Localization of Na+, K+-ATPase α-Subunit to the Sinusoidal and Lateral but Not Canalicular Membranes of Rat Hepatocytes

Elizabeth S. Sztul, Daniel Biemesderfer, Michael J. Caplan, Michael Kashgarian, and James L. Boyer
Liver Center, Yale University School of Medicine, New Haven, Connecticut 06510

Abstract. Controversy has recently developed over the surface distribution of Na+, K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of α-subunit was used to examine Na+, K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+, K+-ATPase α-subunit was localized to the entire plasma membrane.

Na+, K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+, K+-ATPase α-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+, K+-ATPase catalytic activity and contained a 96-kD α-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+, K+-ATPase activity and no α-subunit band could be detected in Western blots of these fractions. We conclude that Na+, K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.

T
he sodium pump is an integral component of plasma membranes of most animal cells. By coupling the energy of ATP hydrolysis to the transport of sodium and potassium, this enzyme functions as a primary driving force in maintaining the differential ion gradients that are critical to cellular homeostasis. The electrochemical gradient generated by the activity of Na+, K+-ATPase governs a diverse array of processes, including the transepithelial movement of electrolytes, water, and organic solutes (10, 20). In hepatocytes, the transport of solutes such as bile acids and certain amino acids from blood across basolateral membranes (i.e., sinusoidal and lateral) is coupled to and thus driven by the inwardly directed Na+ gradient (3, 7). Therefore, the resolution of membrane-specific patterns of Na+, K+-ATPase localization and the determination of the relative densities of pumps along distinct regions of plasma membrane have great relevance to current concepts of hepatic ion, H\textsubscript{2}O, and solute transport (3, 7, 9, 13). The localization of Na+, K+-ATPase on the hepatocyte cell surface has been extensively studied by cytochemical (2, 23), biochemical (4, 40, 30, 5, 28), and immunochemical (24, 39) procedures. To date, variant results (further discussed later) have been obtained; some studies indicate that the bulk of Na+, K+-ATPase activity is localized to the basolateral surface (2, 23, 30, 5, 28), whereas others suggest that the enzyme is present on both basolateral and bile canalicular domains (24, 39).

In this report we present immunocytochemical and immunobiochemical data indicating that hepatocyte Na+, K+-ATPase is distributed asymmetrically and is restricted to the basolateral plasma membrane.

Materials and Methods

Preparation of Antibodies

The preparation and characterization of anti-Na+, K+-ATPase monoclonal antibody have been described in detail elsewhere (22). Briefly, mice were immunized with membrane fragments (100 μg protein) enriched in Na+, K+-ATPase by the method of Jorgensen (19). Animals exhibiting high antibody titer (in ELISA assay) were used for fusion. Clones were screened both by ELISA and by a functional assay (22). Clone C62.4 was used in these studies.

Canine kidney Na+, K+-ATPase was purified, according to the method of Jorgensen (19), for generation of polyclonal antibodies. Sodium pump preparations with enzymatic activities indicative of significant enrichment (~20 mM P/mg protein per min) were mixed with equal volumes of complete Freund's adjuvant (200 μg Na+, K+-ATPase/150 μl) and injected into...
tradermally at multiple sites along the back and shoulders of 5-lb. female New Zealand white rabbits. 1 mo later the initial injection serum was collected and tested for immunoreactivity to Jorgensen-purified Na⁺,K⁺-ATPase by ELISA (32) assay. Positively responding rabbits were boosted with antigens mixed with incomplete Freund's adjuvant (0.5 ml) by injection at multiple intradermal sites. Boosting and bleeding continued at 2-wk intervals. The serum used in the studies described in this paper was collected 2 wk after the third boost injection and was stored frozen at −20°C.

Antibodies to gamma-glutamyl transferase were a kind gift of Dr. David J. Castle (Department of Cell Biology, Yale University School of Medicine). Details of procedures used for antigen purification and antibody generation as well as characterization of obtained immune sera have been published (7).

