An electrophysiological and anatomical study of the guinea pig taenia coli is reported. Changing the membrane potential of single cells cannot modulate the rate of firing action potentials but does reveal electrical coupling between the cells during propagation. The amplitude of the junction potentials which occur during transmission from inhibitory nerves is unaffected in many cells during alteration of the membrane potential, indicating electrical coupling during transmission. The taenia coli is shown to consist of smooth muscle bundles which anastomose. There are tight junctions between the cells in the bundles, and these probably provide the pathway for the electrical coupling. The smooth muscle cells towards the serosal surface of the taenia coli are shown electrophysiologically to have an extensive intramural inhibitory innervation, but a sparse sympathetic inhibitory and cholinergic excitatory innervation. These results are in accordance with the distribution of these nerves as determined histochemically. As single axons are only rarely observed in the taenia coli, it is suggested that the only muscle cells which undergo permeability changes during transmission are those adjacent to varicosities in the nerve bundles. The remaining muscle cells then undergo potential changes during transmission because of electrical coupling through the tight junctions.

This content is only available as a PDF.