Myosin Light Chain Kinase and Myosin Light Chain Phosphatase from Dictyostelium: Effects of Reversible Phosphorylation on Myosin Structure and Function

Linda M. Griffith, Stephen M. Downs, and James A. Spudich
Department of Cell Biology, Sherman Fairchild Center, Stanford University School of Medicine, Stanford, California 94305

Abstract. We have partially purified myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) from Dictyostelium discoideum. MLCK was purified 4,700-fold with a yield of ~1 mg from 350 g of cells. The enzyme is very acidic as suggested by its tight binding to DEAE. Dictyostelium MLCK has an apparent native molecular mass on HPLC G3000SW of ~30,000 D. Mg$^2+$ is required for enzyme activity. Ca$^2+$ inhibits activity and this inhibition is not relieved by calmodulin. cAMP or cGMP have no effect on enzyme activity. Dictyostelium MLCK is very specific for the 18,000-D light chain of Dictyostelium myosin and does not phosphorylate the light chain of several other myosins tested. Myosin purified from log-phase amebas of Dictyostelium has ~0.3 mol P/mol 18,000-D light chain as assayed by glycerol-urea gel electrophoresis. Dictyostelium MLCK can phosphorylate this myosin to a stoichiometry approaching 1 mol P/mol 18,000-D light chain. MLCP, which was partially purified, selectively removes phosphate from the 18,000-D light chain but not from the heavy chain of Dictyostelium myosin. Phosphatase-treated Dictyostelium myosin has <0.01 mol P/mol 18,000-D light chain. Phosphatase-treated myosin could be rephosphorylated to >0.96 mol P/mol 18,000-D light chain by incubation with MLCK and ATP. We found myosin thick filament assembly to be independent of the extent of 18,000-D light-chain phosphorylation when measured as a function of ionic strength. However, actin-activated Mg$^2+$-ATPase activity of Dictyostelium myosin was found to be directly related to the extent of phosphorylation of the 18,000-D light chain. MLCK-treated myosin moved in an in vitro motility assay (Sheetz, M. P., and J. A. Spudich, 1983, Nature (Lond.), 305:31-35) at ~1.4 μm/s whereas phosphatase-treated myosin moved only slowly or not at all. The effects of phosphatase treatment on the movement were fully reversed by subsequent treatment with MLCK.

In nonmuscle cells modulation of the degree and location in the cell of actin and myosin filament assembly as well as actin–myosin interaction may be critical for events such as cytokinesis, endocytosis, and chemotaxis (77). This is in contrast to the situation in muscle cells where more stable arrays of actin and myosin filaments occur. One attractive system for the investigation of the molecular basis of filament assembly and actin–myosin interaction in nonmuscle cells is the slime mold Dictyostelium discoideum. It is possible to grow biochemical quantities of these cells, and there is an exciting potential for correlating changes in the biochemical properties of actin and myosin with well-documented motile and nonmotile stages in the life cycle of the organism (7), as well as with chemotaxis (71) and shape changes (68) of the amebas in response to chemoattractants such as cAMP. For example, Malchow et al. (35) and Berlot et al. (6) have shown changes in myosin phosphorylation as a result of cAMP stimulation. Whereas Malchow et al. (35) suggested that at the onset of the chemotactic response to cAMP, myosin heavy chains exist in a phosphorylated state and are then rapidly dephosphorylated, the direct in vivo phosphorylation experiments of Berlot et al. (6) showed that stimulation of amebas with cAMP results in rapid phosphorylation of the myosin heavy chain as well as the myosin light chain.

For Dictyostelium as well as for other nonmuscle cells and for vertebrate smooth muscle, the interaction of contractile proteins is regulated at least in part by a myosin-linked regulatory system that involves phosphorylation of the myosin molecule. Actin-linked regulatory systems may also be present in smooth muscle (36, 41, 65) and in Dictyostelium (42), but these are as yet poorly characterized. Myosin-linked regulation of actin–myosin interaction is reviewed by Adelstein and Eisenberg (2) and by Kendrick-Jones and Scholey (27). Regulation of enzymes by phosphorylation is...
reviewed by Cohen (11) and by Krebs and Beavo (32). In the present report we compare *Dictyostelium* myosin with the following myosins in particular: (a) Vertebrate smooth muscle myosin is composed of two heavy chains of 200,000 D and two each of two light chains of 20,000 and 15,000 D. Phosphorylation of the 20,000-D light chain enhances the activity of actin-activated Mg\(^{2+}\) ATPase activity of the molecule (9, 63, 64). (b) *Acanthamoeba* myosin I is a single-headed myosin consisting of a heavy chain of ~150,000 D and possibly one each of two different light chains (38, 53, 54). Heavy-chain phosphorylation is required for actin-activated Mg\(^{2+}\) ATPase activity (40). (c) *Acanthamoeba* myosin II consists of two heavy chains of 185,000 D and two pairs of light chains of 17,500 and 17,000 D (39, 55). Phosphorylation of the heavy chains of *Acanthamoeba* myosin II inhibits actin-activated Mg\(^{2+}\) ATPase activity (12).

Investigations in our laboratory have emphasized regulation of the properties of purified *Dictyostelium* myosin by phosphorylation. *Dictyostelium* myosin is composed of two heavy chains of 210,000 D and two each of two light chains of 18,000 and 16,000 D (10). Myosin purified from amebas grown in \([\text{[32p]}\text{P}]/\text{phosphate has} \sim 0.3 \text{ mol Pi/mol 210,000-D heavy chain and} \sim 0.1 \text{ mol Pi/mol 18,000-D light chain (33). There are at least two heavy-chain phosphorylation sites, one a serine residue and the other a threonine residue (Berlot, Devreotes, and Spudich, manuscript submitted for publication). Both sites are in the carboxy-terminal half of the myosin tail (46, 48). With a partially purified *Dictyostelium* heavy chain kinase and bacterial alkaline phosphatase, it was possible to manipulate the extent of the heavy-chain phosphorylation and demonstrate that phosphorylation inhibits thick filament assembly and actin-activated ATPase activity (33). Maruta et al. (37) have also observed that heavy-chain phosphorylation inhibits the actin-activated Mg\(^{2+}\) ATPase activity of *Dictyostelium* myosin.

Here we focus on light-chain phosphorylation of *Dictyostelium* myosin. We report the purification from log-phase amebas of a specific *Dictyostelium* myosin light chain kinase (MLCK)\(^1\) and a specific myosin light chain phosphatase (MLCP). Properties of *Dictyostelium* myosin examined as a function of light-chain phosphorylation include actin-activated Mg\(^{2+}\) ATPase activity, filament assembly, and myosin movement in an in vitro assay. An essential feature of our experiments is reversibility of phosphorylation. We have been able to dephosphorylate and then completely rephosphorylate the 18,000-D light chain of intact *Dictyostelium* myosin. With reconstitution of phosphorylation we have observed concomitant reconstitution of properties identical to those of myosin previously treated with kinase alone. This argues that the effect that we see with phosphorylation treatment is due to removal of phosphate only, and not an artifact resulting from, for example, protease contamination of the phosphatase preparation.

Materials and Methods

Materials

Reagent-grade chemicals were obtained from the following sources: Amer sham Corp., Arlington Heights, IL (\(\gamma\)-\[^{32}\]P\)ATP catalog no. PB1068 at 10 mCi/ml in H\(_2\)O; J. T. Baker, Phillipsburg, NJ (KJ); Bio-Rad Laboratories, Richmond, CA (Bio-Gel A-5m agarose beads, Bio-Gel HT hydroxylapatite [HAP], Aff-Gel Blue 100–250 mesh and 75–150 μm, Bio-Gel A-15m agarose beads 200–400 mesh); Calbiochem-Behring Corp., La Jolla, CA (ATP, Aquecll III); Mallinckrodt, Inc., Los Angeles, CA (sodium pyrophosphate); Schwarz/Mann, Inc., Orangeburg, NY (ultrapatrate ammofium sulfate, ultrapure urea, sucrose); Sigma Chemical Co., St. Louis, MO (dithiothreitol [DTT], diisopropylfluorophosphate [DFP], N-p-tosyl-L-lysine chloromethyl ketone [TLCK], L-1-tosylamide-2-phenylthethyl chloromethyl ketone [TPCK], polyethyleneimine [PFSM], NaN\(_3\), triethanolamine [Teola], Pipes, Tris, N-Tris(hydroxymethyl)2-aminoethyl sulfonic acid [TES], BSA, p-nitro-phenyl phosphate); Whatman Chemical Separation Inc., Clifton, NJ (DEAE cellulose: DE-52); Varian Associates, Palo Alto, CA. (Toyosoda column G3000SW, 60 cm in length).