Preparation of Isolated Hepatocytes

Isolated rat hepatocyte couplets and single cells were prepared by a modification of a collagenase perfusion technique as previously described (6, 15). The amount of collagenase (Sigma Chemical Co., St. Louis, MO) was decreased to 0.05% and the dissociated cells were filtered through gauze and resuspended in Leibovitz-15 tissue culture media (Gibco, Grand Island, NY). Cells were then fixed by immersing the coverslip in the fixative described above and incubating for 6 h. The cells were collected 2 wk after the third boost injection and was stored frozen at −20°C.

Preparation of Isolated Hepatocytes

Sprague–Dawley male rats were anesthetized with Inactin (10 mg/100 g body wt). A cannula was inserted into the aorta via the left ventricle, the vena cava was cut, and the animal was perfused with mammalian Ringers for ~1 min. Subsequently, the animal was perfused for 5 min with fixative consisting of 0.01 M Na metaperiodate, 0.75 M lysine, 2% paraformaldehyde in 0.1 M NaHPO₄ buffer, incubated in 10% DMSO for 1 h, and then cooled in liquid nitrogen. Frozen tissue was stored in liquid nitrogen until use.

Preparation of Isolated Hepatocytes

Hepatocytes, isolated from rat liver as described above, were maintained on glass coverslips for 1–4 h. The cells were then fixed by immersing the coverslip in the fixative described above and incubating for 6 h. The cells were cryoprotected and frozen by the same techniques used for whole tissue.

For antigen localization at the light level, sections (0.5–1.0-μm thick) were cut with an Ultracut equipped with an FC-4 cryounit (Reichert Scientific Instruments, Buffalo, NY). Sections were incubated in 50 mM ammonium chloride for 15 min to quench free aldehyde groups. The sections were incubated for 1 h in a solution containing PBS, 1% BSA, and either monoclonal antibodies to a-subunit of Na⁺,K⁺-ATPase or, for a double-label experiment, with a mixture of rhodamine-labeled goat-anti mouse IgG and fluorescein-labeled goat anti-rabbit IgG (Cappel Laboratories). In the latter case, both α-subunit of Na⁺,K⁺-ATPase and gamma-glutamyl transferase will be detected on the same section. After washing, sections were examined with a Zeiss 10B electron microscope.

Inhibition of ATPase Activity in Isolated Membrane Subfraction

Rat liver basolateral membranes were isolated as described (28). Membrane samples (25 μl) containing 50–70 μg protein were added to 25 μl bovine serum albumin fraction V (Sigma Chemical Co.) and 2.5 μl 1% SDS (14). All membrane fractions were solubilized in 0.05% SDS (Bio-rad Laboratories, Richmond, CA) and incubated at room temperature for 10 min before enzyme analysis, since preliminary studies determined that concentrations of 0.06% SDS and above decreased enzyme activity. 10 μl of either deionized water, preimmune rat serum, control rat ascites, polyclonal or monoclonal (C62.4) antibodies were added to the membranes. Na⁺,K⁺-ATPase and Mg⁺²-ATPase activities were assayed after a 30-min room temperature incubation by a standard spectrophotometric assay (34).

Results

Characterization of Polyclonal and Monoclonal Antibodies against Na⁺,K⁺-ATPase

The monoclonal antibody C62.4 has been characterized previously (22). This antibody inhibits Na⁺-dependent but not glutaraldehyde in 0.1 M Na cacodylate buffer (pH 7.4) containing 5% sucrose. After three washes in 0.1 M Na cacodylate buffer with 7.5% sucrose and three washes in 50 mM Tris-HCl (pH 7.4) with 7.5% sucrose, peroxidase-dase reaction product was developed in a solution of 0.2% diaminobenzenine in the Tris-sucrose buffer to which H₂O₂ had been added to yield a final concentration of 0.04% H₂O₂. The reaction was stopped after 10–20 min by washing in cold Tris-sucrose buffer. Osmium fixation was carried out using the reduced osmium method of Karnovsky (21). The tissue was dehydrated and embedded in Epon 812, and unstained thin sections were examined with a Zeiss 10B electron microscope.

