the 

zinc wave was observed after calcium infl ux, we next investi-

gated whether the zinc wave requires calcium signaling. As 

shown in Fig. 2 A, under calcium-free conditions, the zinc wave 

was suppressed. Furthermore, Xestospongin C (an inhibitor of 

IP3R) inhibited the zinc wave (Fig. 2 B), and this suppression 

was reversed by simultaneous treatment with a calcium iono-

phore, ionomycin (Fig. 2 C). These results suggested that the 

entry of external calcium induced by FcεRI stimulation is 

required to trigger the zinc wave. However, ionomycin, which 

induces calcium infl ux, could not induce the zinc wave by 

itself (Fig. 2 D). Collectively, these results indicated that 

calcium is essential but not suffi cient for the FcεRI-induced 

zinc wave.

To reveal what signals, in addition to calcium, are required 

for the zinc wave, we tested whether the Ras–MAPK pathway 

is involved by examining the effect of the MEK inhibitors 

PD98059 and U0126. As shown in Fig. 2 E, both PD98059 and 

U0126 inhibited the zinc wave without any effect on the cal-

cium infl ux. These results indicated that both calcium and MEK 

signaling are involved in the zinc wave. Consistent with this 

notion, as shown in Fig. 2 F, simultaneous treatment with iono-

mycin and EGF induced the zinc wave, although neither treat-

ment alone did so. Furthermore, the ionomycin- and EGF-induced 

zinc wave was blocked by a MEK inhibitor. We confi rmed that 

EGF alone could not induce calcium infl ux (unpublished data). 

These results clearly indicated that the zinc wave is regulated by 

calcium- and MEK-dependent pathways.

Identifi cation of regions where 
the zinc wave originates
Fluorescence laser scanning is known to induce reactive oxy-

gen species (Jou et al., 2004), which may induce the release of 

free zinc from zinc-binding proteins such as metallothionein, 
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Figure 1. Elevation of intracellular zinc level upon Fc𝛆RI stimulation. (A) BMMCs containing Newport green were stimulated with FcεRI, and intracellular 
fl uorescence was assessed every 30 s at 25°C. The numbers represent time after stimulation (in minutes). Bar, 5 μm. (B) Newport green fl uorescence was 
quantifi ed relative to the signal intensity of the fi rst image observed. To rule out spontaneous Newport green elevation caused only by fl uorescence emis-
sions, a 5-min preobservation period was included. Quantifi cation was performed for at least 10 cells in the observed fi eld, and one representative of three 
independent experiments is shown. (C) The effect of a cell-impermeable zinc chelator, diethylenetriaminepentaacetic acid (DTPA), on the FcεRI-mediated 
elevation of the intracellular Newport green signal. Cells were stimulated with FcεRI in the presence or absence of 1 mM DTPA. (D) The effect of chelators 
for Zn2+, Fe2+, Cu2+, and Mn2+ on the FcεRI-mediated change in the Newport green signal detected by fl ow cytometry. Cells were pretreated with 10 μM 
each of chelator and were stimulated with FcεRI for 15 min. The affi nity of TPEN for the metal ions is Ka = 1015.58 M–1, 1014.61 M–1, 1020 M–1, and 1010.27 M–1 
for Zn2+, Fe2+, Cu2+, and Mn2+, respectively. We also used 2,2'-dipyridyl (Ka = 1017.2 M–1 for Fe2+), ammonium tetrathiomolybdate, and p-aminosalicylic 
acid to chelate Fe2+, Cu2+ and Mn2+, respectively. Data are means ± SD (error bars) of three independent experiments. ***, P < 0.001 compared with 
no chelator (t test). (E) Newport green (for Zn2+) or Fluo-4 (for Ca2+) was incorporated into cells, and the fl uorescence after stimulation was observed every 
10 s. (F–H) BMMCs from Syk-, PLCγ2-, and Gab2-defi cient mice containing Newport green or Fluo-4 were stimulated. One representative of three independent 
experiments is shown for each panel.
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independent of receptor-mediated signaling events. To identify 

the subcellular regions where the zinc wave originates while 

avoiding secondary effects caused by cell stress, we used a thin-

layer illumination microscope system that was based on the total 

internal refl ection fl uorescence (TIRF) microscope (Tokunaga 

et al., 1997). By recording images with highly sensitive CCD 

video cameras, we could detect fluorescence signals with a 

lower laser power than is usual for observation under a confocal 

laser microscope. Using this modifi ed TIRF microscope, we ob-

served the FcεRI stimulation–dependent zinc wave (Fig. 3 A). 

To learn where the zinc wave was generated, we performed 3D 

imaging of mast cells costained with Newport green and the 

ER-specifi c marker ER-tracker red. As shown in Fig. 3 A, the 

fl uorescence signal of the Newport green was enhanced mainly 

in the perinuclear and nuclear areas after FcεRI stimulation. 

Importantly, the fl uorescence intensity of the Newport green 

initially increased specifi cally in the area stained by the ER 

marker (Fig. 3 B, 0.5 min). This observation suggested that the 

zinc wave most likely originated in regions that include the ER, 

although we do not neglect the possible involvement of other 

sources, such as the nucleus.

