Monoclonal Antibodies As Probes of Epithelial Membrane Polarization

R. JAMES TURNER,* JILL THOMPSON,* SARAH SARIBAN-SOHRARY,* and JOSEPH S. HANDLER*

*Membrane Biology Group, Department of Medicine, University of Toronto, Toronto M5S 1A8, Canada; and †Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20205

ABSTRACT Monoclonal antibodies directed against antigens in the apical plasma membrane of the toad kidney epithelial cell line A6 were produced to probe the phenomena that underlie the genesis and maintenance of epithelial polarity. Two of these antibodies, 17D7 and 18C3, were selected for detailed study here. 17D7 is directed against a 23-kD peptide found on both the apical and basolateral surfaces of the A6 epithelium whereas 18C3 recognizes a lipid localized to the apical membrane only. This novel observation of an apically localized epithelial lipid species indicates the existence of a specific sorting and insertion process for this, and perhaps other, epithelial plasma membrane lipids. The antibody–antigen complexes formed by both these monoclonal antibodies are rapidly internalized by the A6 cells, but only the 18C3-antigen complex is recycled to the plasma membrane. In contrast to the apical localization of the free antigen, however, the 18C3-antigen complex is recycled to both the apical and basolateral surface of the epithelium, which indicates that monoclonal antibody binding interferes in some way with the normal sorting process for this apical lipid antigen.

The plasma membrane of epithelial cells shows a striking polarization into two morphologically and functionally distinct domains: the apical and basolateral membranes which face the external and internal milieu, respectively (1). The functional polarity of an epithelium results from the specific localization of various membrane components (enzymes, receptors, transport systems, etc.) to one or the other of these cell surfaces. The apical and basolateral membranes are separated from one another by tight junctions where neighboring cells attach to each other (2). The tight junction is thought to contribute to the maintenance of epithelial polarity by preventing the lateral diffusion of at least some proteins and lipids between these two membranes (3–5). Little is known about the basic question of how this polarity in membrane structure is generated and, in particular, at which intracellular step(s) membrane components destined for the apical or basolateral surface are sorted. Recent observations have also shown that many plasma membrane components in a variety of cell types, including epithelia, undergo or can be induced to undergo some form of internalization (endocytosis) and that at least some of these components are subsequently recycled back to the cell surface (4, 6). Clearly, in epithelia such recycling events must be integrated into the sorting mechanism for apical and basolateral membrane components.

Continuous cultured epithelial cell lines provide particularly convenient and powerful tools for the study of epithelial biogenesis and function (1, 7). A number of these lines have now been extensively characterized and shown to retain many of the differentiated properties associated with naturally occurring epithelia, including morphological and functional polarity (1, 7). The A6 cell line is derived from the kidney of the aquatic toad Xenopus laevis (8). In culture these cells form confluent polarized monolayers oriented with their basal surface against the supporting substrate. Morphologically they exhibit apical microvilli, occasional apical cilia, and tight junctions (9). When grown on a solid support they form domes or hemicysts, structures thought to be due to transepithelial transport of solute and water. When grown on a permeable support confluent A6 monolayers exhibit a high electrical resistance (5,000 Ω⋅cm²), a mean transepithelial potential difference of 10 mV (apical side negative), and short circuit currents of 2 μA/cm², which are equivalent to their net sodium transport (9).
is competitively inhibited by apical aminolide and reversibly stimulated by cAMP and adrenal steroid hormones (9, 10). These properties of the A6 cells, together with their ease of handling in culture, have made them a particularly valuable system for studying salt transport in high resistance epithelia (7, 9–11).