Isolation and Characterization of Canalicular and Basolateral Liver Plasma Membrane Fractions

The procedure for isolation of canalicul and basolateral liver plasma membrane (cLPM and blLPM, respectively) subfractions has been previously described in detail (28). Briefly, livers from 160–180-g male Sprague–Dawley rats (Charles River Breeding Laboratories, Inc., Wilmington, MA) were homogenized and the homogenate was spun down (7,000 g for 30 min) and resuspended in 0.25 M sucrose, 0.2 mM CaCl₂, 5 mM MgSO₄, 10 mM Hepes-Tris, pH 7.5. The degree of purification of cLPM and blLPM was analyzed extensively by measuring intracellular and plasma membrane marker enzyme activities as in reference (28). These studies have indicated minimal contamination of both LPM fractions by intracellular organelles and virtually complete separation of blLPM from cLPM as indicated by the absence of glucagon-stimulatable adenylate cyclase or secretory component in cLPM (28). bILPM subfraction was contaminated with cLPM elements by ~5%.
K+-dependent Na+,K+-ATPase activity. Immunoprecipitation
of MDCK cells, biosynthetically labeled with [35S]methio-
nine, demonstrated that the antibody recognizes a 96-kD
protein. Furthermore, this antibody precipitated a 96-kD
protein labeled in vitro with [3H]NAB ouabain. Immunocy-
tochemical localization revealed that the antigenic site recog-
nized by this antibody is on the cytoplasmic domain of
basolateral plasma membranes of renal tubular epithelium.

Presence of polyclonal antibodies in sera of immunized
rabbits was tested by Western blots. As shown in Fig. 5, the
antibodies reacted with α-subunit on NC transfers of purified
canine Na+,K+-ATPase. To test whether antibodies to con-
taminating (non-Na+,K+-ATPase) antigens were perhaps
also generated, we used the immune sera in Western blots
of membranes from MDCK cells and from rat liver. As shown
in Fig. 1, only a single polypeptide with a molecular mass
of 96 kD was detected in both MDCK and rat liver mem-
brane fractions. No reactive band was seen when non-
immune serum was used. This polyclonal antibody also
immunoprecipitated α-subunit labeled with a photoaffinity
derivative of ouabain, a highly specific inhibitor of sodium
pump (Smith, Z., M. J. Caplan, and J. Jamieson, manuscript
submitted for publication), thus indicating that it recognizes
the Na+,K+-ATPase. Because no immunoreactivity to the
β-subunit of Na+,K+-ATPase was observed with either
monoclonal or polyclonal antibody, we conclude that both
were monospecific for the α-subunit of the enzyme.

Both antibodies were tested for their ability to inhibit en-
zymatic activity of two hepatic ATPases. As shown in Table
I, the polyclonal serum inhibited Na+,K+-ATPase activity
by ~50%, while having no effect on Mg2+-ATPase. The
monoclonal C62.4 antibody inhibited Na+,K+-ATPase ac-
tivity of hepatocyte plasma membrane even further (91.7% of
normal activity), and also had no effect on Mg2+-ATPase.
Both antibodies showed inhibition only when intact right-
side-out LPM vesicles were permeabilized with SDS. (The
slight decline in ATPase activity in the permeabilized mem-
brane is caused by SDS inactivation). Since the vesicles re-
tain their right-side-out orientation during preparation, the
results indicate that the antibodies recognize a cytoplasmic
domain of the α-subunit, not accessible to the antibodies in
the nonpermeabilized vesicles. The same level of Na+,K+-
ATPase inhibition was found when C62.4 was incubated with
dog kidney membranes (22).

<table>
<thead>
<tr>
<th>Nonimmune serum</th>
<th>Polyclonal antibody</th>
<th>Normal ascites</th>
<th>Monoclonal C62.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+,K+-ATPase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonpermeabilized vesicles</td>
<td>12.25</td>
<td>10.96</td>
<td>12.41</td>
</tr>
<tr>
<td>SDS-permeabilized vesicles</td>
<td>9.51</td>
<td>4.76</td>
<td>10.24</td>
</tr>
<tr>
<td>Mg2+-ATPase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonpermeabilized vesicles</td>
<td>24.50</td>
<td>23.05</td>
<td>23.05</td>
</tr>
<tr>
<td>SDS-permeabilized vesicles</td>
<td>25.22</td>
<td>25.22</td>
<td>23.20</td>
</tr>
</tbody>
</table>

