Microtubules are found in an array of morphologically distinct structures in eukaryotes and have been implicated in a wide range of motile processes, including chromosome separation, intracellular transport of organelles, and maintenance of cell shape (reviewed in McIntosh, 1982; Roberts and Hyams, 1979). The precise mechanisms by which cells regulate the temporal and spatial assembly of microtubules, establish interactions between microtubules and other cell structures, and generate the force required for microtubule functions are not known. The key to understanding these processes is likely to reside in both the tubulin subunits that assemble to form microtubules and the nontubulin "associated" proteins that influence and mediate microtubule function. Much is known about the assembly properties of tubulin in vitro (reviewed in Dustin, 1984; Kirschner and Mitchison, 1986; McKie, 1984; Purich and Ris, 1976) and several proteins have been identified which promote tubulin polymerization in vitro (reviewed in Olmsted, 1986). However, the relationship between these in vitro properties and the in vivo function of microtubules is largely uncertain. For this reason, we have chosen a genetic system that allows us to associate molecular characterizations with cellular functions.

The yeast *Saccharomyces cerevisiae* is a particularly tractable organism for such studies. It contains relatively simple microtubule arrays (Byers, 1981; Kilmartin and Adams, 1984; Peterson and Ris, 1976) that participate in a small number of well-defined and easily assayed events (Delgado and Conde, 1984; Pringle et al., 1986; Quinlan et al., 1980; Thomas et al., 1985). Its sophisticated genetic system and the small number of genes specifying each protein make mutants easy to find or construct. Yeast possesses a single gene that encodes β-tubulin, *TUB2* (Neff et al., 1983), and two genes that encode α-tubulins, *TUB1* and *TUB3* (Schatz et al., 1984). These proteins are highly conserved; >70% of the amino acid residues are identical between tubulins from yeast and animal cells. This high degree of sequence conservation suggests that the tubulin proteins from these cells have retained common biochemical properties. In support of this notion, it has been demonstrated that tubulin from yeast and animal cells will coassemble in vitro (Kilmartin, 1981; Pillus and Solomon, 1986). Significantly, a chimeric β-tubulin protein that contains both chicken and yeast sequences is incorporated efficiently into all of the microtubule structures of mouse fibroblasts in vivo (Bond et al., 1986). This analysis of microtubules in yeast begins with the isolation of several cold-sensitive alleles of *TUB2*. Because β-tubulin must interact not only with other tubulins but also with nontubulin proteins that mediate specific microtubule functions, mutations in *TUB2* might produce different phenotypes. For example, a mutation that interferes with the formation of the α-tubulin–β-tubulin dimer will inhibit the
Table I. Yeast Strains Used in This Study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBY947</td>
<td>MATα ura3-52 ade2-101</td>
<td>This laboratory</td>
</tr>
<tr>
<td>DBY1034</td>
<td>MATα ura3-52 lys2-801 his4-539</td>
<td>This laboratory</td>
</tr>
<tr>
<td>DBY1384</td>
<td>MATα ura3-52 his4-539 tub2-104</td>
<td>This laboratory</td>
</tr>
<tr>
<td>DBY1385</td>
<td>MATα ura3-52 ade2-101 tub2-104</td>
<td>This laboratory</td>
</tr>
<tr>
<td>DBY1571</td>
<td>MATα lys2 leu2 hom3 can1-51</td>
<td>This laboratory</td>
</tr>
<tr>
<td>DBY2022</td>
<td>MATα ura3-52 ade2-101 tub2-401</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2023</td>
<td>MATα ura3-52 lys2-801 his4-539 tub2-401</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2303</td>
<td>MATα ura3-52 ade2-101 tub2-402</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2304</td>
<td>MATα ura3-52 lys2-801 his4-539 tub2-402</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2305</td>
<td>MATα ura3-52 lys2-801 his4-539 tub2-403</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2306</td>
<td>MATα ura3-52 lys2-801 ade2-101 tub2-403</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2307</td>
<td>MATα ura3-52 lys2-801 ade2-101 tub2-404</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2308</td>
<td>MATα ura3-52 lys2-801 his4-539 tub2-404</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2309</td>
<td>MATα ura3-52 lys2-801 his4-539 tub2-405</td>
<td>This study</td>
</tr>
<tr>
<td>DBY2310</td>
<td>MATα ura3-52 ade2-101 tub2-405</td>
<td>This study</td>
</tr>
<tr>
<td>DBY4970</td>
<td>MATα ura3-52 hom3 can1-51 tub2-104</td>
<td>This study</td>
</tr>
<tr>
<td>DBY4971</td>
<td>MATα leu2 hom3 can1-51 tub2-401</td>
<td>This study</td>
</tr>
</tbody>
</table>

All strains are essentially isogenic to $288C$. The strains constructed for this study are the products of mutant isolations described in the text and standard crosses and tetrad analysis. Diploid strains are the products of matings between the indicated haploids.

Materials and Methods

Strains and Media

Yeast strains used in this study are listed in Table I. Escherichia coli strain HB101 (DBI142) is leu' pro' thr' hisR' hisM' recA'. DB6507 was also derived from HB101 and is leu' pro' hisR' hisM' recA' pyrF74::Tn5.

Yeast media are essentially as described by Sherman et al. (1979). YE PD medium is 1% yeast extract, 2% Bacto-peptone, and 2% glucose. S medium is 0.67% Yeast Nitrogen Base without amino acids; SD medium is 0.67% Yeast Nitrogen Base without amino acids; and 2% glucose.

1. Abbreviations used in this paper: DAPI, 4',6'-diamidino-2-phenylindole; S medium, 0.67% yeast Nitrogen Base without amino acids; SD medium, 0.67% Yeast Nitrogen Base without amino acids and 2% glucose.
also contains 2% glucose. S media was supplemented with 20 mg/liter uracil,
30 mg/liter lysine, 20 mg/liter histidine, 40 mg/liter adenine, 20 mg/liter
methionine, and 200 mg/liter threonine as indicated. Canavanine, when
added, was at 50 mg/liter. Solid media contained 2% agar.

