Membrane-related Specializations
Associated with Acetylcholine Receptor Aggregates
Induced by Electric Fields

PAUL W. LUTHER and H. BENJAMIN PENG
Department of Anatomy, University of Illinois at Chicago, Chicago, Illinois 60680

ABSTRACT The localization of membrane-associated specializations (basal lamina and cytoplasmic density) at sites of acetylcholine receptor (AChR) aggregation is consistent with an involvement of these structures in receptor stabilization. We investigated the occurrence of these specializations in association with AChR aggregates that develop at the cathode-facing edge of *Xenopus* muscle cells during exposure to a DC electric field. The cultures were labeled with a fluorescent conjugate of α-bungarotoxin and the receptor distribution on selected cells was determined before and after exposure to the field. In thin sections taken from the same cells, the cathode-facing edge was characterized by plaques of basal lamina and cytoplasmic density co-extensive with sarcolemma of increased density. In sections cut in a plane similar to the fluorescence image, it was possible to demonstrate that the specializations were concentrated at areas of field-induced AChR aggregation, and at receptor clusters existing on control cells. This finding further indicates that these structures participate in AChR stabilization, and that the mechanisms involved in AChR aggregation that result from field exposure and nerve contact may be similar.

During the development of the neuromuscular junction, stable aggregates of acetylcholine receptors (AChR) form within the pre-existing diffuse receptor population on the muscle cell (1, 2) and may result from the redistribution of surface AChR (3). In addition, the postsynaptic sarcolemma develops structural specializations, which include regions of increased membrane density co-extensive with a well-developed basal lamina and cytoplasmic dense layer (4–6). This association is maintained at the mature junction, where the specializations and AChR aggregates are co-localized at the crests of the postsynaptic folds (7, 8). A similar co-localization of AChR and these specializations has been demonstrated at AChR clusters that form on non-innervated muscle cells in culture (9), and at those induced by nerve extracts (10) and polycation-coated beads (11). In these cases, aggregation also involves the redistribution of pre-existing AChR into stable aggregates (10–12). Because dispersed AChR undergo lateral diffusion in the membrane (13, 14), the stability of these aggregates indicates that a mechanism to restrict receptor motion exists. Considering the consistent localization of the described specializations at sites of AChR aggregation, it is possible that they may be related to this mechanism.

The exposure of cultured muscle cells to DC electric fields also causes the redistribution of surface AChR into aggregates (15). It has been proposed that the field-induced translocation of the receptors is the result of electrophoresis (15) or electro-osmotic flow (16) resulting from the voltage gradient imposed along the cell surface. However, the resulting aggregates are stable against lateral diffusion following termination of the field (15). It was therefore of interest to determine if postsynaptic-like specializations are also associated with these aggregates. In this study, fluorescence microscopy was used to monitor the distribution of AChR on cultured *Xenopus* muscle cells before and after exposure to a 7.5 V/cm electric field; the same cells were then thin-sectioned and examined by electron microscopy. The results demonstrate that the specializations were present and localized at areas where AChR aggregates had formed during exposure to the field. A preliminary account of these findings has appeared (17).
RESULTS

Field-induced Redistribution of AChR

It has been demonstrated that exposure of cultured *Xenopus* myocytes to DC electric fields causes the redistribution of AChR into aggregates at the cathode-facing edge of the cells (15, 24). In the following experiments, this redistribution was observed directly by labeling the culture with TMR-α-BTX and recording the prefield AChR distribution on selected cells using video-intensified fluorescence microscopy (Fig. 1 B).

Following exposure to a 3-h 7.5 V/cm field, the same cells were relocated and examined by conventional fluorescence microscopy, which revealed new fluorescent areas at the cathode-facing edge of the myocytes (Fig. 1 C). In contrast to the single cathodal aggregate forming on the spherical "myoballs" used in previous investigations (24), the bipolar cells used in these experiments were characterized by multiple cathodal aggregates, which occurred as discrete patches separated by nonfluorescing extents of the cathode-facing edge (Fig. 1 C).

A speckled substructure in the micrometer-to-submicrometer range was evident within these patches. These characteristics were particularly evident through the variation in fluorescence pattern that resulted upon altering the plane of focus, thereby demonstrating discontinuity of the aggregates in the vertical plane. Receptor aggregates were not observed to form at noncathodal locations during field exposure, or at any location on cells subjected to 3-h control incubations (Fig. 2, B and C). Alterations in the position or substructure of preexisting AChR aggregates on field-exposed or control cells were not observed.