Immunolocalization of α-Subunit of Na+,K+-ATPase
in Intact Rat Liver

Immunofluorescent Localization. When the monoclonal
anti-Na+,K+-ATPase antibodies were used to label rat liver
cryosections, sinusoidal and lateral plasma membranes of
hepatocytes were uniformly labeled (Fig. 2A). Bile canalic-
uli (arrows) were consistently negative, thus suggesting that
Na+,K+-ATPase is distributed asymmetrically, with a high
concentration of α-subunit per surface area on sinusoidal and
lateral membranes and no detectable pumps on the biliary
domain of the plasmalemma.

To determine whether the lack of bile canicular staining
represents bonafide distribution of the enzyme, or perhaps
is caused by inaccessibility of the biliary region of the hepa-
tocyte to antibodies, we performed a double-label experi-
ment in which we localized α-subunit of Na+,K+-ATPase
and gamma-glutamyl transferase (a known bile canicular
marker) on the same section. Liver sections were incubated
with a mixture of mouse anti-Na+,K+-ATPase antibodies
and rabbit anti-gamma-glutamyl transferase antibodies, fol-
lowed by a mixture of rhodamine-conjugated goat anti-mouse
antibodies and fluorescein-conjugated goat anti-rabbit
antibodies. As shown in Fig. 2B, when a rhodamine-detecting
filter was used, fluorescence was observed along sinusoidal
and lateral membranes up to the tight junctions delineating
bile canaliculi (arrows). When a fluorescein-detecting filter
was used (Fig. 2C), a distinct pattern was observed. Sinu-
sooidal and lateral membranes were not stained while bile
canaliculi (arrows) showed strong fluorescent signals. In ad-
dition, a number of intracellular organelles was stained. This
distribution of label is compatible with the previously ob-
served (7) apical distribution of gamma-glutamyl transferase
in liver and in other epithelia. These data indicate that the
bile canicular domain of hepatocytes is readily accessible for
immunolabeling and suggest that Na+,K+-ATPase α-sub-
unit is not present in detectable amounts in that membrane
region.

Ultrastructural Localization. Cryostat sections were in-
cubated with monoclonal antibody C62.4 followed by goat
Figure 2. Immunofluorescent localization of Na⁺,K⁺-ATPase in rat liver. In A, sections were incubated with anti-Na⁺,K⁺-ATPase monoclonal antibodies. In B and C, sections were incubated with a mixture of anti-Na⁺,K⁺-ATPase monoclonal antibodies (labeling visualized in B) and anti-γ-glutamyl transferase antibodies (labeling visualized in C). A clearly indicates that staining is restricted to the sinusoidal and lateral domains of the hepatocyte and is absent from bile canaliculi (arrows). B shows sinusoidal and lateral staining of hepatocytes and absence of staining from bile canaliculi (arrows). C shows staining of bile canaliculi (arrows) and neighboring intracellular organelles. Bars, (A) 12.5 μm; (B and C) 6.3 μm.

anti-mouse F(ab) conjugated to HRP. As seen in Fig. 3 A, HRP reaction product was restricted to the cytoplasmic domain of basolateral plasma membranes of hepatocytes. On the sinusoidal surface (Fig. 3 B), the distribution of reaction product appeared to be uniform over the entire plasmalemma, a finding in accord with the distribution of Na⁺,K⁺-ATPase at the basolateral invaginations of the kidney epithelium (22). A similar lack of clustering of Na⁺,K⁺-ATPase has been previously reported in dog hepatic tissue by Takemura et al. (39). Lateral plasma membranes (Fig. 3 A, double arrows) were uniformly labeled with HRP reaction product up to tight junctions defining the bile canaliculus. It is important to note that the bile canalicular membrane with its microvilli was consistently unlabeled with reaction product. While we realize that the immunoperoxidase method is not very quantitative and has a finite level of detection, the lack of reaction product clearly indicates that Na⁺,K⁺-ATPase concentration in apical domain is significantly below that in basolateral membrane. Reaction product was not observed in other intracellular organelles in our sections. This may be the result of low levels of intracellular antigen (below detection level of the antibody HRP method) or a change in the conformation of the α-subunit in some intracellular membranes. (The C62.4 antibody reacted with the membranes of the medial Golgi cisternae in cells of the thick ascending limb of rat kidney medulla [22].) The specificity of the immunoreaction was established by the lack of immunolabeling when sections were incubated with control monoclonal antibody (Fig. 3 C).