Construction of Plasmids

The unique Sal I site of YIp5 (Scherer and Davis, 1979) was removed by
cutting with Sal I, filling the 3' ends with the Klenow fragment of DNA poly-
merase I (Rose and Botstein, 1983) and reclosing with DNA ligase. pRB428
(also called pJT7; Thomas, et al., 1985) contains the intact wild-type TUB2
gene subcloned on a 3-kb Eco RI-Sph I fragment into the same sites on
Sal I-filled YIp5. pRB429 contains an incomplete copy of TUB2 and was constructed as
follows: pRB428 was cleaved partially with Eco RI and the 3' ends were
filled. This DNA was then cut to completion with Kpn I and the 7.1-kb Eco
RI(filled)–Kpn I fragment was purified by agarose gel electrophoresis.
pRB428 was also cut to completion with Xmn I and Kpn I and the 0.4-kb
Xmn I–Kpn I fragment was isolated by PAGE. Ligation of the 7.1-kb Eco
RI(filled)–Kpn I fragment to the 0.4-kb Xmn I–Kpn I fragment generated
pRB429. Therefore, pRB429 contains an incomplete copy of TUB2 that has
one end in the fourth codon of TUB2 and the other end 1.4 kb beyond the
COOH-terminal coding sequence of TUB2 in the Eco RI–Sph I backbone
fragment of Sal I-filled Yip5.

Production of tub2 Mutants

The plasmid pRB429 was mutagenized in vitro. pRB429 was treated with
DNase I to introduce a single random nick per plasmid (Shortle and Bot-
stein, 1983). These nicks were converted to short gaps and the gaps were
misrepaired by the nucleotide omission method of Shortle et al. (1982). The
misrepair reactions and subsequent DNA isolations were done in eight sepa-
rate pools: two pools each of minus dATP, minus dCTP, minus dGTP, and
minus dTTP reactions.

The level of mutagenesis was checked by determining the percentage of
plasmids that had lost URA3 function as shown: DNA from each reaction
was used to transform E. coli strain DB6507 selecting for ampicillin resist-
tance. The frequency of Ura- mutations could be determined because
dB6507 carries a pyrF mutation that is complemented by the wild-type yeast
URA3 gene. Uracl auxotrophs appeared in 1.6, 3.1, 3.4, and 4.4% of the
cells transformed with DNA from the minus dATP, minus dCTP, minus dGTP,
and minus dTTP reactions, respectively. Because the coding region
of URA3 is only ∼10% of the plasmid sequence and not all mutations in
URA3 are expected to eliminate its activity, these data suggest that most of
the plasmids were mutagenized by this protocol.

The eight pools of mutagenized DNA were used to transform eight sepa-
rate cultures of the yeast strain DBY1034, selecting for uracil prototrophy
on SD plates containing lysine and histidine at 26°C. Plasmid integration
was directed to the chromosomal copy of TUB2 by cutting the plasmid at the
Kpn I site within the TUB2 coding region before transformation. Homol-
ogous recombination occurs near the Kpn I site (Orr-Weaver et al., 1981)
and results in a strain containing one intact and one disrupted copy of TUB2
(see Fig. 1; Shortle et al., 1984). If the mutation on the plasmid lies between
the Kpn I site and the 3' end of the gene, the integrated mutation will lie
in the intact copy of TUB2 and even a recessive phenotype can be observed
directly. If the mutation on the plasmid lies between the 5' end of the gene
and the Kpn I site, the integrated mutation will reside in the disrupted copy
of TUB2 and will not be detected. Thus, mutations recovered by this particu-
lar protocol should reside in the 3' 70% of the TUB2 coding region beyond
the Kpn I site.

Approximately 17,000 transformants were replica plated to 26, 14, and
37°C plates. Colonies which grew at 26°C but failed to grow at either 14
or 37°C were picked and purified as single colonies. Eight colonies retested
as cold sensitive; none retested as temperature sensitive. One of these mu-
tations is cold sensitive for uracil prototrophy due, most likely, to muta-
tions of the plasmid-borne URA3 gene: it grows at 14°C on plates supplemented
with uracil. Results of tetrad analysis show that five of the other seven cold-
sensitive strains are cold-sensitive tub2 mutants: these five cold-sensitive
mutations are linked to the integrated plasmid sequences marked by
URA3. The two cold-sensitive mutations that are not linked to URA3 were not stud-
ied further. The tub2-401, tub2-402, and tub2-403 alleles were generated
by minus dATP reactions; tub2-402 and tub2-403 came from the same pool.
The tub2-404 and tub2-405 alleles were generated by minus dCTP reactions
but came from separate pools. Excision of plasmid sequences was selected
by growing the primary transformants on 5-fluoro-orotic acid plates to select
against URA3 (Boeke et al., 1984).

Figure 1. Construction of tub2 mutants. The mutagenized plasmid
(pRB429) contains a disrupted copy of TUB2; it is missing the first
14 nucleotides of coding sequence and all of the 5' noncoding region
of TUB2. It was mutagenized in vitro and cut with Kpn 1 before transformation
to direct integration to the chromosomal TUB2 locus. Integration results in a transformant bearing an intact and a dis-
rupted TUB2 gene flanking the URA3-selectable marker. In the ex-
ample shown, the mutation (*) is located on the 3' side of the Kpn
I site in the plasmid and, thus, resides in the intact copy of TUB2 in
the transformant. Excision of the plasmid from this transformant
can result in either a wild-type or mutant tub2 strain. Solid bar
represents TUB2 sequences derived from plasmid; solid line
represents flanking plasmid sequences; open bar represents TUB2
sequences derived from chromosome; wavy line represents flank-
ing chromosomal sequences.

Mapping and Sequencing the tub2 Mutations

pRB428 was used for fine structure mapping of the tub2-401, tub2-402,
tub2-403, and tub2-404 alleles. pRB429 was used for mapping the tub2-405
allele. These plasmids contain unique Kpn I, Xho I, Bam HI, Hind III, and
Sal I sites that lie within the TUB2 gene. Digestions with pairs of these re-
striction enzymes generated the mapping plasmids illustrated in Fig. 2. The
cut DNAs were phenol extracted and ethanol precipitated before transforma-
tion of yeast.

The method for the recovery of chromosomal tub2 mutations on plasmids
has been described (Thomas et al., 1985). Yeast DNA was prepared by the
method of Holm et al. (1986).

DNA sequence analysis was performed as described by Sanger et al.
(1977). The 350-bp Xho I–Bam HI fragment of the tub2-401 and tub2-402
alleles and the 280-bp Bam HI–Sal I fragment of the tub2-403, tub2-404,
and tub2-405 alleles were subcloned into the M13 vectors M13 and M13
(Amersham Corp., Arlington Heights, IL). For each allele the entire restric-
tion fragment was sequenced on both strands.