The present study focuses on the behavior of epithelial cell surface components using the A6 cells as a model epithelium. We have employed monoclonal antibodies (MAb’s) directed against specific membrane components of these cells as probes of the phenomena that underlie the genesis and maintenance of epithelial polarity. A number of MAb’s directed against the A6 cell surface were generated using the hybridoma technique developed by Kohler and Milstein (12). Two MAb’s have been selected for detailed study here. We show that one of these is directed against a 23-kD peptide found on both surfaces of the A6 cells and the other recognizes a lipid localized to the apical membrane only. This is, to our knowledge, the first demonstration of the existence of a lipid that is localized to one side of an epithelium. We report the results of a series of experiments that characterize the internalization and recycling properties of the antibody–antigen complexes formed by these MAb’s. Our data show that although both MAb–antigen complexes are internalized by the A6 cells, only the MAb–lipid complex is recycled. Surprisingly, however, this complex is recycled to both the apical and basolateral surface, which indicates that MAb binding interferes in some way with the normal sorting process for this apical lipid antigen. The mechanism of this interference remains to be determined.

MATERIALS AND METHODS

Cell Culture

A6 cells were purchased from American Type Culture Collection (Rockville, MD) in 58th plating. All experiments described here were carried out on platings 72–79. Stock cells were grown in 10-cm plastic tissue culture dishes (Nunc, Roskilde, Denmark) and subcultured as previously described (10). Cells were maintained at 28°C in a humidified incubator, gassed with 1% CO2 in air. The growth medium was CL-2 (seven parts Coon’s modification of Ham’s F12 [13] and three parts Leibovitz’s L-15 [14] modified for amphibian cells to contain 30 mM NaCl and 8 mM NaHCO3) supplemented with 5% fetal bovine serum (Gibco Laboratories, Grand Island, NY), 100 U/ml penicillin, and 100 g/ml streptomycin. Cells growing in 10-cm tissue culture dishes were fed (7 ml) three times per week and cells in “cluster 24’s” (24-well tissue culture plates; Falcon 3047, Falcon Labware, Oxnard, CA) were fed (1 ml/well) once per week.

Sp2/0 myeloma cells and rat fibroblasts, both obtained from Dr. K. Orato (National Cancer Institute, Bethesda, MD), were grown and maintained as described in reference 15 with calf serum (Gibeo Laboratories), 100 g/ml hypoxanthine (Sigma H-9377), 5 ml DME, plus 0.5 ml dimethylsulfoxide. The final fusion partners were diluted to 300 ml in HAT medium and seeded (800/well) into the central 60 wells of sixteen 96-well tissue culture plates (Costar 3596, Costar, Cambridge, MA); each of these wells also contained a feeder layer of 106 irradiated (2500 R; in a Gammatron M, Isomedic, Parsippany, NJ) rat fibroblasts in 160 l HAT medium. The unused fusion partners (~225 ml) were discarded.

The fusion partners in 96-well plates were fed once a week by replacing 80 l of supernate with fresh HAT medium. At the end of 3 wk, culture supernates were screened for anti-A6 apical membrane activity (see below). Cells that screened positive were transferred to the wells of cluster-24 plates containing 1 ml HAT medium and 6 x 105 irradiated rat fibroblasts. 3 d later selected lines were cloned (see below), and aliquots of all positive lines were frozen (1.5 x 106 cells/ml) in a 1:1 mixture of HAT medium and cryoprotective medium (M.A. Bioproducts).

Establishment of Hybridoma Cell Lines and MAb Production

Positive lines selected for further study were cloned by limiting dilution in 96-well plates (0.3 cells/well with each well containing 240 l HAT medium and 105 irradiated rat fibroblasts). Clones were carried in culture using the same procedures described above for fusion partners (with HAT medium replacing HAT). Selected positive clones were recloned. Selected lines from the second cloning were slowly expanded (in the absence of irradiated fibroblasts) into successively larger tissue culture flasks while a cell density of 105–106/ml was maintained. When enough cells were available, these were injected intraperitoneally into pristane-primed BALB/c mice (2 x 105 cells in DME/mouse). Ascites fluid typically containing titers of MAb several orders of magnitude higher than those of culture supernates was collected 1–2 wk later, filtered, and stored in aliquots at ~20°C.

MAb Screening Assay for Hybridomas Secreting Anti-A6 Apical Membrane Antibody

In this assay hybridoma supernates were incubated with intact A6 epithelia growing on a plastic surface (cluster-24 wells) to test for the presence (binding) of anti-A6 plasma membrane antibody. Since confluent epithelia with intact tight junctions were used in the assay, only the apical membrane of the A6 cells was exposed to the hybridoma supernates. Thus any antibodies detected must bind to antigens present on the extracellular surface of the apical membrane of the A6 cells. The protocol for the assay was as follows.