Immunolocalization of Na⁺,K⁺-ATPase in Isolated Rat Hepatocytes and in Hepatocyte Couplets

Rat hepatocytes and hepatocyte couplets were isolated after collagenase disruption, fixed, and processed for immuno-
localization using the monoclonal C62.4 antibody. When isolated hepatocytes were used for Na⁺,K⁺-ATPase localization, HRP reaction product was seen over their entire plasma membrane (Fig. 4 A). We therefore conclude that in isolated hepatocytes, where the polarity of the plasma membrane domains has been destroyed, relocation of plasma membrane proteins occurs, leading to the observed, uniform membrane distribution of α-subunit of Na⁺,K⁺-ATPase. When hepatocyte couplets with morphologically distinct sinusoidal, lateral, and bile canicular domains were used for Na⁺,K⁺-ATPase localizations, HRP reaction product was seen along their entire plasma membrane surface (Fig. 4 B and C). Cellular plasma membrane domains analogous to the sinusoidal and lateral domains in intact liver were strongly labeled. However, bile canicular region in hepatic couplets, unlike that in intact liver, contained HRP reaction product. As seen in Fig. 4, B and C, most canaliculi contained HRP reaction product over their entire membrane surface, while some (Fig. 4 B, double arrows) showed restriction of labeling to certain biliary domains. Whether the partially labeled canaliculi represent those least perturbed by the collagenase treatment or those which have partially regained their polarity by removal of membrane components (as exemplified by Na⁺,K⁺-ATPase) from the bile canicular region is not currently known. Irrespective of the above, it is clear that the disruption of tight junctions during collagenase perfusion

Figure 3. Ultrastructural localization of Na⁺,K⁺-ATPase α-subunit in intact rat liver. A demonstrates sinusoidal (s) and lateral distribution of HRP reaction product. Note that the reaction product is confined to the cytoplasmic domain of the membrane. Bile canicular (bc) membranes are unlabeled. B demonstrates the almost uniform deposition of reaction product on sinusoidal plasma membrane adjacent to unlabeled endothelial (en) cell. C shows lack of immunolabeling when control nonimmune antibody was used. Bars, (A and B) 1 μM; (C) 0.5 μM.
may result in relocation of membrane proteins from the lateral to the canalicular domain.

Immunoblots of Isolated cLPM and blLPM Fractions

Highly purified blLPM and cLPM fractions were isolated from the same rat liver homogenate by rate zonal and discontinuous sucrose density centrifugation. Analysis of isolated fractions for marker enzyme activities resulted in data analogous to those reported previously by Meier et al. (28). Actual values fell within the range of values published in that report. Based on the yields and relative enrichment of various enzymes, we conclude that the blLPM was enriched in Na⁺,K⁺-ATPase and glucagon-stimulatable adenylate cyclase, while cLPM was enriched in leucyl-naphthyl-aminopeptidase, gamma-glutamyl transferase, and alkaline phosphodiesterase I. Proteins of both subfractions were separated by SDS PAGE and then transferred to nitrocellulose filters. Polyclonal anti-Na⁺,K⁺-ATPase antibodies were used to probe the presence and relative quantities of the corresponding antigen. The amounts of ATPase present in fractions were correlated with signals obtained with known amounts of purified dog kidney ATPase. As shown in Fig. 5, the enzyme was detected in blLPM but was absent from pure cLPM fraction. Since 300 μg protein of each fraction was loaded per well and since cLPM contains twice the total phospholipid/mg protein as blLPM (28), 300 μg of cLPM represents twice the membrane area of 300 μg blLPM. Therefore, the lack of detectable α-subunit of Na⁺,K⁺-ATPase in the cLPM sample is not a result of differences in protein loading on the gels but rather indicates that the antigen is absent from canalicular domain (or present at minor concentrations below the level of detection with this technique). These results are in direct contrast to those obtained by Takemura et al. (39) in dog hepatocytes, in which the density of Na⁺,K⁺-ATPase on cLPM is more than twice that on blLPM. If that were the case, we would expect the signal in the cLPM lane to be four times that in the blLPM lane.