Giemsas Staining of Yeast DNA

Cells were treated with Helly's fixative, immobilized on polylysine-coated
multiwell slides, stained with Giemsa, and viewed using bright-field micros-
copy (Adams and Pringle, 1984; Robinow, 1975).

Measurement of the DNA Content of Yeast Cells

DNA was stained with propidium iodide using the protocol of Hutter and
Eipel (1978). For each sample, the DNA content of 30,000 individual cells
was determined by flow cytometry using a Cytofluorograph System 50H
(Ortho Diagnostic Systems Inc., Westwood, MA).

Immunofluorescent Staining of Yeast Cells

Treatment of cells for immunofluorescence was essentially as described for
formaldehyde fixation by Kilmartin and Adams (1984) except that the cell
walls were removed by incubation at 30°C for 30 min with 25 μg/ml Zymolyase 60,000 in 1.2 M sorbitol, 0.1 M potassium phosphate (pH 7.5), and 25 mM 2-mercaptoethanol. Rat monoclonal anti-yeast-α-tubulin antibody, YOLI34, was a gift from J. Kilmartin (Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom). Rabbit polyclonal anti-yeast-α-tubulin antibody was a gift from F. Solomon (Massachusetts Institute of Technology, Cambridge, MA). Fluorescein-conjugated goat anti-rat IgG antiserum and fluorescein-conjugated goat anti-rabbit IgG antiserum were obtained from Cappel Laboratories (Malverne, PA). DNA was stained with 1 μg/ml 4',6-diamidino-2-phenylindole (DAPI) for 5 min at room temperature before mounting.

Cells were viewed and photographed using a Zeiss Standard microscope equipped with epifluorescent and Nomarski optics and a Zeiss Plan-Neofluor 63× N.A. 1.25 objective. Hypersensitized Kodak Technical Pan 2415 film (Lumicon, Livermore, CA) was used for photography; it was developed with Kodak D-19 developer (Eastman Kodak Co., Rochester, NY).

Assays for Nuclear Fusion

Haploid cells were grown in supplemented SD medium at 26°C to no more than 5 x 10⁶ cells/ml. 3 x 10⁶ cells of each parent strain were mixed in liquid and filtered onto a sterile 25-mm HA millipore filter of pore size 0.45 μm (Dutcher and Hartwell, 1983). The filter was transferred to a fully supplemented SD plate, preequilibrated at the appropriate temperature, with the cells facing up. After 4 h at 26°C or 18 h at 11°C, the mated cells were washed from the filter with water, sonicated lightly to separate cells, and spread on a supplemented SD plate at 26°C. Large-budded zygotes were microinjected to predetermined positions and incubated at 26°C for 1-2 h to allow completion of cell division. First zygotic buds were then microinjected to another position and allowed to grow into colonies at 26°C. The colonies were tested for all relevant markers including mating type.

In all experiments these colonies were either diploid or one of the parental haploid genotypes.

For immunofluorescence, cells were mated on filters at 11°C for 24 h, washed off the filters with 3.7% formaldehyde in 0.1 M potassium phosphate (pH 6.5), and prepared for immunofluorescence as described above.

Measurement of Invertase Activity

Cells were harvested by centrifugation, resuspended in 10 mM sodium azide, 10 mM potassium phosphate (pH 7.5), and kept on ice. External enzyme levels were measured using intact cells as described by Goldstein and Lampen (1975). Internal levels were measured in spheroplast lysates: cell walls were removed by incubation at 11°C for 1 h with 50 μg/ml Zymolyase 60,000 in 1.4 M sorbitol, 50 mM potassium phosphate (pH 7.5), and 25 mM 2-mercaptoethanol. Spheroplasts were pelleted and then lysed by addition of 1% Triton X-100. N-ethylmaleimide, 0.2 mM, was added to the enzyme assay to prevent interference by residual 2-mercaptoethanol (Novick and Schekman, 1979). To determine the total protein content of whole cells, we hydrolyzed them in 0.1 ml of 1 M potassium hydroxide at 100°C for 5 min and measured the protein in this hydrolysate by the method of Lowry et al. (1951).

Measurement of Chromosome Loss and Recombination

The assay for chromosome loss and recombination has been described by Wood (1982). Diploid strains, THI16-THI20, were grown in YEPD at 26°C. An aliquot was removed from each culture and the remainder was shifted to 11°C. After 12 and 24 h at 11°C, additional aliquots were removed from each culture. The cells in each aliquot were pelleted, washed, and resuspended in water, and sonicated lightly to separate cells. Appropriate volumes were plated on YEPD plates to measure the viable cells per ml and on SD plates containing uracil, methionine, threonine, and canavanine. After 7 d at 26°C (cells which have lost chromosomes grow slowly), the colonies were replica plated onto SD with uracil and canavanine and SD with uracil, methionine, threonine, and canavanine to determine the fraction of can⁸ colonies that are hom3. The ratio of can⁸ hom3 cells per total viable cells is a measure of the frequency of recombination and the ratio of can⁸ hom3 cells per total viable cells is a measure of the frequency of chromosome loss.

Measurement of Sporulation Efficiency

Sporulation of diploid strains (THI00, THI01, THI32, THI33, and THI34) was examined at the restrictive and permissive temperatures using the protocol of Simchen (1974). Presporulation and sporulation media were supplemented with uracil. Cells were incubated in sporulation medium for 2 h at 26°C before they were shifted to 11°C. This allowed most of the cells to complete their vegetative cycles at the permissive temperature. Sporulation was monitored by phase-contrast microscopy.

Results

Isolation of Cold-sensitive tub2 Mutants

Conditional-allelic alleles of TUB2 were produced by in vitro mutagenesis of the TUB2 gene and integration of the mutagenized gene into the yeast genome. Among 17,000 yeast transformants screened, five were shown to be cold-sensitive tub2 mutants by four criteria. (a) All five fail to complement tub2-104, a previously isolated cold-sensitive mutation in TUB2 (Thomas et al., 1985). TUB2/tub2 diploids grow in the cold, while tub2-104/tub2 diploids fail to grow in the cold. In addition, the new tub2 alleles fail to complement each other. (b) In crosses to a TUB2* strain, each of these mutations is tightly linked to the integrated plasmid sequences that are marked by the URA3 gene. In all tetrads, cold-sensitive spores are Ura+ and cold-resistant spores are Ura−. (c) When excision of the plasmid sequences is selected, both cold-sensitive and cold-resistant strains are produced. Excision may be considered as the reverse of the integration process, except that the site of recombination is not confined to the region near the Kpn I site. The mutation in a tub2 allele may be removed from the genome with the plasmid sequences or left behind depending on the site of recombination (see Fig. 1). (d) All of the mutations are complemented by the cloned TUB2 gene. Mutant haploids, transformed with a centromere-containing plasmid carrying the complete TUB2 gene, grow in the cold.