Methods

Growth of Cells. Stock cultures of *Dictyostelium discoideum*, strain Ax-3, were maintained as described (66). When ~100 g of wet cells were desired, as for a myosin preparation or a MLCP preparation, cells were grown in 6-liter flasks on a rotary shaker platform. Each flask contained 2 liters of HL-5 medium (prepared as described [66]). Flasks were inoculated to an OD\(_{590}\) of 0.04 and harvested in late log-phase growth at an OD\(_{590}\) of 0.80. About 12 g of cells were obtained from each flask.

When >100 g of *Dictyostelium* amebas was desired, as for a MLCP preparation, cells were grown in HL-5 medium in 5-gal carboys similar to those used in the laboratory of Edward D. Korn, National Institutes of Health, Bethesda, MD (31, 73), to grow *Acanthamoeba*. To achieve a *Dictyostelium* doubling time in carboys of 9–10 h, which is equivalent to that obtained in shaker flasks, we modified the Weihing and Korn procedure (73) as follows. First, we used a high air-flow rate of 80 mls maintained with a line regulator (no. 3478, Matheson Gas Products, Inc., Secaucus, NJ) with a range of 1–200 psi. Therefore all rubber tubing to glass tubing connections were wired together tightly. We did not use an air filter on the air outflow line inasmuch as this impeded air flow. Secondly, we used a minimal amount of antifoam and allowed the culture to foam somewhat. Excess foam exiting through the air outflow line was collected in a waste container. The HL-5 medium for *Dictyostelium* contains glucose, which was autoclaved separately for 15 min only and then added to the carboy at the time of inoculation. Carboys containing 13 liters of HL-5 medium were inoculated to an OD\(_{590}\) of 0.06–0.10 and harvested 35–45 h later at an OD\(_{590}\) of 0.80. About 80 g of cells was obtained from each carboy. Of the two dozen cultures grown in carboys, none was contaminated with bacteria or yeast.

Preparation of Dictyostelium Myosin. Myosin was purified from amebas of *Dictyostelium* as described (10, 42), with modifications. 100 g of washed packed cells was resuspended in 2 vol/g (~200 ml) of 10 mM Tris, pH 7.5, 2 mM EDTA, 1 mM DTT, and 40 mM sodium pyrophosphate. The resuspension was then combined with an equal volume (about 300 ml) of 10 mM Tris, pH 7.5, 2 mM EDTA, 1 mM DTT, 10 mM Teoda, pH 7.5, 50 mM KC1. Next an equal volume of 10 mM Tris, pH 7.5, 1 mM EDTA, 1 mM DTT, 0.1 M Na\(_2\)PMSF. Cells were then lysed by sonication at 0°C with constant stirring. A sonicaoral-cell disruptor (Heat Systems-Ultrasonics, Inc. Farmingdale, NY) operated at speed 7 and equipped with a medium-sized tip was used. 100–ml batches of cells were sonicated for a total of 40 with 10-s intervals of sonication followed by 10-s intervals of no sonication. After sonication, KCl was added to a 3 M stock to a concentration of 0.1 M. The cell lysate was clarified by centrifugation at 27,000 g for 30 min, followed by ultracentrifugation at 100,000 g for 2 h. Actomyosin was precipitated by dialysis of the supernatant against 10 mM Pipes, pH 6.8, 0.5 mM DTT, 50 mM KC1, 1 mM EDTA, 0.5 mM PMSF, and 0.02% azide. ~400–500 mg of precipitate was collected by centrifugation at 27,000 g for 30 min.

For gel filtration chromatography, the actomyosin precipitate was solubilized in KJ and ATP as follows. Pellets were resuspended to ~30 ml with 10 mM Teola, pH 7.5, 50 mM KC1. Next an equal volume of 10 mM Teola, pH 7.5, 1 mM EDTA, 1 mM DTT, 10 mM ATP, 10 mM MgCl\(_2\), and 1.2 M KJ was added and the sample was homogenized and then clarified at 100,000 g for 30 min. The actomyosin was concentrated by ammonium sulfate precipitation. The supernatant was brought to 50% in P10 in Teola, pH 7.5. Solid ammonium sulfate was added to 55% saturation. The precipitate was collected by centrifugation at 27,000 g for 30 min. Pellets were brought to 11 ml with 10 mM Teola, pH 7.5, and 50 mM KC1. Then 11 ml of 10 mM Teola pH 7.5, 1 mM EDTA, 1 mM DTT, 10 mM ATP, 10 mM MgCl\(_2\), and 1.2 M KJ were added, and the sample was homogenized and then clarified at 100,000 g for 40 min. The resulting 9.5-ml column sample, containing ~150 mg of protein, was applied to a 2.5 × 90-cm agarose A15m, 200–400

1. *Abbreviations used in this paper: HAP, hydroxylapatite; HSS, high-speed supernatant; MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; Teola, triethanolamine; TES, N-Tris(hydroxymethyl) methyl-2-aminoethyl sulfonic acid.*
pyrophosphate, 5% sucrose, 1 mM DTT, and 0.02% sodium azide, and run at 30 cm of pressure. The column had been preloaded with 50–60 ml of 10 mM Teola, pH 7.5, 1 mM EDTA, 1 mM DTT, 0.6 M KI, 5 mM ATP, and 5 mM MgCl2. The myosin peak was located by assaying for ATPase activity. The fractions on the trailing edge of the peak were avoided in later pooling because they usually contained some degraded myosin.

The myosin peak containing ~40 mg of protein in 50 ml was separated from contaminating RNA by chromatography on a column of DEAE-cellulose equilibrated with 100 ml of 10 mM Teola, pH 7.5, 20 mM sodium pyrophosphate, 5% sucrose, 1 mM DTT, and 0.02% sodium azide, and run at 30 cm of pressure. When larger volumes of buffer were used in equilibration, RNA did not bind well to the column, presumably because of bound ATP. The column had been preloaded with 50–60 ml of 10 mM Teola, pH 7.5, 1 mM EDTA, 1 mM DTT, 0.6 M KI, and 5 mM ATP.

The myosin peak was located by assaying for ATPase activity. The fractions on the trailing edge of the peak were avoided in later pooling because it requires less ATPase substrate per assay. Its disadvantage is that it takes longer to process as compared with the quantitative assay. The quantitative method was used to assay each step of the preparation to measure the degree of purification. By conserving [32p]myosin in this way, one preparation of ~2.5 mg could be used for a complete myosin phosphatase purification.

Assay for Alkaline Phosphatase Activity. Alkaline phosphatase was assayed with p-nitrophenyl phosphate as substrate. Assay conditions were 50 mM Tris, pH 8, and 10 mM MgCl2 at 22°C for 30 min. Components were combined in the following order: (a) 10× Tris-MgCl2 mixture, (b) H2O, (c) phosphatase sample, and (d) p-nitrophenyl phosphate. 200 μg of p-nitrophenyl phosphate was used in an assay volume of 100 μl. The reaction was stopped by adding 1 ml of 20 mM NaOH and the OD400 was read.