Role of the zinc wave on the modulation 
of phosphatase activity
To determine whether the zinc wave can affect signaling events, 

we investigated the effect of zinc depletion by TPEN and of en-

forced zinc infl ux using the zinc ionophore pyrithione on FcεRI-

induced signaling events. TPEN treatment inhibited the zinc 

wave (Fig. 1 D), whereas pyrithione/zinc (Py/Zn) treatment rap-

idly increased the free zinc in cells (Fig. 4 A). TPEN treatment 

decreased the FcεRI-induced IL-6 and TNFα mRNA expres-

sion (Fig. 4 B) and the activation of ERK and JNK (Fig. 4 C). In 

particular, 5–60 min after stimulation, ERK activation was still 

impaired (Fig. 4 C). On the other hand, Py/Zn prolonged the ex-

pression of IL-6 and TNFα mRNA as well as the activation of 

the MAPKs induced by FcεRI stimulation (Fig. 4, B and C). We 

confi rmed that the Py/Zn-induced sustained MAPK activation 

was canceled by TPEN (Fig. 4 C). These results suggested that 

one of roles of the zinc wave is to regulate the duration of 

MAPK activation and modulation of the late phase of these sig-

naling events.

Zinc is reported to inhibit phosphatase activity (Brautigan 

et al., 1981); therefore, one likely target of the zinc wave is 

Figure 2. Zinc wave requires both calcium and MAPK activation. (A) BMMCs containing Newport green or Fluo-4 were stimulated with FcεRI in calcium-
free Tyrode’s buffer. (B) 10 μM IP3R inhibitor (XeC) was added 30 min before FcεRI stimulation. (C) Zinc wave in the presence of 10 μM XeC and 300 nM 
ionomycin (Io). The relative fl uorescence intensity 15 min after stimulation is shown. Ag represents DNP–human serum albumin stimulation–dependent FcεRI 
activation. (D) Ionomycin-induced zinc and calcium waves were observed. (E) Effect of MEK1/2 inhibitors U0126 and PD98059 on zinc and calcium 
waves. Cells were pretreated with 50 μM U0126 or 100 μM PD98059 and Newport green for 30 min and were stimulated with FcεRI. (F) Effect on the 
zinc wave of EGF stimulation and ionomycin treatment, alone and in combination, and with PD98059 pretreatment. Data are means ± SD (error bars) of 
three independent experiments. *, P < 0.05; **, P < 0.01 compared with no stimulation or additions (none; t test).
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phosphatase. In fact, Py/Zn treatment enhanced the total FcεRI-

induced tyrosine phosphorylation in mast cells (Fig. 4 D). 

Furthermore, the phosphatase activity of the FcεRI-stimulated 

mast cells was inhibited by the addition of Py/Zn, and this in-

hibitory effect was rescued by TPEN (Fig. 4 E). To verify this 

result, we tested whether zinc directly inhibits tyrosine phos-

phatase activity using mast cell lysate. The results showed that 

zinc addition inhibited tyrosine phosphatase activity in a dose-

dependent manner (Fig. 4 F). Collectively, the results support 

the hypothesis that the zinc wave plays a role, at least in part, in 

the modulation of signaling effi ciency, with phosphatase as one 

of its targets.

Discussion
The zinc wave originated in the perinuclear 
region that includes the ER in a manner 
dependent on calcium infl ux and 
MEK activation
In this study, we showed that the FcεRI stimulation of mast 

cells induced the zinc wave, which originated in the perinuclear 

region that includes the ER, several minutes after the stimula-

tion. This zinc wave was dependent on both calcium and MEK 

signaling. We further showed that the zinc wave was dependent 

on calcium infl ux, although calcium infl ux alone was not suffi -

cient to induce it. In addition to the calcium infl ux, we showed 

that MEK activation was essential to induce the zinc wave. Thus, 

we have provided the molecular framework of the zinc wave 

regulation, although we still do not know the precise mecha-

nisms by which calcium and MEK signaling are integrated 

to induce the zinc wave. An interesting hypothesis is that an un-

known molecule whose activity is regulated by both calcium 

and MEK plays a role in inducing the zinc wave. This issue 

needs to be clarifi ed to fully understand the zinc wave.

Several studies have shown that many secretory cells, 

such as nerve, pancreatic, and mast cells, contain granules with 

high concentrations of zinc (Gustafson, 1967; Frederickson and 

Moncrieff, 1994; Kristiansen et al., 2001). In nerve cells, zinc 

released by exocytotic stimuli can be taken up into the cyto-

plasm, resulting in an increase of free zinc (Sensi et al., 1999; 