The five new cold-sensitive tub2 alleles are designated tub2-401 through tub2-405. The remainder of this study uses strains from which the plasmid sequences have been excised leaving the mutation in the chromosome (see Fig. 1). This is the ideal construction because it regenerates the intact yeast chromosome which is altered only by the change(s) comprising the mutation.

DNA Sequence Analysis

The nucleotide sequence changes of the mutant alleles were determined by mapping each mutation in vivo to a segment of the TUB2 gene and sequencing this segment of the cloned mutant gene. The mapping method has been previously described in detail (Shortle et al., 1984; Thomas et al., 1985). A mapping plasmid that contains the TUB2 gene was cut at two restriction sites within TUB2 and used to transform the cold-sensitive tub2 strains. As with conventional deletion mapping, the absence of wild-type recombinants between a chromosomal mutation and a specific plasmid deletion localizes the mutation within that deletion interval. The results, shown in Fig. 2, indicate that the tub2-401 and tub2-402 mutations lie between the Xho I and Bam HI sites in TUB2, the tub2-403 mutation lies between the Bam HI and Hind III sites, the tub2-404 mutation lies between the Hind III and Sal I sites, and the tub2-405 mutation lies between the Bam HI and Sal I sites.

The mutant tub2 genes were recovered from the yeast chromosome onto recombinant plasmids. For each tub2 allele, the entire region of the gene determined by mapping to contain the mutation was sequenced. The nucleotide changes
and the predicted amino acid changes comprising each mutation are shown in Fig. 3. Every base change in the five tub2 alleles is consistent with the misincorporation reaction used (see Materials and Methods). Most of the mutations involve more than one change which agrees with the requirement that the entire gapped region must be filled. The tub2-404 allele contains, in addition to two base substitutions, a deletion of nine nucleotides. This region of TUB2 contains an eight-nucleotide direct repeat (see Fig. 3) and the deletion was most likely generated by strand slippage of the DNA near the gap site.

The tub2-401 allele was generated in a reaction that omitted dATP and contains four base substitutions over a span of 38 nucleotides. Within this region are three A residues which are not altered. This type of incomplete base substitution with dATP omission was also seen by Shortle et al. (1982). These authors suggested that DNA polymerase must have incorporated an A residue either as dATP contaminating one of the other three dNTPs or as rATP which is present in the reaction as a cofactor for T4 DNA ligase.

Aside from the 3' end bias mentioned above (see Materials and Methods), the mutations are distributed throughout the TUB2 gene. Thus, there is no indication that mutations in a particular region of the TUB2 gene are more likely to produce a cold-sensitive phenotype.

Cold Sensitivity and Benomyl Sensitivity

Although all of the tub2 mutants were obtained by screening for failure to grow at 14°C, they differ in their degree of cold sensitivity. Growth of the tub2-401 mutant is inhibited at temperatures as high as 20°C, while growth of the tub2-402, tub2-404, and tub2-405 mutants is completely blocked only at 11°C. The tub2-403 mutant has an intermediate level of cold sensitivity, failing to grow at 16°C. None of the mutants are temperature sensitive: all grow well at 37°C.

Mutations in TUB2 were obtained previously by selecting cells that are resistant to the microtubule-destabilizing drug benomyl (Thomas et al., 1985). To determine whether the new tub2 mutants exhibit a uniform arrest phenotype, we shifted asynchronous cultures to the restrictive temperature (Fig. 4a). The nuclear DNA in these cells was stained with PI DNA-staining region in both the mother and bud cell bodies. In contrast, almost all of the large bud-arrested mutant cells have completed chromosome separation and contain a DNA-staining region near the gap site. Thus, there is no indication that mutations in a particular region of the TUB2 gene are more likely to produce a cold-sensitive phenotype.

Mitotic Cell Cycle Arrest

Conditional-lethal mutations that block a specific stage of the cell cycle arrest asynchronously growing cells with a uniform terminal morphology at the nonpermissive temperature (Hartwell et al., 1973). Cells carrying the benomyl-resistant cold-sensitive tub2 allele, tub2-104, exhibit such a uniform morphology after a shift to the restrictive temperature (Thomas et al., 1985). The same cell cycle arrest is observed for cells exposed to microtubule-destabilizing drugs (Pringle et al., 1986; Quinlan et al., 1980; Wood and Hartwell, 1982).

To determine whether the new tub2 mutants exhibit a uniform arrest phenotype, we shifted asynchronous cultures to 11°C for 24 h (two generations). We have included the tub2-104 mutant in this study. In all of the tub2 mutant cultures, large-budded cells accumulated at the nonpermissive temperature (Fig. 4a). The nuclear DNA in these cells was visualized by Giemsa staining. Most wild-type large-budded cells have completed chromosome separation and contain a DNA-staining region in both the mother and bud cell bodies. In contrast, almost all of the large bud–arrested mutant cells...
Figure 4. Cell division cycle arrest. Diploid cells homozygous for the indicated tub2 alleles (TH132 through TH138) were grown in SD containing uracil and lysine at 26°C, shifted to 11°C for 24 h, and stained with Giemsa. For each sample, 300 cells were counted. (a) The percentages of cells that were unbudded, small-budded, or large-budded are indicated. A large-budded cell possesses a bud whose diameter is at least three-fourths the diameter of the mother cell. All cultures contained 20–30% large-budded cells during growth at 26°C. (b) The percentages of large-budded cells that possessed a particular nuclear morphology are indicated. Four types of nuclear morphology were scored: an undivided nucleus in one cell body, an undivided nucleus in the bud neck, divided nuclei properly segregated into each cell body, and divided nuclei both located in one cell body.