100-l aliquots of hybridoma supernate were transferred to the culture medium over confluent A6 monolayers growing in cluster-24 wells. After 2 h of incubation at room temperature on an orbital shaker set at 2 cycles/s, the wells were emptied and rinsed three times by successive immersion of the entire cluster-24 plate in A6 Ringer’s solution (110 mM NaCl, 2.5 mM NaHCO3, 3 mM KCl, 1 mM KH2PO4, 1 mM CaCl2, 0.5 mM MgSO4, and 5 mM glucose). 500 l of A6 Ringer’s solution containing 50,000 dpm of high specific activity (70–100 gCi/lmumol) 125I-protein A (NEX-146, New England Nuclear, Boston, MA) were then added to each well. After 30 min of incubation as above, the wells were emptied, rinsed four times with A6 Ringer’s solution, and solubilized in 1 ml of 1% Triton X-100 in water. The solubilized cells were transferred to a scintillation vial and counted for radioactivity. 125I-Protein A binding three or more times background (250 dpm, measured using HAT medium in place of hybridoma supernate) was taken as indication of the presence of anti-A6 apical membrane antibody in the hybridoma supernate. Binding as high as 100 times background was often observed.
Identification of Protein Antigens

A6 proteins were labeled with 35S by growing cells overnight in methionine-free CL-2 containing 40 μCi/ml L-[35]methionine (NEG-009A, New England Nuclear), 10% dialyzed fetal bovine serum, penicillin, and streptomycin (5 ml medium/10-cm dish). Cells labeled in this way were rinsed in A6 Ringer's solution and solubilized in 150 mM NaCl, 0.1% Triton X-100, 10 mM methionine, 0.5% Nonidet P-40 (Becton Research Laboratories, Bethesda, MD) and 0.1 M phenylmethylsulfonyl fluoride. The solubilized cells were spun at 48,000 g for 20 min, and the pellet was discarded.

Immunoprecipitation of MAb antigens was carried out as follows. 500 μl of the above 48,000-g supernate was combined with 1 μl of ascites fluid in a 1.5 ml Eppendorf microcentrifuge tube and shaken for 6 h at 4°C in a Brinkmann Vortex Shaker (Brinkmann Instruments, Inc., Westbury, NY). 1 μl of ascites was prewashed (see below) and added to each well in 24-well microtiter plates (Dynatech Laboratories, Inc., Alexandria, VA). The dry wells were rinsed by immersing the plate six times in PBS containing 1% ovalbumin (Sigma A-5503). After another rinse in PBS, 20 μl of hybridoma supernatant was added to each well and the plate was covered with parafilm and left at room temperature for 3 h. The hybridoma supernatant was then aspirated, the plate was washed three times in PBS, and 20 μl of PBS containing 1% ovalbumin and 15,000 dpm of high specific activity 35S-protein A was added to each well. After 15 min the 35S-protein A solution was aspirated and the plate was rinsed six times in PBS. Individual wells were cut from the plate and counted for radioactivity. 35S-protein A binding three or more times background (125 dpm) was taken as an indication of the presence of anti-A6 lipid antibody in the hybridoma supernatant. All but one positive supernate contained 1% ovalbumin and 15,000 dpm of high specific activity 35S-protein A as a second antibody (compare the screening assay described above). In control experiments (not shown) we have established that 35S-protein A binding is a linear function of MAb binding over the range of experimental conditions employed here. Since protocols varied from experiment to experiment the details of each are given in the figure and table legends. Unless otherwise noted the following general procedures apply to all assays of MAb binding presented here.