The relative intensity of the Na⁺,K⁺-ATPase α-subunit band in blLPM is approximately ten times that obtained with 70 pg purified dog kidney Na⁺,K⁺-ATPase. (70 pg of Na⁺,K⁺-ATPase prepared by the Jorgenson method [19] was loaded on the gel. This preparation contains 35 pg of the Na⁺ pump and 23 pg of the α-subunit.) We can therefore assume that the loaded sample, i.e., 300 μg of blLPM, contains 230 pg of α-subunit. Since 200 μg of blLPM is recovered per gram liver weight (28), we can estimate that 1 g liver contains ~1.54 pg of α-subunit in recovered blLPM. Since the isolated blLPM subfraction contains only 5% of total cellular Na⁺,K⁺-ATPase (28), it follows that there are 3.1 ng of α-subunit per gram liver. (We are defining the minimal level of α-subunit since only active ATPase has been assayed in our measurements. α-subunit not associated into a functional entity, if such exists, would not be included in these calculations.) Compositionally, Na⁺,K⁺-ATPase is a heterodimer made up of a β-subunit and a catalytic (ATP and ouabain binding) α-subunit. Our antibody recognizes only the 96-kD α-subunit. From the above data we can calculate that 1.93 x 10⁹ molecules of Na⁺,K⁺-ATPase α-subunit are present per gram liver. Based on the value of 1 x 10⁵ hepatocytes in 1 mg of whole homogenate (36) and 164.7 mg whole homogenate per gram liver (28) we can conclude that there are 164.7 x 10⁶ hepatocytes per gram liver, and, hence, 115,675 α-subunits per hepatocyte. This value is in good agreement with Na⁺,K⁺-ATPase concentrations obtained by Schenk et al. (36) in rat liver (238,000 sites per cell) and within the range (1 x 10⁵–1 x 10⁶ sites per cell) obtained in other cell systems (e.g., muscle [1], or HeLa cells [29]). We therefore conclude that the vast majority of cellular Na⁺,K⁺-ATPase α-subunit is located on the basolateral PM domain.

Discussion

In this report we present immunocytochemical and immunochemical evidence that Na⁺,K⁺-ATPase in rat hepatocytes is localized to the sinusoid–lateral domain of the plasma membrane and is restricted from the bile canalicular surface. Immunolocalization of the antigen in intact tissue at both the light and electron microscope levels indicates that Na⁺,K⁺-ATPase is limited to the sinusoidal and lateral domains of hepatocytes, providing the polarity of the cell membrane is maintained. When the tight junctions defining membrane domains are disrupted (as shown in isolated hepatocytes or hepatocyte couplets), previously restricted proteins relocate, thus leading to uniform distribution on the plasmalemma. Disruption of the junctional complexes in hepatocyte couplets has been previously demonstrated by penetration of extracellularly added Ruthenium red into the canalicular lumen (6).

Since detection of antigens in fixed frozen tissue is governed by (a) antigen stability and conformation and (b) antigen accessibility, lack of immunolabeling must always be interpreted with caution. To address this concern we tested whether, using our methodology, we could detect an antigen known to be localized to the bile canalicular membrane. Our
results, using antibodies to gamma-glutamyl transferase, clearly show that we can detect a bile canalicular protein and hence that our conclusions about Na⁺,K⁺-ATPase localization are correct. To further strengthen our argument we tested Na⁺,K⁺-ATPase presence in isolated fractions using Western blots, a technique in which the membrane proteins are SDS-treated, resulting in equivalent accessibility of all antigens to the antibody. After transfer to NC filters, Na⁺,K⁺-ATPase α-subunit was detected only in bLPM but was absent from cLPM, thus confirming the results of the immunolocalization studies.