Figure 5. DNA content of cells. Diploid cells homozygous for the indicated tub2 alleles (TH132-TH138) were grown in SD medium that contained uracil and lysine at 26°C and shifted to 11°C. (a, c, e, g, and i) Nomarski optics reveals cell morphology and DAPI fluorescence reveals cellular DNA. (b, d, f, h, and j) Immunofluorescence using α-tubulin-specific antibody reveals microtubules. Cells shown represent successive stages of the mitotic cell cycle. Bar, 10 μm.

Figure 6. Fluorescence staining of wild-type cells. Wild-type diploid cells (TH132) were grown in SD medium that contained uracil and lysine at 26°C and shifted to 11°C for 24 h. (a, c, e, g, and i) Nomarski optics reveals cell morphology and DAPI fluorescence reveals cellular DNA. (b, d, f, h, and j) Immunofluorescence using α-tubulin-specific antibody reveals microtubules. Cells shown represent successive stages of the mitotic cell cycle. Bar, 10 μm.

We used flow cytometry to measure the DNA contents of individual cells (Fig. 5). In wild-type cultures growing asynchronously at either 26 or 11°C, ~55% of the cells contain a G1 DNA content and 55% of the cells have completed DNA replication (contain a G2 DNA content). The tub2 mutant cultures grown at 26°C are similar to wild type: 20–30% of the cells contain a G1 DNA content and 50–60% of the cells contain a G2 DNA content. However, tub2 mutant cultures that have been shifted to 11°C for 18 h contain almost exclusively cells with a G2 DNA content indicating that these mutations do not block DNA replication. Cultures of tub2-104 or tub2-401 contain a single staining region indicating that chromosome separation has not occurred (Fig. 4 b).

Taken together, these results indicate that the tub2 alleles do not inhibit DNA replication but all block chromosome segregation and completion of the cell cycle.

Microtubule Assembly In Vivo

We have used indirect immunofluorescence with α-tubulin-specific antibody to visualize cellular microtubules in the tub2 mutants. Fig. 6 shows microtubule staining of wild-type cells at successive stages of the mitotic cell cycle. Our results are similar to those obtained by Kilmartin and Adams (1984) which are in good agreement with previous electron microscopic observations of yeast microtubules (Byers, 1981; Peterson and Ris, 1976). The distribution of microtubules in wild-type cells grown at 26 or 11°C or in tub2 mutant cells grown at 26°C are indistinguishable (not shown). However, after a shift to 11°C for 24 h, the patterns of microtubules in the large bud-arrested tub2 mutant cells are strikingly different and specific for each tub2 allele.
Figure 7. Fluorescence staining of tub2 mutant cells. Diploid cells homozygous for the indicated tub2 alleles (TH133–TH138) were grown in SD medium that contained uracil and lysine at 26°C and shifted to 11°C for 24 h. (a, c, e, g, i, and k) Nomarski optics reveals cell morphology and DAPI fluorescence reveals cellular DNA. (b, d, f, h, j, and l) Immunofluorescence using α-tubulin–specific antibody reveals microtubules. (a and b) tub2-104; (c and d) tub2-401; (e and f) tub2-402; (g and h) tub2-403; (i and j) tub2-404; (k and l) tub2-405. Bar, 10 μm.
Virtually no microtubules are observed in tub2-401 cells (Fig. 7, c and d). Approximately 90% of the cells have no staining. The other 10% contain one or two faint dots coincident with the nuclear staining that probably correspond to the spindle pole bodies. Microtubule fibers disappear in <1 h after shifting to 11°C but most cells retain the dots for several hours. This result could be due to loss of microtubules in the cold or to an alteration in the microtubules that blocks their binding site for the antibody. To examine this latter possibility, we used another antibody that recognizes specifically the COOH-terminal 12-amino acid peptide of yeast β-tubulin, a region of β-tubulin not altered by the tub2-401 mutation. This antibody also fails to detect any microtubule structures in this mutant (not shown), confirming that the tub2-401 mutant does not contain microtubules in the cold.

The tub2-403- (Fig. 7, g and h) and tub2-405- (Fig. 7, k and l) arrested cells both contain greatly diminished levels of microtubules. In tub2-403 cells, ~60% have no staining, 10% contain dots, and 30% contain very short faint fibers. In tub2-405 cells, ~10% have no staining, 20% contain dots, and 70% contain faint fibers. The fibers in tub2-405 cells are usually longer and brighter than those in tub2-403 cells. The dots and fibers are always located in the region of the cell that contains the nucleus and presumably represent nuclear or cytoplasmic microtubules extending from the spindle pole bodies.

Virtually all of the tub2-104- (Fig. 7, a and b) arrested cells contain brightly staining nuclear microtubules that appear similar to the short mitotic spindle found in wild-type cells (see Fig. 6 d). In ~75% of these cells, extremely short cytoplasmic microtubules can be observed extending from the ends of the spindle; no cytoplasmic microtubules are detected in the other 25% of the cells.

Most tub2-402- (Fig. 7, e and f) arrested cells (60–70%) contain long microtubules extending from one or two bright dots near the edge of the nuclear staining. While some of these microtubules could be nuclear, the majority clearly diverge from the nuclear staining region and are most likely cytoplasmic. None of these cells contain the brightly staining spindle structure that is found in wild-type cells. The other 30–40% of the cells contain only dots of staining.

The tub2-404- (Fig. 7, i and j) arrested cells contain both brightly staining spindle microtubules and prominent cytoplasmic microtubules. These microtubule array is similar to the arrays observed in wild-type cells before spindle elongation (see Fig. 6 d). However, the intensity of staining and the length of the cytoplasmic microtubules is often greater in the tub2-404 cells, indicating that excess microtubules are present. The intense staining at both spindle and cytoplasmic microtubules is found in 75% of the arrested cells; the other cells contain diminished staining and incomplete spindles.

Based on their degrees of microtubule assembly, the tub2 mutants represent several different phenotypic classes. The tub2-401 mutation appears to be a totally nonfunctional allele causing the loss of all detectable microtubules in the cold. This is the most extreme possible conditional-lethal mutation; however, it should be emphasized that this is not a null mutation in the sense of a deletion. The tub2-403 and tub2-405 mutations are also defective alleles that affect both nuclear and cytoplasmic microtubules; the tub2-403 mutation causes a more severe defect than the tub2-405 mutation. The tub2-104 and tub2-402 mutations affect specific classes of microtubules. The tub2-104 mutation affects mainly the presence of cytoplasmic microtubules while the tub2-402 mutation affects mainly the presence of the spindle microtubules. The tub2-404 mutation allows the production of both classes of microtubules but prevents spindle elongation.