Treatment of Dictyostelium Myosin with Kinesin. 0.5–2.0 mg of Dictyostelium myosin was diazoyzed against 20 mM Tris, pH 7.5, 5% sucrose, 50 mM KCl, 1 mM DTT, and 0.02% azide. The myosin was incubated for 1 h at 22°C with an appropriate amount of Dictyostelium MLCK (~0.1 mg of HAP peak pool/mg of myosin) under the conditions described above for the MLCK assay. The reaction was stopped by adding KCl to 0.5 M. The myosin was separated from kinesin and [γ-32P]ATP by gel filtration on a 0.7 × 25-cm column of Q-Sepharose FF equilibrated with 20 mM potassium phosphate, pH 7.5, 2 mM sodium pyrophosphate, 0.4 M KCl, 1 mM EDTA, 1 mM DTT, 0.02% sodium azide, and 5 mM ATP, and run at 20 cm of pressure. The myosin peak was located by OD280 and then concentrated by polymerization and resuspended in an appropriate volume of storage buffer described above for the purification of Dictyostelium myosin. The amount of myosin degradation, if any, was assessed by SDS gel electrophoresis. The extent of 18,000-D light-chain phosphorylation was measured with glycero-urea gel electrophoresis.

Measurement of Phosphatase Activity. Phosphatase activity was measured as described by Clarke and Spudich (10). The Ca2+ ATPase activity of myosin was assayed in 13 mM Tris, pH 8.0, 10 mM MgCl2, and 1 mM CaCl2. Generally ~5 μg of [32p]myosin was used per assay (total volume, 20 μl). Samples were incubated for 15 min at 22°C and then stopped by the addition of 20 μl of SDS PAGE sample buffer and incubation at 100°C for 4 min. 6 μl of each of the samples was run on a microgel slab, gelled, destained, and dried on a ScanJet 3000 flatbed scanner (Hewlett Packard, San Jose, CA). Alternatively, samples were incubated for 10 min, and centrifuged for 2 min in an Eppendorf microfuge (Binkman Instrument Co., Westbury, NY). 40 μl of the supernatant, which contained liberated [32p]orthophosphate, was counted in a Beckman scintillation counter.

In Vitro Motility Assay. The in vitro movement of Dictyostelium myosin was measured by the assay of Sheetz and Spudich (62), as described in detail by Sheetz and Spudich (61). Bead samples were prepared using myosin at 25 and 100 μg/ml.
Purification of MLCK from Dictyostelium discoideum was grown in four carboys. Cells were harvested by centrifugation in 1-liter bottles in a centrifuge (International Equipment Co., Needham Heights, MA) at 18,000 g for 7 min. The cells were immediately placed on ice. They were washed in 10 mM Tris, pH 7.5, and again collected by centrifugation. The cells were next combined with 2 vol/g (~750 ml) 10 mM Teola, pH 7.5, 0.4 mM DTT, 30% sucrose, 40 mM sodium pyrophosphate, 1 mM EDTA, 5 mM EGTA, 0.02% sodium azide, 1 mM PMSF, 0.5 mM TPCK, and 1 mM TLCK. In some preparations 1 mM DIFP was also included. Cells were lysed by sonication as described in Materials and Methods for the purification of myosin. The lysate was centrifuged at 50,000 g for 30 min. The supernatant was collected and diluted vol/vol with 10 mM Tris, pH 7.5, 0.4 mM DTT, 25 mM sodium pyrophosphate, 1 mM EDTA, 5 mM EGTA, and 0.02% sodium azide. In some preparations 1 mM DIFP was also included. Next this material was clarified by centrifugation at 100,000 g for 1 h. The HSS was collected.

Ammonium Sulfate Fractionation. After the addition of Teola, pH 7.5, to 50 mM, the HSS was fractionated with ammonium sulfate. For MLCK assays, fractions were dialyzed against 10 mM Tris, pH 7.5, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide. Dictyostelium MLCK activity fractionated in 70–100% (NH₄)₂SO₄ (Fig. 1). The 80–100% (NH₄)₂SO₄ cut, which constituted about a 30-fold purification of MLCK activity as compared with the HSS (Table I), contained ~1% of the total protein and ~40% of the total MLCK activity. In contrast, the 40–60% (NH₄)₂SO₄ cut (see the 0–60% cut in Fig. 1) contains kinase activity that phosphorylates at least 100 different proteins.

The amount of enzyme present in the 80–100% (NH₄)₂SO₄ cut is independent of the phase of growth of Dictyostelium.
Table I. Purification of Dictyostelium MLCK

<table>
<thead>
<tr>
<th>Step</th>
<th>Volume (ml)</th>
<th>Protein concentration (mg/ml)</th>
<th>Total protein (mg)</th>
<th>Total activity (pmol/min)</th>
<th>Specific activity (pmol/min/mg)</th>
<th>Total-fold purification</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS</td>
<td>1,450</td>
<td>13.8</td>
<td>20,000</td>
<td>6,000</td>
<td>0.3</td>
<td>—</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>30.5</td>
<td>8.3</td>
<td>250</td>
<td>2,500</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>DE-52</td>
<td>21.5</td>
<td>0.32</td>
<td>6.9</td>
<td>2,150</td>
<td>310</td>
<td>1,030</td>
</tr>
<tr>
<td>HAP</td>
<td>3.0</td>
<td>0.31</td>
<td>0.9</td>
<td>1,280</td>
<td>1,420</td>
<td>4,700</td>
</tr>
</tbody>
</table>

The starting material for this preparation was 350 g of Dictyostelium discoideum amoebas. Samples were dialyzed into 10 mM Tris, pH 7.5, 5 mM EGTA, 1 mM EDTA, 1 mM DTT, 5% sucrose, and 0.01% sodium azide (DE-52 buffer) before quantitative assay of MLCK activity as described in Materials and Methods.

Dictyostelium amoebae in HL-5 liquid medium. We found no difference in the pattern of fractionation of MLCK or in the amount of enzyme present in the 80-100% cut for cells grown to OD 0.5 (log-phase growth) as compared with OD 1.0 (stationary phase) or OD 0.5 starved for 6 h in phosphate buffer (MKK2 buffer prepared as described by Dinauer et al. [19]) to induce the early stages of differentiation of Dictyostelium amoebas to form slugs.

For large MLCK preparations, the 80-100% (NH₄)₂SO₄ cut was routinely collected. The 70–80% cut was not collected because it contains many more proteins than the 80–100% cut, as judged by SDS PAGE (Fig. 1). The 80–100% cut was collected as follows. After addition of Teola, pH 7.5, to 50 mM, the HSS was made 70% in (NH₄)₂SO₄. Solid ammonium sulfate was added in increments with constant slow stirring at 0°C. The sample was then centrifuged at 27,000 g for 30 min. The 70% supernatant was then made 80% in (NH₄)₂SO₄. Again the sample was centrifuged and the supernatant was then made 100% in (NH₄)₂SO₄. The sample was centrifuged and the 80–100% (NH₄)₂SO₄ pellet was homogenized gently in a small volume of 10 mM Tris, pH 7.5, 5 mM EGTA, 1 mM EDTA, 1 mM DTT, 5% sucrose, and 0.02% sodium azide, 1 mM PMSF, 0.25 mM TPCK, and 0.5 mM TLCK, and dialyzed against the same solution. In some preparations 1 mM DIFP was also included.

DEAE Chromatography
The 80–100% (NH₄)₂SO₄ cut, which had been dialyzed as described above, was clarified by centrifugation at 100,000 g for 1 h and applied to a DEAE cellulose column as illustrated in Fig. 2 (left). A 30-fold purification and 90% recovery are achieved with this step (Table I) for two reasons. First, with the inclusion of 5 mM EGTA in the column buffer, most protein does not bind to the column, whereas MLCK does. Secondly, the enzyme binds tightly to DEAE, which suggests that it is very acidic. It elutes behind the main protein peak (Fig. 2, left) at ~0.13 M KCl. A total fold purification of about 1,000 is achieved (Table I). The peak was pooled and dialyzed against 10 mM potassium phosphate, pH 7.5, 1 mM EDTA, 1 mM DTT, 5% sucrose, and 0.02% sodium azide.