Aizenman et al., 2000; Yin et al., 2002; Gyulkhandanyan et al., 

2006). In these studies, the source of the increased zinc ion was 

extracellular. In contrast to these observations, we showed that 

the source of the zinc wave induced by FcεR1 stimulation was 

intracellular, not extracellular. The possibility of extracellular 

zinc infl ux was unlikely because (1) the cell-impermeable zinc 

chelator DTPA did not inhibit the zinc wave (Fig. 1 C), and 

(2) as shown in Fig. 1 H, the zinc wave was still observed in mast 

cells derived from Gab2-defi cient mice, which are defective in 

FcεRI-mediated degranulation (Nishida et al., 2005), negating 

the possibility that zinc released from mast cells upon degranu-

lation was the source of the zinc wave. Moreover, we showed 

that upon FcεRI stimulation, the zinc wave originated in the 

perinuclear region that includes the ER (Fig. 1 A). This observa-

tion was confi rmed using a thin-layer illumination microscope 

and ER marker. The zinc wave was fi rst seen in the region 

that was stained with an ER marker, such as ER-tracker red, 

and then the increased free zinc was observed in the nucleus 

(Fig. 3, A and B). At present, however, it remains possible that 

other intracellular compartments, including the nucleus and 

Figure 3. Initiation of the zinc wave in the 
perinuclear region, especially near the ER. 
Observation of the zinc wave by a thin-layer 
illumination microscope system based on a TIRF 
microscope. (A) Simultaneous images of New-
port green signals (top), ER-tracker red (middle), 
and merged images (bottom) in a cross sec-
tion 4 μm above the bottom of the costained 
BMMCs. Time after FcεRI stimulation is shown 
above the images. Bar, 5 μm. (B) Fluorescence 
intensity profi le of the rectangular areas indi-
cated in A is displayed for each time point 
 after FcεRI stimulation. The fl uorescence intensity 
was vertically integrated and normalized with 
the maximum intensity and plotted against the 
horizontal distance through the selected area.
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mitochondria, contribute to the zinc wave. Although the precise 

intracellular source of the zinc wave is still uncertain, it would be 

interesting if the zinc wave originates in the ER, considering that 

calcium signaling is elicited through IP3R stimulation on the ER 

membrane. Although the mechanism is still an open question, an 

attractive hypothesis is that the integration of calcium- and MEK-

dependent events causes the activation of unknown molecules 

capable of stimulating IP3R-like molecules or ZIP family mem-

bers present on the ER membrane to elicit the zinc wave.

Possible role of the zinc wave
The interpretation of many of the effects of zinc on phosphory-

lation-dependent signal transduction events, including those in 

insulin signaling, requires an evaluation of whether or not they 

occur at physiological zinc concentrations (Beyersmann and 

Haase, 2001). However, it is still unclear how zinc regulates 

signaling events downstream of receptor-mediated activation 

that lead to changes in biological activity, such as cytokine 

production. Regarding cytokine gene expression, we previously 

Figure 4. The zinc wave has a role in cytokine production through the modulation of phosphatase activity. (A) BMMCs were treated with the zinc ionophore 
pyrithione (Py) and ZnSO4 (Zn). Images show Newport green–containing mast cells before and after (15 min) the addition of 0.1 μM Py and 10 μM Zn. 
(bottom) Relative fl uorescence intensity in cells treated with 10 μM Zn and 0.1 or 0.5 μM Py. (B) The effect of simultaneous zinc chelation or zinc infl ux with 
FcεRI activation on IL-6 and TNF-α mRNA induction was determined by RT-PCR. Cells were treated with 10 μM TPEN or 10 μM Zn and 0.1 μM Py simultane-
ously with FcεRI stimulation. (C) Effect of TPEN or zinc infl ux on FcεRI-mediated ERK and JNK activation. Cells were treated as in B. (D) Cells were stimulated 
with FcεRI, 10 μM Zn, and 0.1 μM Py for the indicated times, and protein phosphorylation was detected. Arrowheads indicate proteins showing enhanced 
phosphorylation. (E) Intracellular phosphatase activity was measured using phosphopeptide as a substrate. Whole-cell lysate from unstimulated (none) or 
FcεRI-stimulated cells treated with 1 μM Py alone, 10 μM Zn alone, Py and Zn combined, or the combined Py and Zn with TPEN were incubated with phospho-
peptide at 37°C for 30 min. (F) Phosphatase activity was measured using whole-cell lysate without any treatment, with 1 mM vanadate, or with 50–1,000 μM Zn 
in vitro. Data are means ± SD (error bars). *, P < 0.05; **, P < 0.01; ***, P < 0.001 compared with no stimulation or additions (none; t test).
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showed that the FcεRI-induced gene expression of IL-6 and 

TNFα requires zinc-dependent mechanisms because the pre-

treatment of mast cells with TPEN inhibited this gene induc-

tion, at least in part, by inhibiting PKC activation (Kabu et al., 

2006). Our previous results clearly showed the presence of zinc-

dependent mechanisms in the PKC–nuclear factor κB signaling 

pathway (Kabu et al., 2006). Because Py/Zn treatment, which 

mimicked the zinc wave, induced neither PKC nor nuclear factor 

κB activation (unpublished data), that requirement for zinc is 

most likely in its previously recognized role as a constituent 

of signaling molecules essential for maintaining their proper 

conformation or enzymatic activity. In this study, we show that 

free zinc at the levels elicited by the zinc wave after FcεRI stim-

ulation enhances the transcription of the genes for the cytokines 

IL-6 and TNFα. This enhancing effect of free zinc was can-

celled by simultaneous treatment with TPEN, negating the pos-

sibility that this was an artifi cial effect of adding zinc to the 

culture medium. Furthermore, we showed that free zinc could in-

hibit tyrosine phosphatase activity, suggesting that tyrosine phos-

phatases are possible targets of the zinc wave.