Identification of Anti-A6 Lipid Antibodies and Their Antigens

A total lipid extract from A6 cells was obtained using the procedures of Magnani et al. (18) as follows. Two confluent 10-cm plates of A6 cells (total cell wet weight, 160 mg) were rinsed in A6 Ringer's solution, scraped (5 ml A6 Ringer's/plate) and spun at 300 g for 10 min. The pellet was then suspended in 150 ml of high salt buffer (50 mM glycine-HCl, pH 2.3, containing 150 mM NaCl and 0.5% Nonidet P-40) left at room temperature for 10 min and centrifuged at 48,000 g. The supernatant from this spin was combined with 150 μl of 30% trichloroacetic acid, left on ice for 30 min and recentrifuged. The resulting pellet was resuspended in 100 μl of 80 mM Tris-HCl, pH 6.8, containing 10% glycerol, for SDS PAGE (see below).

Pansorbin was prewashed twice in buffer SB/SDS, once in low pH buffer, once in buffer SB, and suspended in buffer SB containing 1% ovalbumin (100 mg Pansorbin/ml) before use in the above immunoprecipitation procedure.

SDS PAGE and autoradiography were carried out according to published procedures (17). The low molecular weight standards from BioRad Laboratories were used to calibrate the gels. Gels were treated with Enlightening (New England Nuclear) according to the manufacturer's instructions before drying.

Identification of Phospholipid Antibodies and Their Antigens

Production and Characterization of MAb's

Of the 960 microtiter wells seeded in the hybridization protocol (see Materials and Methods), 427 were found to contain living hybridomas. Supernatants from 82 of these screened positive against the apical membranes of confluent A6 epithelia. A subgroup of 65 positive hybridoma supernatants were also tested for anti-A6 lipid activity using the solid-phase radioimmunoassay described in Materials and Methods. Of
Identification of the protein antigen associated with the anti-A6 plasma membrane monoclonal antibody 17D7. The figure shows an autoradiograph of a 12.5% SDS polyacrylamide gel on which MAb immunoprecipitates from a detergent extract of [35S]methionine-labeled A6 cells were run (see text for details). The immunoprecipitates from 18C3, 17D7, and control ascites were run in lanes A, B, and C, respectively.

these, 52% screened positive. Since the probability that a given well contained more than one cell line secreting anti-A6 apical membrane antibody was <1%, this result indicates that ~50% of the antibodies detected were directed against A6 apical membrane lipids.

Two MAb's, which we refer to as 17D7 and 18C3, were selected for detailed study. The hybridoma cell lines secreting these antibodies have been cloned to monoclonality by limiting dilution and the corresponding antibodies produced in quantity as ascites fluid for these studies. The concentration of MAb in ascites fluid was typically 1-2 mg/ml. Experiments dealing with the identification, localization, and behavior of the 17D7- and 18C3-antigens are reported below.

Identification of 17D7- and 18C3-Antigens

The detergent extract of A6 cells grown in [35S]methionine was immunoprecipitated with 18C3, 17D7, and control ascites fluid (Bethesda Research Laboratories No. 9401), and the precipitates were electrophoresed on SDS polyacrylamide gels. Fig. 1 shows an autoradiograph of such a gel. A single 23-kD band associated with MAb 17D7 (Fig. 1, lane B) is clearly seen, whereas no significant immunoprecipitation was produced by either 18C3 or control ascites (Fig. 1, lanes A and C, respectively). Taken together with the fact that 17D7 screens positive against intact A6 cells, this gel provides convincing evidence that this antibody is directed against a single 23-kD membrane peptide. The counts immunoprecipitated by MAb 17D7 represented ~0.1% of the total [35S]methionine counts associated with the detergent-solubilized cell extract.

When 17D7 and 18C3 were tested for activity against an A6 lipid extract using the solid-phase radioimmunoassay described in Materials and Methods, 17D7 screened negative whereas 18C3 screened positive (data not shown). A more detailed test of interactions of these antibodies with A6 lipids is shown in Fig. 2. This figure is an autoradiograph of a thin layer chromatogram of A6 lipid extract reacted with MAb then with 125I-labeled rabbit anti-mouse F(ab)2 fragments. Neither 17D7 (Fig. 2, lane B) nor control ascites (lane C) show any reaction with the chromatogram, whereas 18C3 specifically labels two closely spaced bands. This doublet is presumably due to the reaction of 18C3 with two closely related lipid species with small differences in the length of their ceramide portions. It is worth pointing out that even a highly hydrophobic protein, which was soluble in chloroform/methanol and thus present in the lipid extract, would be expected to remain at the origin of this thin layer chromatogram. Thus the mobility of the 18C3 antigen illustrated in Fig. 2 provides strong evidence that this compound is a lipid.