HAP Chromatography
The pooled and dialyzed DEAE MLCK peak was applied to a HAP column (Fig. 2, right). Dictyostelium MLCK activity eluted on the leading edge of

Figure 2. (Left) DEAE chromatography of Dictyostelium MLCK. 250 mg of 80–100% cut of Dictyostelium HSS in 30 ml was applied to a 2 × 8-cm column (25 ml) of DEAE-cellulose (DE-52) preequilibrated with 10 mM Tris, pH 7.5, 5 mM EGTA, 1 mM EDTA, 1 mM DTT, 5% sucrose, and 0.02% sodium azide. The column was run at 20 cm of pressure and eluted with a 150-ml linear 0–0.5 M KCl gradient in column buffer. Fractions were dialyzed against column buffer without KC1 and 8-μl aliquots were assayed for MLCK activity as described in Materials and Methods. (Right) HAP chromatography of Dictyostelium MLCK. 7 mg of pooled DEAE peak in 21 ml was applied to a 4 × 0.8-cm column (2.5 ml) of HAP preequilibrated with 10 mM potassium phosphate, pH 7.5, 1 mM EDTA, 1 mM DTT, 5% sucrose, and 0.02% sodium azide. The column was run at 20 cm of pressure and eluted with a 50-ml linear 0.01–0.5 M potassium phosphate gradient in column buffer. Fractions were dialyzed against 10 mM Tris, pH 7.5, 5 mM EGTA, 1 mM EDTA, 1 mM DTT, 5% sucrose, and 0.02 sodium azide, and 8-μl aliquots were assayed for MLCK activity as described in Materials and Methods.
the main protein peak at \(~0.04\) M potassium phosphate. A 4.5-step fold purification with \(~60\)% recovery of activity was achieved (Table I). An attempt to improve on this by making the phosphate gradient shallower was unsuccessful. The total fold purification of MLCK after HAP chromatography was \(~4,700\)-fold. An SDS gel of the HAP peak fraction of MLCK activity is compared in Fig. 3 with the HSS, 80-100\% (NH\(_4\))\(_2\)SO\(_4\) cut, and DEAE pool. The DEAE pool consists of at least 20 major bands, whereas the HAP peak fraction consists of about six major bands. There is a single band of \(~50,000\) daltons, a doublet at \(~33,000\) D, a single band of \(~26,000\) D, and a doublet at \(~20,000\) D. The peak of MLCK activity comigrated only with the 33,000-D doublet.

An additional point of interest is that the lower band of the 33,000-D doublet, but not the upper band, is the only other protein besides the myosin light chain that is phosphorylated during the MLCK reaction. This phosphorylation also occurs when the MLCK preparation is incubated with ATP in the absence of myosin.

HAP fractions were dialyzed (see legend to Fig. 2) and stored either at 0\(^\circ\)C or in aliquots in liquid N\(_2\).

Comments on the Purification Procedure. As described above, \(~1\) mg of Dictyostelium MLCK can be isolated from 350 g of wet cells by 80-100\% ammonium sulfate precipitation and chromatography on DEAE and HAP. The overall purification is \(~4,700\)-fold (Table I). This material is relatively stable. In one experiment, HAP peak at 0.3 mg/ml stored at 0\(^\circ\)C lost 35\% of its activity over a 5-d period. This material can also be stored in liquid N\(_2\) in which case less activity is lost. About 350 g of wet cells is necessary for a good MLCK preparation because it is important that protein concentration in the HAP peak be \(>0.1\) mg/ml. More dilute concentrations of enzyme lost activity rapidly and activity was not stable to storage in liquid N\(_2\).

Because of the known sensitivity to proteolysis of MLCK purified from other sources, we took several precautions to avoid proteolysis during our purification. Amebas were lysed under conditions that minimize proteolysis (70). EGTA and EDTA were included in all buffers, except the HAP and

![Figure 3. SDS gel electrophoresis on 15\% polyacrylamide of the purification of Dictyostelium MLCK. 15 \(\mu\)g of protein was applied to each lane. (a) HSS, (b) 80-100\% (NH\(_4\))\(_2\)SO\(_4\) cut, (c) DEAE pool, (d) HAP peak fraction. Molecular mass standards are shown on the right. (Arrow) 33,000-D doublet.](image-url)

![Figure 4. HPLC on G3000SW of Dictyostelium MLCK. An aliquot (62 \(\mu\)g in 200 \(\mu\)l) of HAP peak fraction 74 was dialyzed against 10 mM Tris, pH 7.5, 2 mM EDTA, 1 mM DTT, and 0.1 M KCl and then applied to a 60-cm HPLC gel filtration column, Toyo Soda G3000SW, mol wt range 1,000-300,000. The column was pre-equilibrated with the same buffer and run at 0.5 ml/min. 0.5-ml fractions were placed on ice as soon as they were collected. 10-\(\mu\)l aliquots were assayed immediately for MLCK activity, according to Materials and Methods. The remainder of each fraction was used for SDS polyacrylamide gel electrophoresis (see inset and Fig. 5). (Inset) MLCK activity peak fraction 13 consists of 30\% 33,000-mol wt doublet. Aliquots (0.5 ml) of HPLC G3000SW fractions were precipitated with TCA and analyzed by 15\% SDS PAGE. Upper gel scan: 15 \(\mu\)g of MLCK activity peak fraction 13. (Arrow) 33,000-mol wt doublet. Our most pure fraction of MLCK activity illustrated here consists of \(~30\)% 33,000 mol wt doublet. Two other proteins are present in this fraction, both of mol wt \(<33,000\), but neither of these comigrates with MLCK activity. (Note that the densitometer used for these gel scans does not resolve the two components of the 33,000-mol wt doublet.](image-url)

![Figure 5. Comigration of Dictyostelium MLCK activity and 33,000-D doublet with chromatography on HPLC G3000SW. Aliquots (0.5 ml) from the experiment illustrated in Fig. 4 were precipitated with TCA, analyzed by 15\% SDS PAGE, and scanned with a very high resolution densitometer which was capable of resolving the two components of the 33,000-D doublet (see Materials and Methods). The upper panel shows MLCK activity (solid circles). The middle panel shows the amount of upper band (solid triangles) as compared with lower band (open triangles) of the 33,000-D doublet in each fraction. The lower panel (open squares) illustrates phosphorylation of the lower band of the 33,000-D doublet which occurred during the MLCK assay. The extent of phosphorylation was determined as described in Materials and Methods.](image-url)
Batches were processed separately through the DEAE chromatography step. No significant difference in the yield or properties of the MLCK activity was found.

Properties of Dictyostelium MLCK. To gain further information about the molecular weight of the myosin light chain kinase, we analyzed the HAP pool by HPLC (Fig. 4). The *Dictyostelium* MLCK eluted as a single peak of activity with an apparent native molecular weight of ~30,000 as compared with standards of mol wt 240,000 (β-phycoerythrin); 67,000 (BSA); 43,000 (ovalbumin); and 17,000 (myoglobin) run on the same column under identical conditions. As we found for the HAP column, the peak of MLCK activity on HPLC comigrates with a 33,000-D doublet (Fig. 5). Interestingly, as we found for the HAP pool, the lower band of the 33,000-D doublet, but not the upper band, is phosphorylated during the MLCK reaction (Fig. 5, lower panel). The increase in the specific activity of the two HPLC fractions with maximal activity (fractions 12 and 13) as compared with the column load was marginal (data not shown), probably because of loss of enzyme activity as a result of the substantial dilution that occurred (from 0.3 mg/ml in the HAP pool to ~0.01 mg/ml in fractions 12 and 13). In our most purified material, HPLC fraction 13, the 33,000-D doublet is ~30% of the total protein present (Fig. 4, inset).

The effects of various ions and cyclic nucleotides on MLCK activity were examined. Assays for MLCK activity were generally carried out in 10 mM Tris, pH 7.5, 5 mM Mg²⁺, 1 mM ATP. Addition of 1–2 mM cAMP or cGMP had no effect on MLCK activity. KC¹ inhibited MLCK activity significantly. 50–100 mM KC¹ reduced activity to 50% as compared with samples without KC¹. Mg²⁺ was required for MLCK activity. Significant activity occurred when 2–10 mM Mg²⁺ was included with the buffer. Ca²⁺ could not substitute for the Mg²⁺ requirement. Samples having 1–10 mM Ca²⁺ in buffer that lacked Mg²⁺ had no measurable MLCK activity. When added to the usual assay buffer that included Mg²⁺, 1 mM Ca²⁺ inhibited MLCK activity. 1–2 mM Ca²⁺ reduced MLCK activity to <50% as compared with samples without Ca²⁺. This is illustrated in Fig. 6 (lanes d and e).