Specializations Associated with the Cathode-facing Edge

To determine if field exposure had resulted in ultrastructural modification of the cathode-facing edge in association with AChR redistribution, selected cells were thin-sectioned parallel to the substrate and examined by electron microscopy. For this evaluation, it was necessary to minimize interference from specializations associated with pre-existing (i.e., not field-induced) AChR aggregates. Therefore, only cells that had no observable fluorescence at the presumptive cathode- and anode-facing edges prior to field exposure were sectioned. At magnifications as low as 5,000 the occurrence of discrete dense areas at the cathode-facing edge was evident (Fig. 3).

Like the cathodal fluorescence described above, these were distributed discontinuously along the sarcolemma, comprising extents in the micron-to-submicron range (0.7 ± 0.6 μm).
FIGURE 2 Specializations associated with control AChR aggregates. (A) Phase-contrast micrograph of cell after control incubation. (B) Video-intensified fluorescence microscopy prior to incubation. A large AChR aggregate is located on the edge of the cell. (C) Postincubation fluorescence micrograph of the same cell. No alterations in the position of the aggregate are apparent. (D) Thin section from the same cell. Arrows indicate the region enlarged in E. (E) Several areas of increased density are evident at the edge of the cell in the area of AChR aggregation (arrows). (F) High magnification of the density indicated in E reveals basal lamina (BL), dense membrane (DM), and submembranous density (SMD). (G) High magnification of the lower dense areas in E. Specializations associated with a surface invagination (I) and subsurface cisterna (SC) are indicated. (H) Sarcolemma from an area without AChR aggregation; no specializations are apparent. (A–D) × 850. (E) 15,000. (F) × 80,000. (G) × 36,000. (H) × 14,000.
Figure 3 Comparison of cathode- and anode-facing edges of field-exposed cells. In all examples, prefield video-intensified fluorescence microscopy revealed no AChR aggregates at the presumptive cathode-facing edge, whereas numerous cathodal AChR aggregates were present following field exposure. Note that a large number of dense areas (arrows) are present at the cathode-facing edges (A, C, and E), but none are evident at the anode-facing edges of the same cells (B, D, and F), shown at the same magnification. CP, coated pit; CV, coated vesicle; GA, Golgi apparatus. SC indicates a dense area located on a subsurface cistern. (A and B) × 1,200. (C and D) × 22,000. (E and F) × 17,000.
Correlations between TMR-aBTX Fluorescence and Fine Structures

<table>
<thead>
<tr>
<th>Cell</th>
<th>Fluorescence*</th>
<th>Density*</th>
<th>Density* SMD</th>
<th>Structures*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>--</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Field-exposed cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.7</td>
<td>0</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>0</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>1.9</td>
<td>0</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>0</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>2.9</td>
<td>0</td>
<td>2.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Pooled*</td>
<td>2.3</td>
<td>0</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Control cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.9</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>4.6</td>
<td>0.2</td>
<td>23.0</td>
<td>D</td>
</tr>
<tr>
<td>Pooled*</td>
<td>4.2</td>
<td>0.1</td>
<td>42.0</td>
<td>D</td>
</tr>
</tbody>
</table>

* C, cathode-facing edge; A, anode-facing edge. Based on the measurement of all fluorescent areas at the cell edges and the total extent of the edge within the area of fluorescence illumination taken from 1,100x micrographs. Data are expressed as length per 10 |m of sarcolemma in columns a–d and i–n.

Based on the measurement of distinct dense areas exceeding 0.25 |m, and the total length of the evaluated edge on 5,000–10,000x micrographs. The area of fluorescence illumination taken from 1,100x micrographs. Data are expressed as observations per 10|m of sarcolemma.

Based on the same measurements as in columns c and d, but categorized as within or outside highly fluorescent areas. The latter were delimited on the electron micrograph by superimposing the fluorescence image based on landmarks visible in both.

Areas were delimited on the electron micrograph by superimposing the fluorescence image based on landmarks visible in both.

These sometimes occurred in groups, and 24% exceeded 1|m in length. Few dense areas were observed at the anode-facing sarcolemma: these were of a slightly smaller dimension (0.5 ± 0.3|m, n = 20), and only one (5%) exceeded 1|m in extent. The effect was quantitated by determining the total extent of density occurring along a cell edge (omitting the ends, where the section was tangential to the membrane), and expressing this as extent per 10|m of the evaluated edge.