Presence of Antigens in the Apical and Basolateral Membranes

It is interesting to ask whether the antigens recognized by
17D7 and 18C3 are expressed only in the apical membrane of A6 epithelia or whether they are distributed over both the apical and basolateral membranes. Table I shows the results of an experiment designed to answer this question. Intact A6 epithelia in cluster-24 wells were incubated with MAb for 1 h at 4°C to label apical sites, then cells in group B were scraped into suspension to expose the basolateral membrane to the MAb, and cells in group A were left as attached epithelia. Incubation with MAb was then continued for a second hour, after which antibody binding to both groups of cells was assayed with 125I-protein A. Results from three independent experiments for each MAb are illustrated in Table I. These experiments for each MAb are illustrated in Table I. These data show that there is no significant difference in the binding of MAb 18C3 between groups A and B, and thus that, within the limits of accuracy of our experiment (~10%), the 18C3-antigen is localized exclusively to the apical membrane of the A6 cells. On the other hand, the binding of MAb 17D7 to suspended fragments (group B) is two to three times as large as to attached monolayers (group A). Thus the 17D7-antigen is obviously present on both sides of the A6 epithelium. Owing to the size of the epithelial fragments used in these experiments (2–4 mm2), possible artifacts due to damaged cells at the edges of the fragments should be small since these will necessarily represent a small fraction of the total number of cells.

The localization of the 17D7- and 18C3-antigens illustrated in Table I was also confirmed by comparing MAb binding to intact attached A6 epithelia with binding to attached A6 monolayers in which the tight junctions between cells were opened by calcium chelation (incubation with 1 mM EGTA in magnesium and calcium free A6 Ringer’s solution for 30 min at 4°C). In these experiments (data not shown) the binding of MAb 17D7 to chelated monolayers was typically 50% greater than to intact monolayers. No difference in binding was observed for MAb 18C3.

Evidence for Internalization of MAb-Antigen Complexes

Fig. 3 shows the results of an experiment in which each of the MAb’s 17D7 and 18C3, were bound to intact attached A6 epithelia, and the epithelia were then rinsed and left in CL-2/OV at 28°C for various periods of time before the amount of antibody remaining on the apical surface was assayed using 125I-protein A. In each case the antibody initially disappears rapidly from the apical cell surface. After 1–2 h, however, the residual apical binding of both MAb’s approaches a constant value corresponding to ~70% of initial binding for 17D7 and 40% for 18C3. This initial rapid disappearance of apical MAb was not observed with fixed cells or with cells maintained at 4°C (data not shown). Also, when epithelia treated as in Fig. 3 were solubilized (in buffer SB) after 0 or 3 h of incubation in CL-2/OV and assayed for fluid-phase MAb concentration (see Materials and Methods), no significant change in total cell antibody content with time could be detected for either 17D7 or 18C3 (data not shown). Taken together with the fact that residual apical MAb binding remains constant for several hours (compare Fig. 3) these data provide strong evidence that the initial disappearance of both antibodies from the apical surface is not due to MAb dissociation but rather to internalization (endocytosis) of MAb-antigen complexes by the cells.