Dictyostelium MLCK activity in 1 mM Ca²⁺ was not affected by the addition of calmodulin purified from either bovine brain (Fig. 6, lanes e and f) or *Dictyostelium* (data not shown). In contrast, gizzard smooth muscle light chain kinase was activated by calmodulin and 1 mM Ca²⁺ using either smooth muscle myosin (lane n) or rabbit skeletal muscle myosin (lane m) as substrate, as expected (3).

Dictyostelium MLCK is specific for *Dictyostelium* myosin among other myosins tested. As illustrated in Fig. 6, *Dictyostelium* MLCK phosphorylated *Dictyostelium* myosin (lane d), but not rabbit skeletal muscle myosin (lane h), smooth muscle myosin isolated from turkey gizzard (lane j), or *Acanthamoeba* myosin II (data not shown). Histone and casein were not phosphorylated by the enzyme.

Figure 6. *Dictyostelium* MLCK will phosphorylate *Dictyostelium* myosin but not skeletal or smooth muscle myosins, and the activity of the enzyme is not affected by the addition of calmodulin. SDS gel electrophoresis on (A) 12% polyacrylamide and (B) corresponding autoradiogram. Protein in 20-µl assay: *Dictyostelium* myosin, turkey gizzard smooth muscle myosin or rabbit skeletal muscle myosin, 10 µg; *Dictyostelium* HAP peak MLCK, 0.35 µg; turkey gizzard smooth muscle MCLK, 0.15 µg; bovine brain calmodulin, 0.05 µg. Buffer: for *Dictyostelium* MLCK, 20 mM Tris, pH 7.5, 5 mM Mg²⁺, 0.75 mM ATP; for smooth muscle MCLK, 20 mM Tris, pH 7.5, 4 mM MgCl₂, 1 mM DTT, 0.75 mM ATP. 1 mM Ca²⁺ was also included where indicated below. [γ⁻³²P]ATP was 500 cpm/pmol ATP. Incubation was 10 min at 22°C. Samples were processed as in Materials and Methods. (a) *Dictyostelium* MLCK alone, (b) *Dictyostelium* MLCK + calmodulin, (c) *Dictyostelium* myosin alone, (d) *Dictyostelium* myosin + *Dictyostelium* MLCK, (e) *Dictyostelium* myosin + *Dictyostelium* MCLK + CaCl₂, (f) *Dictyostelium* myosin + *Dictyostelium* MLCK + CaCl₂ + calmodulin, (g) skeletal muscle myosin alone, (h) skeletal muscle myosin + smooth muscle MLCK + Ca²⁺ + calmodulin, (i) smooth muscle myosin alone, (j) smooth muscle myosin + *Dictyostelium* MLCK, (k) smooth muscle MLCK + Ca²⁺ + calmodulin, (l) *Dictyostelium* myosin + smooth muscle MLCK + Ca²⁺ + calmodulin, (m) skeletal muscle myosin + smooth muscle MLCK + Ca²⁺ + calmodulin, (n) smooth muscle myosin + smooth muscle MLCK + Ca²⁺ + calmodulin.
Figure 7. (Top left) Affi-Gel Blue chromatography of Dictyostelium myosin phosphatase. The 30–60% (NH₄)₂SO₄ cut (1.9 g of protein; 55 ml) of the Dictyostelium HSS was applied to a 2.2 × 18-cm column of Affi-Gel Blue 100–200 mesh, 75–150 μm run at 14 cm of pressure. The column was preequilibrated with 10 mM Tris, pH 7.5, 50 mM KCl, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide and developed with the same buffer. 6-μl aliquots of each fraction were assayed for myosin phosphatase activity and 10-μl aliquots were assayed for alkaline phosphatase activity, as described in Materials and Methods. (Top right) Gel filtration on A-0.5m of Dictyostelium myosin phosphatase. The Affi-Gel Blue pool (~500 mg of protein concentrated into 6.5 ml as described in Results) was applied to a 70 × 2.5-cm column of agarose A-0.5m, 100–200 mesh, which was run at 30 cm of pressure. The column was preequilibrated with 20 mM Tris, pH 7.5, 0.5 M KCl, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide and developed with the same buffer. 10-μl aliquots of each fraction were assayed for alkaline phosphatase activity and 6-μl aliquots of each fraction were assayed for myosin phosphatase activity, as described in Materials and Methods, after dialysis of fractions against 20 mM Tris, pH 7.5, 25 mM KCl, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide. (Bottom left) DEAE chromatography of Dictyostelium myosin phosphatase. The A-0.5m pool (17 mg of protein; 10 ml) was applied to a 4.0 × 1.2-cm (4.5 ml) column of DEAE Sephadex (DE-52) run at 15 cm of pressure. The column was preequilibrated with 20 mM Tris, pH 7.5, 25 mM KCl, 1 mM EGTA, 1 mM DTT, and 0.02% sodium azide and developed with an 80-ml linear 0.025–0.75 M KCl gradient in column buffer. 10-μl aliquots of each fraction were assayed for myosin phosphatase activity and 40-μl aliquots were assayed for alkaline phosphatase activity, as described in Materials and Methods. (Bottom right) HAP chromatography of Dictyostelium myosin phosphatase. The pooled DEAE peak (2 mg of protein; 6.5 ml) was applied to a 4.5 × 1.2-cm (5 ml) column of HAP run at 15 cm of pressure. The column was preequilibrated with 10 mM potassium phosphate, pH 7.5, 1 mM DTT, and 0.02% sodium azide and eluted with a 120-ml linear 0.01–0.4 M potassium phosphate gradient in column buffer. 50-μl aliquots of each fraction were assayed for alkaline phosphatase activity as described in Materials and Methods. 6-μl aliquots of each fraction were assayed for myosin phosphatase activity after dialysis of fractions against 20 mM Tris, pH 7.5, 25 mM KCl, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide.

Stoichiometry of phosphorylation of Dictyostelium myosin with Dictyostelium MLCK is ≈0.96 mol P/mol 18,000-D light chain (described below).

The residue on Dictyostelium myosin is 18,000-D light chain, which is phosphorylated in vivo and in vitro by Dictyostelium MLCK, is serine (E. R. Kuczmarski, Northwestern University School of Medicine, personal communication; Berlot, Devreotes, and Spudich, manuscript submitted for publication).

Purification of MLCP from Dictyostelium
Steps in the Purification: Preparation of HSS. ~70 g of amebas of Dictyostelium was harvested by centrifugation, washed, and again collected as described for the purification
of MLCK. The cells were next combined with 2 vol/g of 10 mM Teola, pH 7.5, 40 mM sodium pyrophosphate, 30% sucrose, 0.4 mM DTT, 2 mM EDTA, 1 mM PMSF, 0.5 mM TPC, and 1 mM TLCK. Cells were lysed by sonication as described in Materials and Methods for the purification of myosin. The lysate was centrifuged at 27,000 g for 30 min. The supernatant was collected and diluted vol/vol with 10 mM Teola, pH 7.5, 25 mM sodium pyrophosphate, 0.4 mM EDTA, and 2 mM DTT. The diluted lysate was clarified by centrifugation at 100,000 g for 1 h. The HSS was retained.

Ammonium Sulfate Fractionation. After addition of Teola, pH 7.5, to 50 mM, the HSS was made 30% in (NH₄)₂SO₄ with constant stirring at 0°C. The sample was centrifuged at 27,000 g for 30 min and the 30% supernatant was retained. The supernatant was made 60% in (NH₄)₂SO₄ and centrifuged, and the 30–60% (NH₄)₂SO₄ pellets were retained. The pellets were homogenized gently into a minimal volume (total volume of pellets plus buffer 50–60 ml) of 10 mM Tris, pH 7.5, 50 mM KCI, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide and dialyzed against the same buffer. This step separates MLCP from Dictyostelium MLCK activity, which fractionates in 70–100% (NH₄)₂SO₄ (as described above).