Individual and pooled results from the cathode- and anode-facing edges of five cells evaluated from ×5,000–10,000x micrographs are listed in Table I. In all of these cells, the extent of dense area occurring at the cathode-facing edge was elevated relative to that at the edge facing the anode (columns c–e, Table I) and at nonfluorescing edges of control cells (column g, cells 6 and 7). The actual fraction of the cathodal sarcolemma that was dense, and the ratio of this fraction to that of the respective anodal edge (column e), varied considerably between cells. When the measurements from all five cells were pooled, dense membrane was found to comprise ~10% of the cathode-facing sarcolemma, whereas ~2% of the anode-facing membrane and of nonfluorescing edges of control cells appeared to be dense.

The similar distribution of density and AChR aggregates in field-exposed cells suggest a relationship between the phenomena; this is further implied by the observation that the occurrence of density along the cathode-facing edge was proportional to the occurrence of TMR-aBTX fluorescence along that edge (compare columns a and c, Table I). The spatial relationship between the distributions of densities and AChR aggregates was determined more precisely by delimiting the extent of highly fluorescent regions of the cell edge on electron micrographs and quantifying the occurrence of dense regions within and outside these areas. To perform this correlation it was necessary that the section (a) be taken from a plane similar to that of the fluorescence micrograph; (b) contain intracellular and extracellular landmarks that were also identifiable in the fluorescence image (Fig. 1, C and D), to permit determination of the plane of section and superimposition of the fluorescence and thin section images; and (c) be precisely parallel to the substrate. These criteria were met for the first four cells in Table I, and cell number 4 is shown in Fig. 1. The results indicate that the spatial distribution of AChR aggregates and densities are correlated, with the occurrence of densities being elevated eightfold in fluorescent areas relative to nonfluorescing regions (compare columns f and g, Table I). This is evident by comparing Fig. 1, E–H, which are electron micrographs of the fluorescent areas indicated in Fig. 1C, with Fig. 1I, which is of a low-fluorescence area. For comparison, two control cells that had AChR aggregates on a free edge of the cell (i.e., not substrate associated) were sectioned parallel to the substrate. In these, the elevated occur-
FIGURE 4 Specializations associated with field-induced AChR aggregates. (A) Tangential section of specialized area reveals microfilaments associated with the submembranous density. (B) A microtubule (MT) parallels a specialized region for several micrometers. (C) A coated vesicle (arrow) in the vicinity of a specialized region. (D) A coated pit (arrow) associated with the edge of a specialization. The contents of the pit appear continuous with basal lamina (BL). (E) A Golgi apparatus (GA) near a specialization (arrow). (F) Specializations on subsurface cisternae (arrows). (G) Specialization on a membrane invagination. (A) × 54,000. (B) 65,000. (C) × 80,000. (D) × 80,000. (E) × 33,000. (F) × 27,000. (G) × 70,000.
rence of dense patches in fluorescent regions of the edge was greater than that observed in field-exposed cells (Fig. 2E and column f for cells 6 and 7 in Table I). The intensity of TMR-αBTX fluorescence was also greater than in cathodal fluorescent areas, which further suggests a relationship between the dense areas and AChR aggregates.

High-magnification (25,000-30,000) micrographs of the cathodal dense areas identified in the above quantification were evaluated to determine their structural constitution. Quantification of the findings are listed in columns i-n of Table I. All of the densities were observed to result from the presence of a submembranous dense layer, generally in association with basal lamina and increased sarcolemmal density (Fig. 1F). This association varied from a precisely co-extensive and continuous patch of all three specializations to an intermittent disposition of the elements within the dense area in which their registration was less precise. Although in some cases the submembranous dense layer and dense sarcolemma occurred in the absence of basal lamina, basal lamina was rarely observed in the absence of the other specializations. The extent of these specializations within delimited dense areas is indicated in columns j and k of Table I. The submembranous density was substructured and irregular in thickness (40 ± 10 nm, n = 62) and appeared to impinge directly on the sarcolemma. The cytoplasmic surface of the structure merged indistinctly with cortical granular and filamentous structures. Basal lamina was observed at 91% of the identified dense areas and was also substructured and variable in thickness (45 ± 16 nm, n = 55). The substance generally appeared to impinge directly on the membrane, and a lamina lucida was rarely observed. The occurrence of dense membrane was difficult to assess as the sarcolemma was frequently obscured by the submembranous layer. However, at many locations the membrane density exceeded that of the submembranous structure, and its distinction from unspecialized sarcolemma was evident at most (55%) of the dense areas (Fig. 1F).