Calcium signaling is rapidly induced seconds after stim-

ulation, whereas the zinc wave was elicited in minutes. We 

showed that the zinc wave might modulate signaling events by 

affecting several molecules, including tyrosine phosphatase 

activity, which is consistent with reports that zinc inhibits phos-

phatase activity (Brautigan et al., 1981). It is generally thought 

that the fi nal output of signaling is dependent not only on the 

quality of the signal but also on its quantity (for instance, its du-

ration and the signal strength). For example, NGF-induced den-

drite outgrowth is totally dependent on the duration of MAPK 

activation (Marshall, 1995; Sasagawa et al., 2005). We hypoth-

esize that one of the roles of the zinc wave is to modulate signaling 

quantity, thereby playing a critical role in determining the fi nal 

output of the signaling pathway.

Zinc is a novel intracellular 
second messenger
Zinc is a structural constituent of a great number of proteins, 

including enzymes of cellular signaling pathways and transcrip-

tion factors, and it is essential for their biological activity. In 

these cases, zinc binds tightly to proteins containing the zinc 

fi nger motif and maintains their structure. However, zinc has 

not been thought to play a role as an intracellular second mes-

senger capable of transducing extracellular stimuli into intra-

cellular signaling pathways, like calcium and cAMP. In neurons, 

exocytotic stimuli induce zinc release into the surrounding 

milieu, and it is then taken up into the cytoplasm of neighboring 

cells through gated zinc channels. In this case, the action of zinc 

is very similar to that of neurotransmitters, which are stored in 

membrane-enclosed synaptic vesicles and released by exo-

cytosis, activating postsynaptic cells through transmitter-gated 

ion channels (Xie and Smart, 1994; Hershfi nkel et al., 2001; Li 

et al., 2001; Colvin et al., 2003; Frederickson, 2003). However, 

the action of zinc as a neurotransmitter is different from the con-

ventional concept of a second messenger. In this study, we 

showed that an extracellular stimulus such as FcεRI stimulation 

induced an increase in intracellular free zinc, which we called 

the zinc wave, originating in the region of the ER. Furthermore, 

the zinc wave was observed under conditions in which either the 

extracellular zinc infl ux or the exocytosis of granules, which are 

rich in zinc, was inhibited. Collectively, our observations indi-

cate that the zinc wave is a completely different phenomenon 

from that already reported in neurons; rather, zinc is a novel intra-

cellular second messenger. This conclusion is drawn from the 

following results. (1) An extracellular stimulus, such as FcεRI 

cross-linking, directly induced an increase in intracellular free 

zinc, the zinc wave. (2) The source of zinc was an intracellular 

compartment, possibly the ER. (3) Free zinc at a level similar to 

that elicited by the zinc wave affects intracellular signaling 

molecules, such as tyrosine phosphatase, and, therefore, it could 

modulate the fi nal output triggered by extracellular stimuli.

We previously showed that the Stat3-Liv1 (Zip6) cascade 

is critically involved in the epithelial-mesenchymal transition 

and is required for the nuclear localization of Snail1, a zinc 

 fi nger–containing repressor (Yamashita et al., 2004). In addition, 

toll-like receptor–mediated signaling decreases the intracellular 

free zinc in dendritic cells, and this decrease is required for den-

dritic cell activation (Kitamura et al., 2006), suggesting that zinc 

acts as a signaling molecule. An important difference between 

our current observations and our previous fi ndings is that the 

zinc wave was observed several minutes after the stimulation, 

whereas the change in free zinc induced by toll-like receptor 

ligand was observed several hours after stimulation. In addition, 

the latter was totally dependent on a change in zinc transporter 

expression. We propose that intracellular zinc signaling can be 

classifi ed into at least two categories: one is late zinc signaling 

that is dependent on a transcriptional change in zinc transporter 

expression, and the other is the zinc wave, an early zinc signaling 

pathway that is directly induced by an extracellular stimulus, 

such as FcεRI. Under the latter condition, zinc acts as an intra-

cellular second messenger capable of directly transducing the 

extracellular stimulus into intracellular signaling events.

cAMP was the fi rst intracellular second messenger to be 

discovered, by Berthet et al. (1957); calcium was the second. At 

present, a limited number of intracellular signaling effectors or 

modes are known, including cAMP, calcium, NO, lipid media-

tors, G proteins, and related molecular mediators, protein phos-

phorylation, and dephosphorylation (Gomperts et al., 2002). We 

do not know whether the zinc wave occurs in cell types other 

than mast cells, and this important issue remains to be resolved 

in the future. Nevertheless, our results support the idea that zinc 

is a novel second messenger/signaling ion that has the potential 

to infl uence many aspects of cellular signaling through its effect 

on zinc-binding proteins because there are many transcription 

factors and enzymes containing zinc-binding sites. This novel 

fi nding yields new insight into the areas of cell signaling and 

biological response.

Materials and methods
Cell culture and mice
Bone marrow–derived mast cells (BMMCs) were prepared as described 
previously (Nishida et al., 2005). Syk-, Gab2-, and PLCγ2-defi cient mice, 
which are crosses of C57BL6 and 129Sv, were generated as described 
previously (Turner et al., 1995; Hashimoto et al., 2000; Nishida et al., 2002). 
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Syk-defi cient mice were provided by V.L.J. Tybulewicz (Division of Immune 
Cell Biology, National Institute for Medical Research, London, UK).