Affi-Gel Blue Chromatography. The dialyzed 30–60% (NH₄)₂SO₄ cut was clarified by centrifugation at 100,000 g for 1 h and the supernatant applied to an Affi-Gel Blue column as illustrated in Fig. 7 (top left). Dictyostelium myosin phosphatase activity eluted on the trailing edge of the protein peak. Alkaline phosphatase activity elutes slightly ahead of the myosin phosphatase activity. A 2.2-fold purification and 43% recovery of activity were achieved with this step (Table II). Fractions having myosin phosphatase activity were pooled and dialyzed against 10 mM potassium phosphate, pH 7.5, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide.

HAP Chromatography. The final step in the purification of Dictyostelium myosin phosphatase was chromatography on HAP. The dialyzed activity peak from DEAE was chromatographed as illustrated in Fig. 7 (bottom left). Myosin phosphatase activity bound to HAP and eluted at 0.22 M KCl, on the trailing edge of the protein peak. Alkaline phosphatase activity eluted slightly ahead of the myosin phosphatase activity. A 4.2-fold purification and 48% recovery of activity were achieved with this step (Table II). The Dictyostelium myosin phosphatase HAP peak was concentrated by dialysis against dry Aquacide III and then dialyzed into 20 mM Tris, pH 7.5, 25 mM KCI, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide. 75% of the protein and 47% of the phosphatase activity were recovered after this procedure.

In summary, ~1.5 mg of partially purified Dictyostelium myosin phosphatase can be isolated from 70 g of wet cells by 30–60% ammonium sulfate precipitation and chromatography on Affi-Gel Blue, A-0.5m, DEAE, and HAP. The overall purification is 33-fold (Table II). This material is stable for at least 1 wk when stored at 0°C. The quantity of material obtained is adequate for dephosphorylating several mg of Dictyostelium myosin.

Kinetic Properties of Dictyostelium Myosin Phosphatase

Dephosphorylation

Dictyostelium myosin phosphatase dephosphorylates Dictyostelium myosin such that ~0.01 mol P/mol 18,000-D light chain remains. In one experiment, purified myosin was incubated without or with 0.1 μg of phosphatase/μg of myosin for 2 h at 22°C under standard buffer conditions. By scanning densitometry of glycerol-urea gels of the myosins, the phosphorylated sample had 0.7 mol P/mol 18,000-D light chain, an amount higher than previously found (33), whereas the dephosphorylated sample had no detectable phos-
phosphate. In a parallel experiment, using myosin previously la-
phosphatase-treated myosin can be rephosphorylated by in-
the phosphatase-treated sample had ~0.01 mol P/mol

cubation with phosphatase, bound to beads; (cross-hatched) myosin phosphorylated with kinase, purified by gel filtration, and then bound to beads; the total height for each bar shown represents the sum of the two data sets (n = 20, 75% moved). (Third panel) Myosin dephosphorylated with phosphatase and then bound directly to beads (n = 730, 0.9% moved). (Lower panel, cross-hatched) Myosin dephosphorylated with phosphatase, bound to beads, and subsequently rephosphorylated with kinase while bound to beads; (hatched) myosin dephosphorylated with phosphatase, purified by gel filtration, rephosphorylated with kinase, and subsequently bound to beads; the total height for each bar shown represents the sum of the two data sets (n = 61, 72% moved).

Effects of 18,000-D Light-Chain Phosphorylation and Dephosphorylation on the Properties of Dictyostelium Myosin

We prepared Dictyostelium myosin, MLCK and MLCP, and used the same protein preparations in all of the following experiments, which examine effects of light-chain phosphorylation and dephosphorylation on properties of myosin.

Myosin-coated Bead Movement In Vitro. 0.5–2 mg of

Dictyostelium myosin was treated with either Dictyostelium MLCK or Dictyostelium myosin phosphatase as described in Materials and Methods. The extent of phosphorylation of the 18,000-D light chain of Dictyostelium myosin was related to the rate at which the myosin moved in an in vitro assay (61), as illustrated in Fig. 9. The untreated myosin, which had 0.33 mol phosphate/mol 18,000-D light chain, moved at rates between 0.8 and 1.2 μm/s (upper panel). After treatment with kinase, the myosin had 0.96 mol phosphate/mole 18,000-D light chain and moved more rapidly at rates between 1.1 and 1.6 μm/s (second panel). In both of these cases, the majority of the beads that settled onto the Nitella substratum moved (60–80% of the beads moved in all cases except for dephosphorylated myosin). In contrast, myosin that was treated with phosphatase and then bound to beads had <0.01 mol phosphate/mol 18,000-D light chain and its rate of movement was zero for most of the beads (>99%) that settled onto the Nitella substratum. The few beads that moved (<1%) did so at a rate of 0.4–0.8 μm/s (third panel). Finally, it was possible to rephosphorylate the phosphatase-treated myosin. Such myosin was found to move at rates equivalent to those for myosin that had been treated with kinase only. In one type of experiment, phosphatase-treated myosin was treated with MLCK and ATP while bound to beads. The movement of such kinase-treated myosin is illustrated in the lower panel. Alternatively, phosphatase-treated myosin was purified by gel filtration chromatography and then treated with MLCK and ATP before incubation with beads (lower panel). Both of these samples moved at rates of 0.9–1.7 μm/s.

Actin-activated Mg$^{2+}$ ATPase Activity. Extent of phos-

Figure 8. Dictyostelium myosin phosphatase removes 32P from the light chain but not from the heavy chain of Dictyostelium myosin purified from amebas grown in 32P-phosphate. 15 μg of myosin labeled in vivo as described in Materials and Methods was incubated together with either 3.5 μg of DEAE purified phosphatase (open symbols) or 2.0 μg of HAP purified phosphatase (solid symbols) in 25 mM Tris, pH 7.5, 5 mM MgCl$_2$, and 1 mM CaCl$_2$ at 22°C for the times designated. To quantify phosphate remaining on either heavy chain or light chain, samples were run on SDS polyacrylamide gels and an autoradiogram was developed. The autoradiogram was scanned, the peaks were cut out and weighed, and the relative percent phosphorylation was calculated.

Figure 9. Movement of Dictyo-

stemelium myosin coated with beads, and subsequently rephosphorylated with kinase while bound to beads; (hatched) myosin dephosphorylated with phosphatase, purified by gel filtration, rephosphorylated with kinase, and subsequently bound to beads; the total height for each bar shown represents the sum of the two data sets (n = 61, 72% moved).
phorylation of the 18,000-D light chain of Dictyostelium myosin was found to be directly related to the actin-activated Mg$^{2+}$ ATPase activity of the molecule. As shown in Fig. 10, samples of phosphatase-treated, untreated, and kinase-treated myosin were combined with various concentrations of actin and the actin-activated Mg$^{2+}$ ATPase activity was measured. The actin-activated Mg$^{2+}$ ATPase activity of the kinase-treated sample is four to five times that of the phosphatase-treated sample. The actin-activated Mg$^{2+}$ ATPase activity of the untreated sample, which had 0.33 mol phosphate/mol 18,000-D light chain, was found to be intermediate between the values for the kinase-treated and phosphatase-treated samples.

Assembly. Under the conditions that we used, we did not observe a significant effect of phosphorylation of the 18,000-D light chain of Dictyostelium myosin on assembly of the molecule into thick filaments. Samples of Dictyostelium myosin that were untreated or treated with Dictyostelium MLCK or Dictyostelium myosin phosphatase were assayed for filament assembly in 10 mM Tris, pH 7.4, 0.1 mM EDTA, and 0.1 mM DTT, with varying concentrations of KCl as illustrated in Fig. 11. The sample of phosphatase-treated myosin appeared to have a slightly higher degree of polymerization as compared with the other two samples, but the differences among the three samples were small.