Nuclear Migration during the Mitotic Cell Cycle

Shortly after the initiation of bud formation, the nucleus migrates to the bud neck (Pringle and Hartwell, 1981). This nuclear position is necessary to ensure that the subsequent nu-
clear division delivers one set of chromosomes to each daughter cell. The observation that cytoplasmic microtubules are attached to the nuclear envelope through the spindle pole body and precede the nucleus into the bud neck led to the suggestion that they play a role in nuclear migration (Adams and Pringle, 1984). This idea was substantiated by the observation that microtubule-destabilizing drugs inhibit nuclear migration in yeast (Pringle et al., 1986; Wood and Hartwell, 1982). Therefore we examined the effects of the tub2 mutations on proper nuclear migration.

Wild-type and tub2 mutant cells were shifted to 11°C for 24 h and stained with Giemsa. Nuclear migration was quantitated by measuring the position of the nucleus in individual cells (see Fig. 8 a). In wild-type cells with any visible bud, undivided nuclei tend to be close to the bud neck; 76% of the undivided nuclei were located near the bud neck (nuclear migration <0.2). As described above, tub2 mutants arrest as predominantly large-budded cells containing a single nucleus that has not elongated through the bud neck. The nuclear migration ratio was determined for these cells only and the results are shown in Fig. 8 b.

In cells carrying the extreme nonfunctional allele, tub2-401, nuclear migration to the bud neck is blocked; only 16% of the nuclei are located near the bud neck. In cells carrying the partially functional alleles, tub2-403 and tub2-405, most nuclear migration is blocked; 31 and 37%, respectively, of the nuclei are near the bud neck. The tub2-104 allele that affects primarily cytoplasmic microtubule formation also blocks nuclear migration; only 25% of the cells have nuclei near the bud neck. In contrast, the tub2-402 and tub2-404 alleles that do not inhibit cytoplasmic microtubule formation have very little effect on nuclear migration; 68 and 57%, respectively, of the nuclei in these cells are located near the bud neck.

These results show a correlation between the presence of cytoplasmic microtubules and the ability of cells to transport nuclei to the bud necks. Significantly, nuclear migration occurs in tub2-402 mutants even though most of these cells contain exclusively cytoplasmic microtubules. Thus, the tub2 mutants indicate that cytoplasmic microtubules, but not nuclear microtubules, are necessary for nuclear migration in yeast.

Nuclear Fusion during Conjugation

Diploid cells are formed from two haploids of opposite mating type by conjugation. Conjugation involves cytoplasmic and nuclear fusion and produces a zygote with a single diploid nucleus. Cytoplasmic microtubules appear to interconnect the spindle pole bodies of the two haploid nuclei before fusion and nuclear fusion is initiated at the spindle pole bodies (Byers, 1981; Byers and Goetsch, 1975). This arrangement of microtubule fibers during conjugation suggests that they play a role in nuclear fusion by moving the nuclei together. In support of this model, benomyl treatment (Dellgado and Conde, 1984) and a mutation that produces aberrant extranuclear microtubules (Rose and Fink, 1987) have been shown to reduce the frequency of nuclear fusion.

A genetic test for nuclear fusion is based on the observation by Conde and Fink (1976) that zygotes that fail in nuclear fusion transfer one of the parental haploid nuclei into the first zygotic bud. Thus, when nuclear fusion fails, the first zygotic bud produces a haploid rather than a diploid cell. To test the effect of the tub2 mutations on nuclear fusion, we analyzed the first zygotic buds produced by mating two tub2 mutants. The results of several crosses are shown in Table II. As expected, TUB2 * × TUB2 * crosses at 26°C and tub2 × tub2 mutant crosses at 26°C produced mainly diploid first zygotic buds. However, when a tub2 × tub2 mutant cross was performed at 11°C with tub2-104, tub2-401, tub2-403, or tub2-405 alleles, all of which affect cytoplasmic microtubules to some extent, most of the first zygotic buds were haploids. However, the tub2-402 and tub2-404 alleles, which allow the formation of cytoplasmic microtubules, again behaved differently. Crosses with these alleles at 11°C produced 60 and 83% diploids, respectively. As was the case with nuclear migration during the mitotic cell cycle, these results indicate that cytoplasmic microtubules are necessary for nuclear fusion during conjugation. Two additional crosses, TUB2 * × tub2-104 and TUB2 * × tub2-401, produced almost all diploids at 11°C. This indicates that only one parent cell needs to produce wild-type β-tubulin to allow proper nuclear fusion.

These genetic results were confirmed by fluorescent microscopic observation of zygotes formed at 11°C. Fig. 9 shows nuclear and microtubule staining of wild-type zygotes at various stages after mating. A newly formed zygote contains nuclei that are located near each other and appear to be connected by microtubules (Fig. 9, a and b). Shortly after nuclear fusion, the zygote enters the mitotic cycle. A bud develops at the cell surface and a short mitotic spindle forms across the diploid nucleus (Fig. 9, c and d). Spindle elongation segregates the chromosomes between the zygote and bud (Fig. 9, e and f).

Fig. 9 also shows staining of large-budded zygotes formed by mating tub2 mutant haploids at 11°C. Because the tub2 mutations block nuclear division, nuclei are not observed in the first zygotic buds. Zygotes formed by mating tub2-104, tub2-401, tub2-403, or tub2-405 haploids contain two separate nuclear staining regions (Fig. 9, g, i, m, and q) indicating that movement of the nuclei toward each other has not occurred. In contrast, the tub2-404 zygotes contain a single nuclear staining region (Fig. 9, o) indicating that nuclear movement and fusion have occurred. Zygotes formed by mating tub2-402 haploids are of both types: approximately half contain two nuclear staining regions and half contain a single nuclear staining region (Fig. 9 k). The microtubule
Invertase Secretion

During the budded portion of the cell cycle, surface growth and protein secretion are primarily restricted to the bud (Field and Schekman, 1980; Tkacz and Lampen, 1972, 1973) and are mediated by membrane-bounded organelles (Novick and Schekman, 1979). Cytoplasmic microtubules extend into the bud and lie close to these secretory vesicles (Byers, 1981; Byers and Goetsch, 1975; Kilmartin and Adams, 1984). This observation led to the suggestion that microtubules play a role in bud formation by transporting secretory vesicles into the growing bud. Clearly, the arrest of the tub2 mutants as large-budded cells indicates that microtubules are not required for cell surface growth.