These data, though consistent with Na⁺,K⁺-ATPase topology in most other ion-transporting epithelia, are at variance with recent immunocytochemical results by Leffert et al. (24) and Takemura et al. (39). To reconcile these differences a brief review of the pertinent findings is necessary.

The electron microscopic cytochemical localization of Na⁺,K⁺-ATPase was originally reported by Blitzer and Boyer (2) and Latham and Kashgarian (23). Using the Ernst nitrophenyl phosphatase technique (12) both groups independently reported basolateral distribution of this enzyme. Reaction product deposition was K⁺ and Mg²⁺ dependent and was inhibited by ouabain, a specific inhibitor of Na⁺,K⁺-ATPase. Furthermore, reaction precipitate was present on the cytosolic side of the plasma membrane, consistent with the topology of Na⁺,K⁺-ATPase-mediated phosphate release.

Subcellular fractionation studies (including this report) further supported the basolateral distribution of hepatic Na⁺,K⁺-ATPase (30, 5, 28). Isolated basolateral membrane fractions containing glucagon-stimulated adenyl cyclase and secretory component were greatly enriched in Na⁺,K⁺-ATPase, while canalicular membrane fractions lacked both enzymes and were devoid of secretory component (28). The validity of these findings was supported by nearly complete recovery of Na⁺,K⁺-ATPase activity in these studies.

In a recent report Takemura et al. (39) used ferritin immuno labeling of prefixed isolated canine hepatocytes to demonstrate Na⁺,K⁺-ATPase antigenic sites. Both sinusoidal and canalicular domains were labeled with the canalicular domain containing two and a half times the Na⁺,K⁺-ATPase concentration of the basolateral domain. However, caution must be exercised in interpreting their results. As shown by our experiments with isolated rat hepatocytes or hepatocyte couplets, perfusion conditions that result in the dissociation of hepatocytes lead to disruption of their tight junctions. Under these conditions Na⁺,K⁺-ATPase may be found on all plasma membrane surfaces. Thus, our findings suggest that the reported localization of Na⁺,K⁺-ATPase to canalicular domain may be artifactual. Nevertheless, the finding that the bile canalicular plasma membrane contains two and a half times the concentration of Na⁺,K⁺-ATPase in basolateral plasma membrane cannot be explained by distribution alone. Based on simple diffusion of proteins in the plane of the membrane, an equal concentration of Na⁺,K⁺-ATPase in both domains would be expected. We therefore propose that either their polyclonal antibodies produced against holo Na⁺,K⁺-ATPase recognize proteins such as Ca²⁺ or Mg²⁺ ATPase that may share certain antigenic determinants with Na⁺,K⁺-ATPase or that the original antigen preparation contained a highly antigenic contaminating protein. By immunoblotting, their antibody recognized a band of ~100 kD and it could be proposed that multiple proteins of similar molecular mass might be recognized. Since other ATPases, e.g., H⁺,K⁺-ATPase (31) and Ca²⁺-ATPase (41), have catalytic subunits of ~100 kD and sequence data reveal extensive homologies with Na⁺,K⁺-ATPase (37, 26), it is possible that ATPases other than Na⁺,K⁺-ATPase have been localized at the canalicular domain of the hepatocyte at the same time that Na⁺,K⁺-ATPase was detected at the basolateral surface. Alternatively, a nonrelated protein of ~100 kD could have been localized at the canalicular domain. This latter suggestion is supported by the results of Kashgarian et al. (22) in which another monoclonal antibody developed to enriched Na⁺,K⁺-ATPase and immunoprecipitating a 96-kD band from biosynthetically labeled rat kidney membranes localized exclusively to brush borders of rat kidney cells, indicating that the original antigen preparation contained a non-Na⁺,K⁺-ATPase component.