Reagents and antibodies
TPEN (Ka = 1015.58 M–1, 1014.61 M–1, 1020 M–1, and 1010.27 M–1 for Zn2+, 
Fe2+, Cu2+, and Mn2+, respectively; Arslan et al., 1985; McCabe et al., 
1993), 2,2’-dipyridyl (Ka = 1017.2 M–1 for Fe2+; Dehne et al., 2001), 
p-aminosalicylic acid (Mn2+ chelator; Ky et al., 1992), DTPA (membrane-
impermeable zinc chelator; Tandon and Singh, 1975; Yui et al., 2002), 
Xestospongin C, and ionomycin were purchased from Sigma-Aldrich. 
Ammonium tetrathiomolybdate (Cu2+ chelator; Armstrong et al., 2001) was 
purchased from Sigma-Aldrich. Newport green DCF diacetate, Fluo-4 AM, 
ER-tracker red, and pyrithione were purchased from Invitrogen. The relative 
increase of fl uorescence intensity of Newport green DCF is calculated from 
the fl uorescence intensity of 1 μM ion-containing solution and that of refer-
ence solution containing 10 μM EGTA and 10 μM TPEN. PD98059 was 
obtained from Calbiochem. U0126 was obtained from Cell Signaling, and 
EGF was purchased from PeproTech. The rabbit antiactive MAPK, anti-
ERK1/2, and antiactive JNK polyclonal antibody were purchased from Pro-
mega. The rabbit anti-JNK1 polyclonal antibody was purchased from Santa 
Cruz Biotechnology, Inc..

Microscopy
1 × 106/ml BMMCs were sensitized with 1 μg/ml IgE (anti-DNP IgE clone 
SPE-7; Sigma-Aldrich) for 6 h at 37°C. IgE-sensitized mast cells were 
washed three times, resuspended in Tyrode’s buffer (10 mM Hepes, pH 7.4, 
130 mM NaCl, 5 mM KCl, 1.4 mM CaCl2, 1 mM MgCl2, and 5.6 mM 
glucose), allowed to adhere to a poly-L-lysine–coated glass-bottom dish, 
and incubated with 10 μM Newport green or 5 μM Fluo-4 for 30 min at 
37°C. These dyes are cell permeant. Surplus fl uorescence indicator and 
fl oating cells were removed by at least three washes with Tyrode’s buffer. 
Cells were stimulated with 100 ng/ml dinitrophenylated human serum 
albumin (Sigma-Aldrich) at 37°C. The images of fl uorescent signals were 
captured every 10 or 30 s by an inverted microscope (Axiovert 200 MO; 
Carl Zeiss MicroImaging, Inc.) with an oil plan Neofl uar 100× NA 1.3 
objective (Carl Zeiss MicroImaging, Inc.), CCD camera (CoolSnap HQ; 
Roper Scientifi c), and the system control application SlideBook (Intelligent 
Imaging Innovation) at 25°C. Obtained images were processed with Photo-
shop software (Adobe) to adjust for size and contrast.

Newport green and ER tracker were detected using a thin-layer illu-
mination microscope system based on the TIRF microscope (Tokunaga 
et al., 1997) at 25°C. For illumination, two laser lines of 488 nm (Sapphire 
488–20-OPS; Coherent) and 558 nm (YA11-558; Megaopto) were di-
rected through a 100× NA 1.45 oil immersion objective (PLAPAO100X-
OTIRFM; Olympus) to an inverted microscope (IX-81; Olympus). The 
fl uorescence images were collected at every 0.5-μm slice from the bottom 
to the top of the cells during scanning along the z direction using two 
electron-bombarded CCD cameras (C-7190-23; Hamamatsu Photonics), each 
equipped with an image intensifi er (C8600-05; Hamamatsu Photonics). 
The images were captured using A Q U A C O S M O S  software (Hamamatsu 
Photonics) and processed to obtain 3D images using an averaging method 
of A Q U A C O S M O S  software, a deconvolution method of Volicity software 
(Improvision), and γ adjustments (Adobe Photoshop).

Zinc quantifi cation by fl ow cytometry
Anti-DNP IgE-sensitized mast cells were washed, resuspended in Tyrode’s 
buffer, and incubated with 10 μM Newport green for 30 min in suspension 
at 37°C. The cells were washed twice with Tyrode’s buffer and incubated 
with the indicated metal chelators at 10 μM for 10 min at 37°C. The cells 
were stimulated with DNP–human serum albumin for 15 min at 37°C and 
fi xed with 4% PFA in PBS on ice. The intensity of the Newport green fl uor-
escence was analyzed by fl ow cytometry.

Cell lysates and immunoblotting
Anti-DNP IgE-sensitized BMMCs were stimulated with DNP–human serum 
albumin at 37°C. After the indicated times, the cells were harvested and 
lysed with lysis buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 
proteinase inhibitors, 5 μg/ml pepstatin, and 10 μg/ml leupeptin) for 
30 min at 4°C and spun at 12,000 g at 4°C for 30 min. The eluted and 
reduced samples were resolved by SDS-PAGE using a 4–20% gradient 
polyacrylamide gel (Dai-ichi Kagaku) and transferred to a polyvinylidene 
difl uoride membrane (Immobilon-P; Millipore). For immunoblotting, the 
membranes were incubated with antiphosphotyrosine, antiphospho-ERK, 
antiphospho-JNK, anti-ERK, or anti-JNK. After the reaction with the fi rst 
antibody, the membranes were incubated with HRP-conjugated anti–mouse 

or rabbit IgG (Zymed Laboratories) for 1 h at room temperature. After 
extensive washing of the membranes, immunoreactive proteins were visualized 
using the Renaissance chemiluminescence system (Dupont NEN) according 
to the manufacturer’s recommendations. The chemiluminescence images of 
the polyvinylidene difl uoride membranes were captured with a chemi-
luminescence and fl uorescence imaging system (LAS-1000; Fuji) and analyzed 
with Image Gauge software (Fuji).