To address more directly the involvement of microtubules in the transport of secretory vesicles, we tested the effects of...

Figure 9. Fluorescence staining of zygotes. Zygotes were formed by mating wild-type and tub2 mutant cells at 11°C as described in Materials and Methods. (a, c, e, g, i, k, m, o, and q) Nomarski optics reveals cell morphology and DAPI fluorescence reveals cellular DNA. (b, d, f, h, j, l, n, p, and r) Immunofluorescence using α-tubulin-specific antibody reveals microtubules. (a-f) Wild-type cells (DBY947 × DBY1034) at successive stages of conjugation; (g and h) tub2-404 (DBY1384 × DBY1385); (i and j) tub2-40l (DBY2022 × DBY2023); (k and l) tub2-402 (DBY2303 × DBY2304); (m and n) tub2-403 (DBY2305 × DBY2306); (o and p) tub2-404 (DBY2307 × DBY2308); (q and r) tub2-405 (DBY2309 × DBY2310). Bar, 10 μm.

Figure 10. Secretion of invertase. Haploid cells were grown in supplemented S medium containing 5% glucose at 26°C. At t = 0 cells were pelleted, resuspended in supplemented S medium containing 0.1% glucose, and incubated at 11°C. At 2-h intervals, aliquots were removed and assayed for external and internal pools of invertase. (a) External levels. (b) Internal levels. (□) Wild-type (DBY1034); (▲) tub2-104 (DBY1384); (●) tub2-40l (DBY2023); (△) tub2-403 (DBY2305).

tub2 mutations on the secretion of a specific periplasmic protein. Invertase is the product of the SUC2 gene (Carlson and Botstein, 1982). This gene encodes two transcripts, a constitutively synthesized transcript whose product remains in the cytoplasm and a hexose-repressed transcript whose product is secreted into the periplasm. Secretion of invertase was followed in wild-type cells and three of the tub2 mutants: tub2-104, tub2-401, and tub2-403. Cultures were grown at 26°C in repressing medium and then the cells were shifted into derepressing medium at 11°C to observe the ability of cells to secrete newly synthesized invertase in the cold. The external pool of enzyme in the wild-type culture began to rise 2 h after the shift, continued to increase over the next 6 h, and then leveled off (Fig. 10 a). The secretion of invertase in tub2 mutant cultures followed the same kinetics except that the external pool leveled off at ~50% of the wild-type amount. This difference could be due to either a partial secretion defect or a decrease in the total amount of invertase synthesized in the mutants. These two possibilities were distinguished by measuring the levels of invertase inside the cells. If the mutants synthesized wild-type levels of invertase but secreted only half, the remainder would accumulate inside the cells. Many temperature-sensitive secretion mutants accumulate large pools of intracellular invertase (Novick et al., 1980) and it is unlikely that a tub2 mutation would cause invertase to be unstable in the cell. There was no accumulation of enzyme inside the cells in any of the tub2 cultures during the course of the experiment (Fig. 10 b) indicating that secretion of invertase is not blocked in these mutants.

Chromosome Loss and Mitotic Recombination

We have shown by cytological studies that chromosome segregation is blocked by the tub2 mutations. A functional assay of chromosome segregation efficiency is based on the measurement of chromosome loss. The fidelity of mitotic chromosome segregation in *S. cerevisiae* is high: nondisjunction events occur at a frequency per chromosome of <1 in 10⁶ cell divisions (Hartwell and Smith, 1985). Impairment of tubulin activity by drug treatment dramatically increases this rate (Wood, 1982). Therefore, our expectation was that the tub2 mutants would exhibit an increase in chromosome loss after incubation at the restrictive temperature.

The frequency of loss of chromosome V was tested using the method described by Wood (1982). Chromosome loss in tub2-104/tub2-104 diploids grown at 26°C was not significantly greater than in wild-type diploids (Table III). However, after incubation at 11°C for 24 h, chromosome loss in these diploids was ~40-fold greater than the wild-type rate. In tub2-401/tub2-401 diploids grown at 26°C, chromosome loss was ~50 times the wild-type rate. When these cells were shifted to 11°C for 24 h, the frequency of chromosome loss increased to ~200 times the wild-type rate. While both of the tub2 mutants tested showed increased rates of chromosome loss, the extent of the defect is clearly allele specific.

Hartwell and Smith (1985) observed that most of the cdc mutants that are defective in the nuclear division pathway of the cell cycle show increased rates of chromosome loss. However, many of these mutations elevate the frequency of mitotic recombination as well. For this class of mutants, the elevated chromosome loss frequencies are probably not due to nondisjunction but to defects in DNA metabolism. A defect in DNA metabolism may leave lesions in the DNA that promote increases in both mitotic recombination and chromosome loss. As expected for mutations that affect only chromosome segregation, the tub2 alleles did not have any significant effect on mitotic recombination (Table III).

Meiosis and Sporulation

Yeast is induced to undergo sporulation by starvation for a variety of nutrients. Sporulation in yeast involves a classical meiosis, including reductional and equational chromosome segregations (Esposito and Klapfholz, 1981). These chromosome segregation events are assumed to be mediated by microtubules. Typically, the sporulating parent is diploid, giving rise to haploid genomes that are packaged into four individual spore walls to produce a tetrad.

We tested whether the product of the *TUB2* gene is required for meiosis by determining the effect of two of the tub2 mutations on sporulation. With wild-type diploids, 75% of the cells produced tetrads at 26°C and 55% produced tetrads at 11°C. Maximum sporulation was achieved in 2 d at 26°C and 7 d at 11°C. Homozygous tub2-104 and tub2-401 diploids sporulated well at 26°C (59 and 68% tetrads, respectively) but failed to sporulate at 11°C. Among 500 cells examined for each mutant, no tetrads, triads, or dyads were observed. As in mitosis, the tub2 mutations are recessive in meiosis: *TUB2*/+ and TUB2*/tub2-401* diploids sporulated with the same efficiency as *TUB2*/+/*TUB2*/ diploids at both 26 and 11°C.