Recycling of MAb-Antigen Complexes

Table II shows the results of an experiment in which we have assayed for the possible recycling of internalized MAb-antigen complexes to the apical surface of A6 epithelia. In this experiment intact A6 monolayers in cluster-24 wells were incubated with MAb for 1 h at 28°C then left for an additional 2 h at 28°C to allow the (putative) internalized MAb-antigen complexes enough time to distribute among intracellular

Table I. Presence of 17D7- and 18C3-Antigens in the Apical and Basolateral Membranes of A6 Epithelia

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attached monolayers (2 h)</td>
<td>Attached monolayers (1 h) + suspended fragments (1 h)</td>
</tr>
<tr>
<td>18C3</td>
<td>17.3 ± 1.9</td>
<td>17.6 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>39.7 ± 4.5</td>
<td>40.9 ± 3.7</td>
</tr>
<tr>
<td></td>
<td>48.8 ± 7.9</td>
<td>38.5 ± 6.0</td>
</tr>
<tr>
<td>17D7</td>
<td>18.6 ± 3.5</td>
<td>34.5 ± 3.0</td>
</tr>
<tr>
<td></td>
<td>17.9 ± 2.3</td>
<td>76.7 ± 6.5</td>
</tr>
<tr>
<td></td>
<td>18.4 ± 2.7</td>
<td>59.0 ± 11.3</td>
</tr>
</tbody>
</table>

* Intact attached A6 monolayers were incubated for 1 h at 4°C with MAb. Epithelia in group B were then suspended in the MAb solution by gentle scraping and left in their wells side by side with intact (unscraped) monolayers (group A). Incubation in the same MAb solution was continued for a second hour, then cells from group B were transferred to 1.5-ml centrifuge tubes for washing and determination of 125I-protein A binding (1 h at 4°C). Cells from group A were washed in the cluster-24 plate, then suspended in 500 μl A6 Ringer’s, transferred to 1.5-ml centrifuge tubes, and thereafter treated identically to group B. All incubations and washes were carried out at 4°C to prevent endocytosis and recycling of membrane components during the experiment. Results are expressed as 125I disintegrations per microgram cell protein ± SD. The number of wells in each group is indicated by n. The results from three independent experiments are shown.

Figure 3 Disappearance of 17D7- and 18C3-MAb-antigen complexes from the apical surface of intact attached A6 epithelia was monitored for periods of decreasing length as follows. Cluster-24 plates containing attached A6 epithelia incubating in CL-2/OV were placed on an orbital shaker in a tissue culture incubator equilibrated with room air at 28°C. At various times duplicate wells were washed and MAb in CL-2/OV was added. After a 15-min incubation with MAb the wells were washed and reincubated with CL-2/OV for the times indicated on the figure. In this way all epithelia remained on the shaker for the same total time (4.25 h), but the period of incubation in CL-2/OV after MAb binding was varied. At the end of these incubations the entire plate was washed in cold A6 Ringer’s and assayed for 125I-protein A binding at 4°C. All results have been normalized to the binding observed at time zero (9,960 and 8,330 dpm/well for 18C3 and 17D7, respectively).
pools (compare Fig. 3). At the end of this period “control” wells were assayed for apical MAB binding while test cells were incubated with unlabeled protein A to saturate apically exposed MAB. Half the test wells were then assayed for 125I-protein A binding to check the effectiveness of this maneuver and the rest were reincubated in CL-2/OV for 1 h at 28°C before 125I-protein A binding was measured. Table II illustrates that for epithelia treated with 18C3 there is a dramatic increase in apical 125I-protein A binding after this reincubation period. No increase is observed, however, for cells treated with 17D7. These results are consistent with the hypothesis that the 18C3-antigen complex is internalized by the A6 cells and subsequently recycled back to the apical cell surface. No recycling of 17D7-antigen complexes is apparent from this experiment.

In the experiment summarized in Table III we have assayed for the recycling of apical MAB-antigen complexes to the basolateral surface of the A6 cells. Epithelia were divided into eight groups for each MAB. Intact monolayers were incubated with MAB (20 min at 4°C) then either tested immediately as described below or incubated for 2 h in CL-2/OV at 28°C to allow internalization of MAB-antigen complexes) before treatment; half of the wells in each of the groups were then reincubated with unlabeled protein A to saturate apically exposed MAB; finally, each of the above four groups (zero time ± unlabeled protein A, 2 h ± unlabeled protein A) was halved according to whether 125I-protein A binding was carried out on attached monolayers (apical binding only) or on suspended monolayer fragments (apical plus basolateral binding). Further details are given in the legend to Table III. This experiment allowed us to determine the amount of MAB-antigen complex present on both the apical and basolateral surfaces of the cells immediately after the application of the MAB and after two subsequent hours of internalization.