Discussion

Dictyostelium MLCK

We do not know whether the enzyme that we have purified is the only MLCK in Dictyostelium. We were persuaded to study this particular enzyme because of its striking specificity for Dictyostelium 18,000-D light chain apparent very early in the purification with ammonium sulfate fractionation (Fig. 1).

Dictyostelium MLCK differs from MCLK isolated to date from vertebrate smooth muscle (44, 75), vertebrate cardiac muscle (74), and vertebrate nonmuscle sources such as brain (26), platelet (25), and BHK-21 (76). For example, smooth muscle MLCK, which has been studied most extensively, is a Ca$^{2+}$/calmodulin-dependent enzyme of 130,000 mol wt (3, 69). In contrast, for Dictyostelium MLCK we show here that a doublet of 33,000 mol wt appears to be important for activity, and this activity is not Ca$^{2+}$/calmodulin dependent. An issue of importance is whether this Dictyostelium enzyme has suffered proteolysis during purification. In early attempts to purify MLCK from skeletal muscle (52) and from platelets (18), for example, proteolyzed Ca$^{2+}$/calmodulin-independent enzymes were isolated. In later work MLCK-from skeletal muscle (44, 75) and platelets (15, 25) were shown to be larger Ca$^{2+}$/calmodulin-dependent enzymes. Early attempts to purify MLCK from chicken gizzard (16, 17) and from bovine brain (15) yielded Ca$^{2+}$/calmodulin-dependent enzymes of 105,000 D. The most recent work shows that MLCK from chicken gizzard (69) and bovine brain (26) are of 130,000 D. Further, Walsh et al. (72) have produced a Ca$^{2+}$/calmodulin-independent enzyme of 80,000 D by limited proteolysis of Ca$^{2+}$/calmodulin-dependent turkey gizzard smooth muscle MLCK. Because Dictyostelium is a large phylogenetic distance from the vertebrate MLCKs that have been studied, it would not be surprising if it had distinctive properties. Factors supporting the argument that the Dictyostelium MLCK that we have isolated is a distinctive enzyme and not a breakdown product of a larger protein are as follows. First, we took a number of precautions to avoid proteolysis as described in Results. Secondly, our enzyme initially fractionates in 80–100% (NH$_4$)$_2$SO$_4$, which is different from other MLCK, such as turkey gizzard smooth muscle MLCK (3), which fractionates in 40–60% ammonium sulfate.

Myosin kinases purified thus far from sources other than vertebrate are notable in their diversity of properties, although none of them is like the Dictyostelium MLCK. A distinctive light chain kinase has been purified from Limulus skeletal muscle. Limulus MLCK is a doublet of 39,000 and 37,000 D and is Ca$^{2+}$/calmodulin dependent (59). Phosphorylation of Limulus myosin results in an increase in the muscle (44, 75), vertebrate cardiac muscle (74), and vertebrate nonmuscle sources such as brain (26), platelet (25), and BHK-21 (76). For example, smooth muscle MLCK, which has been studied most extensively, is a Ca$^{2+}$/calmodulin-dependent enzyme of 130,000 mol wt (3, 69). In contrast, for Dictyostelium MLCK we show here that a doublet of 33,000 mol wt appears to be important for activity, and this activity is not Ca$^{2+}$/calmodulin dependent. An issue of importance is whether this Dictyostelium enzyme has suffered proteolysis during purification. In early attempts to purify MLCK from skeletal muscle (52) and from platelets (18), for example, proteolyzed Ca$^{2+}$/calmodulin-independent enzymes were isolated. In later work MLCK-from skeletal muscle (44, 75) and platelets (15, 25) were shown to be larger Ca$^{2+}$/calmodulin-dependent enzymes. Early attempts to purify MLCK from chicken gizzard (16, 17) and from bovine brain (15) yielded Ca$^{2+}$/calmodulin-dependent enzymes of 105,000 D. The most recent work shows that MLCK from chicken gizzard (69) and bovine brain (26) are of 130,000 D. Further, Walsh et al. (72) have produced a Ca$^{2+}$/calmodulin-independent enzyme of 80,000 D by limited proteolysis of Ca$^{2+}$/calmodulin-dependent turkey gizzard smooth muscle MLCK. Because Dictyostelium is a large phylogenetic distance from the vertebrate MLCKs that have been studied, it would not be surprising if it had distinctive properties. Factors supporting the argument that the Dictyostelium MLCK that we have isolated is a distinctive enzyme and not a breakdown product of a larger protein are as follows. First, we took a number of precautions to avoid proteolysis as described in Results. Secondly, our enzyme initially fractionates in 80–100% (NH$_4$)$_2$SO$_4$, which is different from other MLCK, such as turkey gizzard smooth muscle MLCK (3), which fractionates in 40–60% ammonium sulfate.

Myosin kinases purified thus far from sources other than vertebrate are notable in their diversity of properties, although none of them is like the Dictyostelium MLCK. A distinctive light chain kinase has been purified from Limulus skeletal muscle. Limulus MLCK is a doublet of 39,000 and 37,000 D and is Ca$^{2+}$/calmodulin dependent (59). Phosphorylation of Limulus myosin results in an increase in the
actin-activated Mg2+-ATPase activity of the myosin (58). Other myosin kinases purified from sources other than vertebrates are heavy chain kinases. Myosin I heavy chain kinase purified from amoebae of *Acanthamoeba castellanii* (23) has a mol wt of 107,000 and is Ca2+/calmodulin independent. Two *Acanthamoeba* myosin II heavy chain kinases have also been partially purified (I4, 31). From *Dictyostelium*, Maruta et al. (37) have partially purified an enzyme from growth-phase amebas that has an apparent mol wt of 70,000 and is Ca2+/calmodulin independent. In contrast, a second distinct myosin heavy chain kinase purified from amebas previously starved to induce aggregation has an apparent mol wt of 70,000 and is inactivated by Ca2+/calmodulin. The partially purified *Dictyostelium* myosin heavy chain kinase of Kuczinski and Spudich (33) and manuscript in preparation has an apparent mol wt of 60,000.

Dictyostelium MLCK appears to be very specific as compared with other MLCKs investigated so far. Myosins from vertebrate smooth muscle and skeletal muscle, and *Acanthamoeba* myosin II were not phosphorylated by *Dictyostelium* MLCK. Further, we found that turkey gizzard smooth muscle MLCK will not phosphorylate *Dictyostelium* myosin. In contrast, turkey gizzard smooth muscle MLCK will partially phosphorylate vertebrate skeletal muscle myosin light chain (3). *Acanthamoeba* myosin I heavy chain kinase will also phosphorylate the 20,000-D light chain of smooth muscle myosin at what appears to be the same site that is phosphorylated by smooth muscle MLCK (24).

For *Dictyostelium* myosin 18,000-D light chain, as for vertebrate smooth muscle myosin 20,000-D light chain (3), vertebrate skeletal muscle myosin 18,500-D dithionitrobenzoate light chain (50), and *Acanthamoeba* myosin I heavy chain, the residue that is phosphorylated is serine. For *Dictyostelium* myosin light chain this is the case both for the myosin purified from amebas grown in [32P]phosphate and for myosin labeled in vitro with purified *Dictyostelium* MLCK and [γ-32P]ATP (E.R. Kuczmarski, Northwestern University School of Medicine, personal communication). In contrast, both serine and threonine phosphorylation of the heavy chain of *Acanthamoeba* myosin II (I4) and *Dictyostelium* myosin has been measured in vivo and in vitro. *Dictyostelium* myosin purified by conventional methods from cells labeled in vivo by growth in [32P]orthophosphate is labeled on the heavy chain at serine only (33). Myosin rapidly isolated from amebas by immunoprecipitation is labeled on the heavy chain at both serine and threonine (Berlot, C.H., and J.A. Spudich, unpublished observations). One partially purified heavy chain kinase from *Dictyostelium* is specific for threonine whereas another phosphorylates both threonine and serine (37; Kuczmarski, E.R., and J.A. Spudich, unpublished observations).