RT-PCR analysis
Cells were homogenized, and total RNA was isolated with the RNeasy 
Protect kit (QIAGEN) according to the manufacturer’s instructions. For stan-
dard RT-PCR, cDNA was synthesized from 500 ng of the total RNA by in-
cubation with reverse transcriptase (ReverTra Ace; Toyobo) and 500 ng 
of oligonucleotide (dT) primer for 30 min at 42°C (Invitrogen). A portion 
of the cDNA (typically a 1/20 volume) was used for the standard PCR 
to detect IL-6, TNFα, and glyceraldehyde-3-phosphate dehydrogenase. 
25 cycles of PCR were performed with 0.5 U rTaq DNA polymerase and 
10 pmol of gene-specifi c sense and antisense primers. Amplifi ed segments 
of RT-PCR for IL-6, TNFα, and glyceraldehyde-3-phosphate dehydrogenase 
were 141 bp, 175 bp, and 227 bp, respectively. Primers used in these experi-
ments were purchased from Invitrogen, and sequences were as follows: IL-6, 
forward primer (5′-G A G G A T A C C A C T C C C A A C A G A C C -3′) and reverse 
primer (5′-A A G T G C A T C A T C G T T G T T C A T A C A -3′); TNFα, forward primer 
(5′-C A T C T T C T C A A A A T T C G A G T G A C A A -3′) and reverse primer (5′-T G G G-
A G T A G A C A A G G T A C A A C C C -3′); and glyceraldehyde-3-phosphate de-
hydrogenase, forward primer (5′-T T C A C C A C C A T G G A G A A G G C C G -3′) and 
reverse primer (5′-G G C A T G G A C T G T G G T C A T G A -3′).

Measurement of phosphatase activity
Anti-DNP IgE-sensitized BMMCs were stimulated with DNP–human serum 
albumin at 37°C for 30 min and lysed with lysis buffer as described in 
Cell lysates and immunoblotting. The cell lysate was analyzed using the 
Tyrosine Phosphatase Assay System (Promega) according to the manufacturer’s 
recommendations.

Online supplemental material
Videos 1 and 2 show time-lapse images of Newport green in mast cells. 
Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.200702081/DC1.

We thank Dr. V. Tybulewicz for providing the Syk knockout mice. We also thank 
Ms. M. Kikuchi and Ms. Y. Ito for technical assistance and Ms. M. Shimura for 
secretarial assistance.

This work was supported by grants from the Ministry of Education, 
Culture, Sports, Science and Technology in Japan and by the New Energy 
and Industrial Technology Development Organization.

Submitted: 13 February 2007
Accepted: 18 April 2007

References
Aizenman, E., A.K. Stout, K.A. Hartnett, K.E. Dineley, B. McLaughlin, and I.J. 

Reynolds. 2000. Induction of neuronal apoptosis by thiol oxidation: puta-
tive role of intracellular zinc release. J. Neurochem. 75:1878–1888.

Andrews, G.K. 2001. Cellular zinc sensors: MTF-1 regulation of gene expression. 
Biometals. 14:223–237.

Armstrong, C., W. Leong, and G.J. Lees. 2001. Comparative effects of metal 
chelating agents on the neuronal cytotoxicity induced by copper (Cu+2), 
iron (Fe+3) and zinc in the hippocampus. Brain Res. 892:51–62.

Arslan, P., F. Di Virgilio, M. Beltrame, R.Y. Tsien, and T. Pozzan. 1985. Cytosolic 
Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-
permeant chelator of heavy metals reveals that these ascites tumor cell 
lines have normal cytosolic free Ca2+. J. Biol. Chem. 260:2719–2727.

Berthet, J., T.W. Rall, and E.W. Sutherland. 1957. The relationship of epineph-
rine and glucagon to liver phosphorylase. IV. Effect of epinephrine and 
glucagon on the reactivation of phosphorylase in liver homogenates. 
J. Biol. Chem. 224:463–475.

Beyersmann, D., and H. Haase. 2001. Functions of zinc in signaling, prolifera-
tion and differentiation of mammalian cells. Biometals. 14:331–341.

Brautigan, D.L., P. Bornstein, and B. Gallis. 1981. Phosphotyrosyl-protein phos-
phatase. Specifi c inhibition by Zn. J. Biol. Chem. 256:6519–6522.

Colvin, R.A., C.P. Fontaine, M. Laskowski, and D. Thomas. 2003. Zn2+ 
transporters and Zn2+ homeostasis in neurons. Eur. J. Pharmacol. 
479:171–185.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/177/4/637/1894860/jcb_200702081.pdf by guest on 23 April 2024



ZINC WAVE • YAMASAKI ET AL. 645

Dehne, N., J. Lautermann, F. Petrat, U. Rauen, and H. de Groot. 2001. Cisplatin 
ototoxicity: involvement of iron and enhanced formation of superoxide 
anion radicals. Toxicol. Appl. Pharmacol. 174:27–34.