Referring first to the data for 18C3 in Table III we see that 18C3 MAB-antigen complexes have appeared on the basolateral surface. When apical sites are saturated with unlabeled protein A before basolateral 125I-protein A binding in suspension is measured, the presence of these basolateral complexes is seen directly (9.2 ± 0.2 dpm/mg). In contrast to the results discussed above for 18C3, no recycling of apical 17D7-antigen complexes to the basolateral surface of A6 epithelia is detectable in the experiment illustrated in Table III.

DISCUSSION

As already stressed in the introduction, little is known about the degree of polarization of epithelial membrane constituents or about its genesis and maintenance. Although the morphological and functional polarity of epithelial cells is now well documented, and it is well established that certain proteins are localized to either the apical or basolateral membrane, little detailed information about the actual protein composition of these membranes is available. It is not known, for example, whether there is significant overlap between the protein constituents of these two membranes or whether most proteins are uniquely localized to one or the other cell surface. Information concerning epithelial lipid composition and polarity is even more limited.

Louvard (4) has studied the recycling of an apical membrane enzyme, aminopeptidase (α-aminoacyl-peptide hydrolase) in the kidney epithelial cell line MDCK (Madin-Darby...
Van Meer and Simons (22) have harvested influenza virus and vesicular stomatitis virus from infected MDCK monolayers. These viruses are known to bud exclusively from the apical and basolateral membrane of MDCK cells, respectively (23). Van Meer and Simons found that the phospholipid compositions of the two viruses were markedly different, presumably reflecting differences in apical and basolateral lipid composition. This conclusion was substantiated by the further observation that the phospholipid compositions of the two viruses were very similar when harvested from unpolarized MDCK cells obtained by disrupting the epithelium with EDTA and trypsin.

Dragsten et al. (5) have studied the diffusion of fluorescently labeled lipid probes in the apical and basolateral membranes of the A6, LLC-PK1, and MDCK epithelial cell lines. They found evidence that lipid probes that partitioned only into the outer leaflet of the membrane bilayer did not pass through the tight junction whereas those probes that could flip-flop to the inner leaflet did pass through. Thus their results imply that the tight junction may form a barrier to passage of lipids only in the outer membrane leaflet.

In this report we have employed two monoclonal antibodies, 17D7 and 18C3, as probes of epithelial polarity in the cultured toad kidney cell line A6. These antibodies were generated using a plasma membrane preparation from the A6 cells and screened against the apical membrane of intact A6 epithelia. Accordingly, both of these antibodies were expected to be directed against externally oriented membrane components on the apical surface of the A6 cells. As we demonstrate above (Table I), the 17D7 antigen is in fact expressed on both the apical and basolateral surface of these cells whereas the 18C3-antigen is localized to the apical membrane only. We have identified the 17D7-antigen as a 23-kD peptide by immunoprecipitation from [35S]methionine-labeled cells followed by SDS PAGE and autoradiography (Fig. 1). No significant 35S-labeled proteins were immunoprecipitated by 18C3. However, this MAb did screen positive to a lipid extract from the A6 cells and subsequently was found to react specifically with a doublet on a thin layer chromatograph of this lipid extract (Fig. 2). Owing to its solubility in organic solvents and its mobility on the thin layer chromatograph, it is highly unlikely that this antigen is a protein. However, we cannot exclude the possibility that the 18C3 antigenic site (presumably located on the glycosylated portion of the 18C3 lipid antigen) may be expressed on a glycoprotein as well. This protein may not be detected in Fig. 1 because it represents a small fraction of the total membrane protein or because it does not incorporate [35S]methionine.

The results illustrated in Fig. 3 and Tables II and III document the handling of the 18C3 antibody-antigen complex by the A6 cells. These experiments characterize the transition from an initial situation where the complexes are localized to the apical membrane to a final steady state where they are redistributed among various cell compartments. The data presented here are consistent with the following scenario.
REFERENCES