Recently, Leffert et al. used monoclonal antibodies to the rat renal Na⁺,K⁺-ATPase (35) to localize the enzyme in fixed rat liver tissue by immunofluorescence (24). The published photographs and text indicate that labeling occurred on the basolateral membrane as well as on the canalicular domain. The author's conclusion that "fluorescence intensities of punctate regions" (assumed to represent bile canaliculi) “exceed those generated by polygonal and hexagonal array” (assumed to represent basolateral surfaces) is proposed as evidence that the density of pumps is higher on the canalicular membrane. Irrespective of the methodological problems inherent in quantitation of proteins by immunofluorescence, this finding is qualitatively similar to that of Takemura et al. (39). If we assume that lateral diffusion of basolateral proteins into canalicular domain did not occur, then the question is raised as to whether the monoclonal antibodies of Leffert and co-workers may recognize an epitope on the Na⁺,K⁺-ATPase that is also shared by other canalicular ATPase(s).

In conclusion, a substantial body of published evidence reviewed in this discussion and presented in this report supports a basolateral localization for the hepatic enzyme Na⁺,K⁺-ATPase.

Localization of this ion pump on sinusoidal lateral cell membranes has a number of important implications for mechanisms of hepatic transport of ions and solutes, and supports a model of biliary secretion shown in Fig. 6. Bile acids, a major determinant of the osmotic driving force for bile secretion, are initially removed from blood and transported against electrical and chemical gradients into the hepatocyte before excretion into bile. It is well established (27, 33, 18, 11) that the uptake of organic anions across sinusoidal and lateral plasma membranes is a carrier-mediated process, and, for the bile acid taurocholate, is driven by the inward directed Na⁺ gradient. This gradient is in turn generated and maintained by the basolateral pump Na⁺,K⁺-ATPase. In contrast, the excretion of taurocholate and possibly other anions from the cells into bile canaliculi is mediated in part by an Na⁺-independent anion carrier that appears to be driven by the intracellular negative membrane potential (27, 17). Our results that localize Na⁺,K⁺-ATPase to only the sinusoidal-lateral domain of the hepatocyte are consistent with these biochemical and physiologic results. Furthermore, both the morphological and biochemical findings are supported by electrophysiologic data. In this system the electrogenic Na⁺,K⁺-ATPase can be activated when K⁺ is first omitted (pump inhibition) and then reintroduced into the
perfusion media (pump activation). Intracellular and intracanalicular potentials reveal hyperpolarization during K\(^+\) readmission (I6). If Na\(^+\) were pumped into the canalicular lumen an initial depolarization of the luminal potential should be observed. In contrast, the potential difference in the lumen mirrored the intracellular hyperpolarization as predicted by basolateral localization of Na\(^+\),K\(^+\)-ATPase. 3

Altogether these findings strongly support sinusoidal–lateral plasma membrane localization of Na\(^+\),K\(^+\)-ATPase and are in agreement with the model for ion and solute transport illustrated in Fig. 6.

We wish to thank Carolyn Barrett for technical assistance, Lil Chapman for expert and patient secretarial help, and the Liver Center of Yale University School of Medicine for electron microscopy, membrane isolation, and hepatocyte isolation cores.

This work was supported by National Institutes of Health grants DK25636 and DK36854 to J. Boyer.

Received for publication 17 April 1986, and in revised form, 16 January 1987.

References

31. Reggiani, H., D. Bainton, E. Hamel, and D. Louvard. 1984. Antibodies against lysosomal membranes reveal a 100,000-mol-wt pro-
tein that cross-reacts with purified H+,K+ ATPase from gastric mucosa. J. Cell Biol. 99:1511–1526.
32. Rennard, S. I., G. R. Martin, J. M. Foidart, and P. G. Robey. 1980. Enzyme-linked-immunossay (ELISA) for connective tissue compon-
USA. 78:986–990.
34. Schorschmidt, B. F., E. B. Keefe, N. M. Blankenship, and R. K. Ockner. 1979. Validation of a recording spectrophotometric method for measure-
37. Shull, G. E., A. Schwartz, and J. B. Lingrel. 1985. Amino-acid sequence of the catalytic subunit of the (Na+,K+) ATPase deduced from a com-
38. Szot, E. S., K. E. Howell, and G. E. Palade. 1983. Intracellular and trans-