It is not clear how *Dictyostelium* MLCK might be regulated in vivo. As described above we have not been able to show Ca2+ dependence, Ca2+/calmodulin dependence, or any effect of cAMP or cGMP on activity. We have preliminary evidence that the lower band of the 33,000-D doublet is associated with the MLCK activity, and this polypeptide decreases the affinity of the 130,000-D MLCK for Ca2+/calmodulin, and thereby inhibits the activity of the enzyme.

Dictyostelium MLCP

Here we describe a myosin phosphatase that will preferentially remove phosphate from the light chain but not from the heavy chain of *Dictyostelium* myosin. With this enzyme we are able to manipulate the extent of myosin light chain phosphorylation while leaving the extent of heavy chain phosphorylation unaffected and constant. Although the phosphatase preparation is impure, it is active without concomitant degradation of the *Dictyostelium* myosin, indicating that protease contamination is not a problem. We found that myosin treated with phosphatase and then with *Dictyostelium* MLCK has properties identical to those of myosin treated with MLCK alone.

Because our myosin phosphatase from *Dictyostelium* is as yet partially purified, we do not know whether it is similar to the MLCPs that have been purified from rabbit skeletal muscle and from turkey gizzard and chicken gizzard smooth muscle. The skeletal muscle enzyme purified by Morgan et al. (43) has a mol wt of 70,000. Two phosphatases have been purified from turkey gizzard smooth muscle by Pato and Adelstein (47). Phosphatase I consists of three polypeptides of mol wt 60,000, 55,000, and 38,000 and will also dephosphorylate smooth muscle MLCK at about one-half the rate that it dephosphorylates isolated 20,000-D light chain. Phosphatase II has a mol wt of 43,000. The phosphatase purified from chicken gizzard smooth muscle by Onishi et al. (45) consists of components of mol wt 67,000, 54,000, and 34,000.

Effects of Reversible Light Chain Phosphorylation on the Properties of Dictyostelium Myosin

Comparison of the rates of movement of phosphorylated *Dictyostelium* myosin and myosin that had been dephosphorylated with *Dictyostelium* myosin phosphatase showed that light chain phosphorylation is important for myosin movement on actin. Moreover, we were able to rephosphorylate myosin that had previously been treated with phosphatase; such myosin moved at rates comparable to those of myosin treated with kinase alone. These results are consistent with those found for smooth muscle myosin and for *Acanthamoeba* myosin I. Dephosphorylated smooth muscle myosin moves very poorly, if at all; when phosphorylated on the 20,000-D light chain it moves at ~0.4 μm/s (60). Phosphorylated *Acanthamoeba* myosin I moves at a slower rate (0.06 μm/s) and movement is again phosphorylation dependent (4).

We did not observe an effect of phosphorylation of the 18,000-D light chain of *Dictyostelium* myosin on thick filament assembly. The conditions used were identical to those used by Kuczinski and Spudich (33) who found that phosphorylation of the heavy chain of *Dictyostelium* myosin in-
hibits thick filament assembly. There is an effect of light chain phosphorylation on myosin filament assembly in the cases of myosins from chicken gizzard (67) and from calf thymus or porcine platelets (57). In these cases, myosin thick filaments remain intact at physiological ionic strength upon addition of ATP only if their regulatory light chains are phosphorylated.

The question of whether Dictyostelium myosin heavy chain phosphorylation, which occurs on the tail of the molecule, exerts its effect on the actin-activated ATPase activity of the heads of the molecule directly by a conformational change or indirectly by an effect on filament assembly is an important one. The answer is not yet clear because in their study of Dictyostelium myosin heavy chain phosphorylation, Kuczmaszki and Spudich (33) measured actin-activated Mg\(^{2+}\) ATPase activity under conditions in which the unphosphorylated myosin was polymerized but the phosphorylated myosin was only partly polymerized. An additional complication is that for myosin in general there are insufficient data to make firm conclusions about the effects of myosin filament formation on actin-activated ATPase activity. For example, Reisler (56) showed equivalence of kinetic properties of the actin-activated ATPase for short bipolar skeletal muscle myosin minifilaments as compared to the soluble myosin fragment HMM. In contrast, Kiehart and Pollard (28) found that a subset of monoclonal antibodies that bind to the tip of the tail of Acanthamoeba myosin II inhibit filament formation, ATPase activity, and actomyosin contraction in cytoplasmic extracts. In kinetic experiments preformed Acanthamoeba myosin II filaments were disassembled by antibody and actin-activated ATPase activity was lost concomitantly (29).

It is attractive to speculate that in Dictyostelium amebas changes in phosphorylation of myosin occur during motile events such as chemotaxis, leading to enhanced actin-activated Mg\(^{2+}\) ATPase activity and myosin mobility. Progress in correlating the state of Dictyostelium myosin phosphorylation with changes in cell shape associated with chemotaxis has recently been made by Berlot et al. (6). They were able to specifically immunoprecipitate myosin from chemotactically competent amebas that had previously been labeled with \[^{32}P\]orthophosphate and then stimulated with cAMP to induce cell shape changes. It was found that a transient increase in phosphorylation of both the heavy chain and the 18,000-D light chain of myosin occurs and that the time courses of phosphorylation correlate with that of cell shape change and chemotaxis.

In our experiments we have examined properties of myosin as a function of extent of light-chain phosphorylation, while keeping heavy-chain phosphorylation constant at \(~0.3\) mol P./mol heavy chain. It will be interesting to examine possible relationships between the heavy-chain phosphorylation and the light-chain phosphorylation in terms of effects on myosin function. For example, what would be the range of variation of motility and actin-activated Mg\(^{2+}\) ATPase activity of light-chain–dephosphorylated/heavy-chain–phosphorylated myosin as compared with light-chain–phosphorylated/heavy-chain–dephosphorylated myosin? Data so far show that light-chain phosphorylation enhances actin-activated Mg\(^{2+}\) ATPase five- to sixfold, and that heavy-chain dephosphorylation enhances it about two-fold. Perhaps the combined effects of light-chain phosphorylation and heavy-chain dephosphorylation are simply additive and one would expect therefore a 10–12-fold difference in actin-activated Mg\(^{2+}\) ATPase activity. Alternatively, some cooperativity may exist between light chain and heavy chain sites and a more complex effect on actin-activated ATPase activity may occur. Persechini and Hartshorne (51), for example, have presented evidence suggesting that light-chain phosphorylation of both heads of smooth muscle myosin is required for the actin-activated ATPase activity of either head, and that phosphorylation of the second head of the myosin molecule is negatively cooperative. Dictyostelium myosin may be more complicated because heavy-chain phosphorylation is a variable also.

Now that we have available the enzymes necessary to quantitatively phosphorylate and dephosphorylate both the light and heavy chains of Dictyostelium myosin, we would like to determine the properties of myosin that is selectively phosphorylated at one site or the other or on both sites. Throughout studies of actin-activated ATPase activity, assembly, and movement in vitro as a function of site specific phosphorylation should now be possible. We anticipate that such experiments will yield information about the regulation of myosin in general as well as of Dictyostelium myosin in particular.

We are indebted to Paula Flicker for help in the production of the figures for this paper, to Becky Chasan for performing the in vitro motility assay illustrated in Fig. 9 and for helping with some of the Dictyostelium myosin preparations, to Ron Milligan for performing the high-resolution densiometry illustrated in Fig. 5, and to Tom Pollard for suggestions about growing the amebas in carboys. We would like to thank the following people for proteins: James Sellers for the smooth muscle myosin, smooth muscle MLCK, and brain calmodulin used in the experiment illustrated in Fig. 6, Ed Kuczmaszki for the in vivo labeled Dictyostelium myosin used in the experiment illustrated in Fig. 8, Tom Pollard for Acanthamoeba myosin II, and Margaret Clarke for Dictyostelium calmodulin. In addition we thank Jeannie Lukas for typing the manuscript.

This work was supported by research grant GM-25240 to Dr. Spudich and postdoctoral fellowships 5-F32-GM07781 and 5-T32-CA09151 to Dr. Griffith from the National Institutes of Health.

Received for publication 15 May 1986, and in revised form 11 September 1986.

References