Eide, D.J. 2004. The SLC39 family of metal ion transporters. Pfl ugers Arch. 
447:796–800.

Fernandes, G., M. Nair, K. Onoe, T. Tanaka, R. Floyd, and R.A. Good. 1979. 
Impairment of cell-mediated immunity functions by dietary zinc defi -
ciency in mice. Proc. Natl. Acad. Sci. USA. 76:457–461.

Fraker, P.J., R. Caruso, and F. Kierszenbaum. 1982. Alteration of the immune 
and nutritional status of mice by synergy between zinc defi ciency and 
infection with Trypanosoma cruzi. J. Nutr. 112:1224–1229.

Frederickson, C. 2003. Imaging zinc: old and new tools. Sci. STKE. 2003:pe18.

Frederickson, C.J., and D.W. Moncrieff. 1994. Zinc-containing neurons. Biol. Signals. 
3:127–139.

Frederickson, C.J., J.Y. Koh, and A.I. Bush. 2005. The neurobiology of zinc in 
health and disease. Nat. Rev. Neurosci. 6:449–462.

Gomperts, B.D., P.E.R. Tatham, and I.M. Kramer. 2002. Signal Transduction. 
Academic Press, San Diego. 424 pp.

Gustafson, G.T. 1967. Heavy metals in rat mast cell granules. Lab. Invest. 
17:588–598.

Gyulkhandanyan, A.V., S.C. Lee, G. Bikopoulos, F. Dai, and M.B. Wheeler. 
2006. The Zn2+-transporting pathways in pancreatic beta-cells: a role for 
the L-type voltage-gated Ca2+ channel. J. Biol. Chem. 281:9361–9372.

Hashimoto, A., K. Takeda, M. Inaba, M. Sekimata, T. Kaisho, S. Ikehara, Y. 
Homma, S. Akira, and T. Kurosaki. 2000. Cutting edge: essential role 
of phospholipase C-gamma 2 in B cell development and function. 
J. Immunol. 165:1738–1742.

Hershfi nkel, M., A. Moran, N. Grossman, and I. Sekler. 2001. A zinc-sensing 
receptor triggers the release of intracellular Ca2+ and regulates ion trans-
port. Proc. Natl. Acad. Sci. USA. 98:11749–11754.

Ibs, K.H., and L. Rink. 2003. Zinc-altered immune function. J. Nutr. 
133:1452S–1456S.

Jou, M.J., S.B. Jou, M.J. Guo, H.Y. Wu, and T.I. Peng. 2004. Mitochondrial re-
active oxygen species generation and calcium increase induced by visible 
light in astrocytes. Ann. NY Acad. Sci. 1011:45–56.

Kabu, K., S. Yamasaki, D. Kamimura, Y. Ito, A. Hasegawa, E. Sato, H. Kitamura, 
K. Nishida, and T. Hirano. 2006. Zinc is required for FcepsilonRI-
mediated mast cell activation. J. Immunol. 177:1296–1305.

Keen, C.L., and M.E. Gershwin. 1990. Zinc defi ciency and immune function. 
Annu. Rev. Nutr. 10:415–431.

Kitamura, H., H. Morikawa, H. Kamon, M. Iguchi, S. Hojyo, T. Fukada, S. 
Yamashita, T. Kaisho, S. Akira, M. Murakami, and T. Hirano. 2006. Toll-
like receptor-mediated regulation of zinc homeostasis infl uences dendritic 
cell function. Nat. Immunol. 7:971–977.

Koh, J.Y., S.W. Suh, B.J. Gwag, Y.Y. He, C.Y. Hsu, and D.W. Choi. 1996. The 
role of zinc in selective neuronal death after transient global cerebral 
ischemia. Science. 272:1013–1016.

Kristiansen, L.H., J. Rungby, L.G. Sondergaard, M. Stoltenberg, and G. Danscher. 
2001. Autometallography allows ultrastructural monitoring of zinc in the 
endocrine pancreas. Histochem. Cell Biol. 115:125–129.

Ky, S.Q., H.S. Deng, P.Y. Xie, and W. Hu. 1992. A report of two cases of chronic 
serious manganese poisoning treated with sodium para-aminosalicylic 
acid. Br. J. Ind. Med. 49:66–69.

Li, Y., C.J. Hough, S.W. Suh, J.M. Sarvey, and C.J. Frederickson. 2001. Rapid 
translocation of Zn(2+) from presynaptic terminals into postsynaptic 
hippocampal neurons after physiological stimulation. J. Neurophysiol. 
86:2597–2604.

Lichtlen, P., and W. Schaffner. 2001. Putting its fi ngers on stressful situa-
tions: the heavy metal-regulatory transcription factor MTF-1. Bioessays. 
23:1010–1017.

Maret, W., C. Jacob, B.L. Vallee, and E.H. Fischer. 1999. Inhibitory sites in en-
zymes: zinc removal and reactivation by thionein. Proc. Natl. Acad. Sci. 
USA. 96:1936–1940.

Marshall, C.J. 1995. Specifi city of receptor tyrosine kinase signaling: transient 
versus sustained extracellular signal-regulated kinase activation. Cell. 
80:179–185.

McCabe, M.J., Jr., S.A. Jiang, and S. Orrenius. 1993. Chelation of intracellular 
zinc triggers apoptosis in mature thymocytes. Lab. Invest. 69:101–110.

