The social behavior of 3T3 cells and their polynoma virus-transformed derivative (Py3T3 cells) was examined by time-lapse cinemicrography in order to determine what factors are responsible for the marked differences in the patterns formed by the two cell lines in culture. Contrary to expectations, both cell types have been found to exhibit contact inhibition of cell locomotion. Therefore, the tendency of 3T3 cells to form monolayers and of Py3T3 cells to form crisscrossed multilayers cannot be explained on the basis of the presence versus the absence of contact inhibition. Morevover, with the exception of cell division control, the social behavior of the two cell types is qualitively similar. Both exhibit cell underlapping and, after contact between lamelliopodia, both show inhibition of locomotory activity and adhesion formation. Neither cell type was observed to migrate over the surface of another cell. The two cell types do show quantitative differences in the frequency of underlapping, the frequency with which contact results in inhibition of locomotion, and the proportion of the cell margin that adheres to the substratum. The increased frequency pf Py3T3 underlapping is correlated with the reduced frequency of substratum adhesions, which in turn favors underlapping. On the basis of these observations, it is concluded that the differences in culture patterns are the result of differences in the shapes of the individual cells, such that underlapping, and hence crisscrossing, is favored in Py3T3 cell interactions and discouraged in 3T3 cells.

This content is only available as a PDF.