Similar specializations were observed at dense areas in control cells (cells 6 and 7 in Table I and Fig. 2F), but they occurred infrequently in areas categorized as nondense in low-magnification observations of both field-exposed and control cells (Table I and Figs. 1I and 2H).

Several other specializations were sometimes observed to associate with dense areas. Specific examples of these are shown in Fig. 4, and others are indicated in Figs. 1–3. The frequency at which these structures were observed per 10 μm of dense membrane is indicated in columns l-n of Table I. Microtubules (diameter [d] = 21.4 ± 2.0 nm, n = 15) were observed within 75 nm of 34% of the dense areas, and in some cases paralleled these for several micrometers (Fig. 4B). Coated vesicles (d = 81.5 ± 3.0 nm, n = 4) and coated pits were observed in association with 8% of the densities (Fig. 4, C and D). An array of lamellae and vesicles resembling Golgi apparatus was observed near 5% of the dense areas (Fig. 4E).

The specificity of these associations is indicated by the frequency at which the structures were observed in relation to nondense sarcolemma (columns l-n, Table I). In addition, a direct association of the submembranous density with microfilaments (d = 5.8 ± 1.0 nm, n = 43) was observed in 76% of dense areas evaluated at 80,000-90,000× (Fig. 4A). Finally, 9% of the dense areas were located in sarcomemmal invaginations (Fig. 4G) or subsurface cisternae (Fig. 4F); it is possible that the latter are actually cross-sectioned invaginations. In the control cells sectioned in this investigation, microtubules were observed in relation to 17% of the densities, and 17% of the dense areas were located in sarcomemmal invaginations or cisternae; however, associations with Golgi apparatus or coated vesicles were not observed.

In addition to the cells listed in Table I, seven field-exposed and three control cells were sectioned parallel to the substrate or cross-sectioned through identified field-induced or control AChR aggregates and evaluated qualitatively. The observations were consistent with those described above, except that (a) dense areas on the cathode-facing edge of field-exposed cells appeared less extensive in cross-sectioned cells, further indicating subunit structuring of the specializations, and (b) substrate-associated control aggregates were always associated with specializations on large cisternae or intensive membrane invaginations, which sometimes exceeded 0.5 μm.

DISCUSSION

This investigation indicates that the application of an electric field to cultured *Xenopus* myocytes results in the elaboration of membrane-associated structural specializations in addition to AChR aggregates at the cathode-facing edge of the cells, and that a temporal and spatial relationship exists between these phenomena. That both receptor aggregates and the specializations are elaborated within the 3–4-h duration of the field suggests a temporal association; this time scale is similar to that of their formation at developing neuromuscular contacts in vivo (4, 25). A spatial association is indicated by an increased concentration of the specialized dense areas within areas of AChR aggregation observed in correlated fluorescence and thin-section images. The structural characteristics of these specializations and the observed temporal and spatial relationships are similar to those observed at developing neuromuscular junctions and ACHR aggregates in other systems (9–11), which may indicate a common mechanism for their elaboration as well as a functional relationship between AChR aggregation and the specializations.