Nishida, K., L. Wang, E. Morii, S.J. Park, M. Narimatsu, S. Itoh, S. Yamasaki, M. 
Fujishima, K. Ishihara, M. Hibi, et al. 2002. Requirement of Gab2 for mast 
cell development and KitL/c-Kit signaling. Blood. 99:1866–1869.

Nishida, K., S. Yamasaki, Y. Ito, K. Kabu, K. Hattori, T. Tezuka, H. Nishizumi, 
D. Kitamura, R. Goitsuka, R.S. Geha, et al. 2005. Fc{epsilon}RI-
mediated mast cell degranulation requires calcium-independent micro-
tubule-dependent translocation of granules to the plasma membrane. 
J. Cell Biol. 170:115–126.

Palmiter, R.D. 2004. Protection against zinc toxicity by metallothionein and zinc 
transporter 1. Proc. Natl. Acad. Sci. USA. 101:4918–4923.

Palmiter, R.D., and L. Huang. 2004. Effl ux and compartmentalization of zinc 
by members of the SLC30 family of solute carriers. Pfl ugers Arch. 
447:744–751.

Parravicini, V., M. Gadina, M. Kovarova, S. Odom, C. Gonzalez-Espinosa, Y. 
Furumoto, S. Saitoh, L.E. Samelson, J.J. O’Shea, and J. Rivera. 2002. 
Fyn kinase initiates complementary signals required for IgE-dependent 
mast cell degranulation. Nat. Immunol. 3:741–748.

Prasad, A.S. 1995. Zinc: an overview. Nutrition. 11:93–99.

Rink, L., and P. Gabriel. 2000. Zinc and the immune system. Proc. Nutr. Soc. 
59:541–552.

Rivera, J. 2002. Molecular adapters in Fc(epsilon)RI signaling and the allergic 
response. Curr. Opin. Immunol. 14:688–693.

Sasagawa, S., Y. Ozaki, K. Fujita, and S. Kuroda. 2005. Prediction and validation 
of the distinct dynamics of transient and sustained ERK activation. 
Nat. Cell Biol. 7:365–373.

Sensi, S.L., and J.M. Jeng. 2004. Rethinking the excitotoxic ionic milieu: the 
emerging role of Zn(2+) in ischemic neuronal injury. Curr. Mol. Med. 
4:87–111.

Sensi, S.L., H.Z. Yin, and J.H. Weiss. 1999. Glutamate triggers preferential 
Zn2+ fl ux through Ca2+ permeable AMPA channels and consequent 
ROS production. Neuroreport. 10:1723–1727.

Tandon, S.K., and J. Singh. 1975. Removal of manganese by chelating agents 
from brain and liver of manganese treated rats: as in vitro and an in vivo 
study. Toxicology. 5:237–241.

Telford, W.G., and P.J. Fraker. 1995. Preferential induction of apoptosis in mouse 
CD4+CD8+ alpha beta TCRloCD3 epsilon lo thymocytes by zinc. 
J. Cell. Physiol. 164:259–270.

Tokunaga, M., K. Kitamura, K. Saito, A.H. Iwane, and T. Yanagida. 1997. Single 
molecule imaging of fl uorophores and enzymatic reactions achieved by 
objective-type total internal refl ection fl uorescence microscopy. Biochem. 
Biophys. Res. Commun. 235:47–53.

Turner, H., and J.P. Kinet. 1999. Signalling through the high-affi nity IgE receptor 
Fc epsilonRI. Nature. 402:B24–B30.

Turner, M., P.J. Mee, P.S. Costello, O. Williams, A.A. Price, L.P. Duddy, M.T. 
Furlong, R.L. Geahlen, and V.L. Tybulewicz. 1995. Perinatal lethality 
and blocked B-cell development in mice lacking the tyrosine kinase Syk. 
Nature. 378:298–302.

Vallee, B.L. 1995. The function of metallothionein. Neurochem. Int. 27:23–33.

Vallee, B.L., and D.S. Auld. 1993. Cocatalytic zinc motifs in enzyme catalysis. 
Proc. Natl. Acad. Sci. USA. 90:2715–2718.

Xie, X., and T.G. Smart. 1994. Modulation of long-term potentiation in rat hippo-
campal pyramidal neurons by zinc. Pfl ugers Arch. 427:481–486.

Yamashita, S., C. Miyagi, T. Fukada, N. Kagara, Y.S. Che, and T. Hirano. 2004. 
Zinc transporter LIVI controls epithelial-mesenchymal transition in 
zebrafi sh gastrula organizer. Nature. 429:298–302.

Yin, H.Z., S.L. Sensi, F. Ogoshi, and J.H. Weiss. 2002. Blockade of Ca2+-
permeable AMPA/kainate channels decreases oxygen-glucose deprivation-
induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal 
neurons. J. Neurosci. 22:1273–1279.

Yui, S., Y. Nakatani, M.J. Hunter, W.J. Chazin, and M. Yamazaki. 2002. 
Implication of extracellular zinc exclusion by recombinant human cal-
protectin (MRP8 and MRP14) from target cells in its apoptosis-inducing 
activity. Mediators Infl amm. 11:165–172.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/177/4/637/1894860/jcb_200702081.pdf by guest on 23 April 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