A considerable amount of evidence can be extracted from the literature to support the contention that basal lamina or the submembranous density is involved in the stabilization of aggregated AChR. Rotary replication (26) and high-voltage or whole-mount electron microscopy (27, 28) have resolved the submembranous density into a filamentous network, and the impingement of these filaments upon the sarcolemma has been described (12, 29–31). Furthermore, immunological studies indicate that the subsynaptic sarcoplasm is distinguished by a number of cytoskeletal proteins, including the cytoplasmic isoforms of actin, vinculin, α-actinin, filamin, and an intermediate filament-like protein (32–34). The possibility of cytoskeletal-AChR interaction is also indicated by (a) the disposition of postsynaptic AChR correlates into rows as visualized by freeze-fracture and deep-etch replication (30, 31, 35), an arrangement which is consistent with attachment to underlying filaments; (b) the increased diffusional mobility of AChR in membrane blebs (36), which are presumably devoid of cytoskeletal interaction; (c) the capacity of Triton-X to extract aggregated AChR (37), which indicates that interactions between the receptor and extramembranous elements must exist; and (d) the ability of cytoskeletal disrupting agents to affect AChR aggregation and dispersal (38, 39), suggesting a functional relationship. Some of the above evidence is also consistent with an involvement of the associated basal lamina in the stabilization of aggregated AChR.
AChR aggregation by nerve extracts and conditioned medium may be influenced by an exogenous substance. The induction of aggregation by nerve extracts and conditioned medium may be analogous if the active factor is a cell surface component, which is consistent with the ability of laminin and collagen V to stimulate its activity (50). The aggregation of AChR and development of associated specializations through exposure to the electric field may therefore be significant in that events are induced in the absence of such contact, which strengthens the argument for a functional association between the specializations and AChR stabilization.

The observed spatial coincidence between AChR aggregates and dense areas was not absolute. This may be the result of (a) an imperfect alignment of the thin-section and fluorescence images; (b) a disparity between the location or thickness of the plane of section and fluorescence plane of focus; or (c) the presence of unlabeled AChR aggregates (i.e., resulting from AChR externalized after prefield TMR-α-BTX labeling), or aggregates smaller than the limit of resolution for fluorescence microscopy. Alternatively, a minority of AChR aggregates or dense areas may exist in the absence of the described association. Furthermore, this study does not establish whether the formation of specializations is precedent, coincident, or subsequent to that of the aggregate (i.e., within the 3-h field duration). Other investigators have observed specialized sarcolemma at which AChR labeling is partial or absent co-existing with labeled specializations (9, 10), which may indicate that the specializations precede aggregation, perhaps acting as a receptor “trap” (51). Considering the measured rate of AChR diffusion (13, 14), and possible electrophoretic effects (15), the time scale of electric field-induced aggregation does not conflict with this possibility.

The association of microtubules, coated vesicles, and cisternae with AChR aggregates has been observed in several systems. Microtubules have been observed in association with postsynaptic densities and the associated microfilaments (9, 11, 26), and colchicine inhibits receptor aggregation (12, 38, 52). (However, colchicine does not appear to affect field-induced AChR aggregation [15].) Coated vesicles are often associated with the specialized surface, and can be labeled with α-bungarotoxin conjugates (9, 53–54); these may represent a vector for the insertion or reuptake of AChR. Cisternae with basal lamina and submembranous density specializations have been observed in association with polyon-coated bead contacts (11) and acetylcholine esterase sites (55) in cultured Xenopus muscle cells. In terms of the current investigation, it is possible that intracellular structures such as these participate in the elaboration of the observed specializations at the cathode-facing edge. It is also possible that they are involved in externalization of newly synthesized AChR at the cathode-facing cell surface, as part of the process that is field-induced AChR aggregation has not been excluded. However, each of these elements was observed only at a minority of the dense areas, and their potential involvement in any AChR aggregation event remains a matter for further study.

The exposure to a DC electric field could be expected to influence the cell in a number of ways, including electrophoresis of surface components, extracellular electro-osmotic flow, membrane depolarization, gradient formation, etc. This study does not indicate which of these influences are important in AChR aggregation, and the means by which the field effects this process is, as is the case for nerve-induced receptor aggregation, a matter of speculation. However, a number of similarities between nerve and field-induced AChR aggregation are apparent: (a) Both cause the redistribution of preexisting AChR into localized areas of the sarcolemma (3); (b) both result in the formation of distinct AChR clusters with a substructure in the micrometer-to-submicrometer range (56); (c) both result in the stabilization of AChR against lateral diffusion (13, 15); (d) both result in the formation of structural specializations in association with the receptor aggregate; and (e) both occur in a similar time span (25). Thus, it seems likely that the two influences are activating the same aggregation mechanism. We anticipate that further studies using the electric field system, which is easily controlled in terms of the site and timing of AChR aggregation, will clarify the events involved in this phenomenon.

We thank Kevin A. Phelan for expert technical assistance.

This research was supported by National Institutes of Health grant NS16259 and a grant from the Muscular Dystrophy Association.

Received for publication 22 March 1984, and in revised form 23 August 1984.

REFERENCES

LUTHER AND PENG ACh Receptor Aggregates Induced by Electric Fields 243