Discussion

In this study we describe the construction and isolation of five cold-sensitive mutations in *TUB2*, the sole gene that encodes β-tubulin in *Saccharomyces cerevisiae*. Phenotypic analysis of these and one previously obtained cold-sensitive tub2 mutation has shown that mutations in TUB2 can have diverse effects on microtubule formation and function in vivo. We have used these mutations to determine the roles of nuclear and cytoplasmic microtubules in yeast. As predicted from cytological (Adams and Pringle, 1984; Byers, 1981; Byers and Goetsch, 1975) and drug studies (Delgado and Conde, 1984; Pringle et al., 1986; Quinlan et al., 1980; Wood and Hartwell, 1982), nuclear microtubules are required for chromosome segregation, and cytoplasmic microtubules are required for nuclear migration during the mitotic cell cycle and nuclear fusion during conjugation. Contrary to previous suggestions (Byers, 1981; Byers and Goetsch, 1975), cytoplasmic microtubules do not appear to play a role in the transport of secretory vesicles to the bud.

Table III. Chromosome Loss and Recombination

<table>
<thead>
<tr>
<th>Frequency (×10⁻⁶)</th>
<th>Recombination</th>
<th>Chromosome loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 h</td>
<td>12 h</td>
</tr>
<tr>
<td>TUB2/TUB2</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>tub2-104/tub2-104</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>tub2-401/tub2-401</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>TUB2/tub2-104</td>
<td>16</td>
<td>nd</td>
</tr>
<tr>
<td>TUB2/tub2-401</td>
<td>17</td>
<td>nd</td>
</tr>
</tbody>
</table>

* Time cells were incubated at 11°C.
All of the tub2 Mutations Block Chromosome Segregation

When strains carrying a cold-sensitive tub2 mutation are shifted to the nonpermissive temperature, they arrest mitotic growth at a specific stage of the cell cycle and accumulate as large-budded cells containing a single undivided nucleus. The cells arrest after DNA replication indicating that the block in nuclear division is due to a failure of chromosome segregation. As expected for mutations that interfere with chromosome segregation, both of the tub2 alleles tested increased the rates of chromosome loss after incubation at the restrictive temperature.

While the cell cycle arrest is similar for all six of the tub2 mutants, the microtubule structures observed in these arrested cells vary depending on the mutant allele. This suggests that the specific cause of the nuclear division block is not the same for all of the mutants. Very few, if any, of the tub2-401-, tub2-402-, tub2-403-, and tub2-405-arrested cells contain nuclear microtubules indicating that the defect in chromosome segregation in these mutants is due to a failure to construct a mitotic spindle. On the other hand, the tub2-404-arrested cells do contain spindle microtubules. The defect in this mutant is not simply an inability to assemble microtubules, but may involve either a specific problem in spindle formation that cannot be detected by immunofluorescence or a defect in spindle function once it is assembled.

We are unable to determine whether cytoplasmic microtubule function is needed for nuclear division. The tub2-104-arrested cells contain nuclear but lack most cytoplasmic microtubules. In this case the nuclear division block could be due to a defect in spindle function or be related to a lack of cytoplasmic microtubule function. Cytoplasmic microtubules could play a direct role in nuclear division or be required to perform a function that is a prerequisite for nuclear division. We have shown that cytoplasmic microtubules are necessary for migration of the nucleus to the bud neck, but it is unlikely that nuclear division per se depends on this process: the cdc24 mutant undergoes several rounds of nuclear division in the absence of bud formation, indicating that at least under some circumstances nuclear division can occur without migration into a bud neck (Pringle and Hartwell, 1981). If cytoplasmic microtubules do not play a role in nuclear division, we would expect mutants defective only in cytoplasmic microtubule function to undergo nuclear division in the absence of nuclear migration. This event would produce a binucleate mother cell. While we have not isolated a tub2 mutant with this exact phenotype, a small percentage of the tub2-104-arrested cells do contain two nuclear staining regions in one of the cell bodies (see Fig. 4).

Cytoplasmic Microtubules Are Essential for Nuclear Migration during the Mitotic Cell Cycle

Nuclear migration to the bud neck during the mitotic cell cycle is inhibited in the four mutants that lack cytoplasmic microtubules, but it is not significantly inhibited in the two mutants that possess cytoplasmic microtubules. In particular, nuclear migration occurs in tub2-402 mutants even though most of these cells contain exclusively cytoplasmic microtubules. These results indicate that cytoplasmic microtubules, but not nuclear microtubules, are necessary for nuclear migration in yeast.

The fact that the cytoplasmic microtubules are attached to the nuclear envelope at the spindle pole body suggests that these microtubules exert a pulling force on the nucleus to bring it into the bud neck. This model is consistent with the observations that the cytoplasmic microtubules always precede the nucleus into the bud neck and the spindle pole body is situated adjacent to the site of bud emergence (Adams and Pringle, 1984; Byers and Goetsch, 1975; Kilmartin and Adams, 1984). This type of movement would be distinct from the movement of organelles along the surface of microtubules but may involve a mechanism similar to that used to draw chromosomes toward the spindle poles. Although many of the cdc mutations block nuclear division (Pringle and Hartwell, 1981), tub2-104, tub2-401, tub2-403, and tub2-405 are the only cdc mutations known to block nuclear migration.

There is evidence that microtubules are involved in nuclear migration in other fungal systems as well. A cold-sensitive mutation in one of the α-tubulin genes of the fission yeast Schizosaccharomyces pombe causes aberrant nuclear localization at the nonpermissive temperature (Toda et al., 1983, 1984; Umesono et al., 1983). In Aspergillus nidulans, nuclear migration during hyphal growth is inhibited by benomyl and by cold-sensitive mutations in the gene encoding β-tubulin (Oakley and Morris, 1980, 1981).

Cytoplasmic Microtubules Are Essential for Nuclear Migration and Fusion during Conjugation

Nuclear migration and fusion during conjugation are blocked in the four mutants that lack cytoplasmic microtubules, but are permitted to different degrees by the two mutants that possess cytoplasmic microtubules. Significantly, nuclear fusion occurs in tub2-402 mutants even though most of these cells contain exclusively cytoplasmic microtubules. The results suggest that cytoplasmic microtubules are necessary for nuclear movement during conjugation as well as during mitotic growth. The idea that cytoplasmic microtubules draw nuclei together is consistent with the observations that these microtubules appear to interconnect the spindle pole bodies of the two haploid nuclei, that the movement of nuclei is led by their spindle pole bodies, and that nuclear fusion is initiated at the spindle pole bodies (Byers, 1981; Byers and Goetsch, 1975).

Two criteria were used to assess the effects of the tub2 mutations on nuclear migration and nuclear fusion during conjugation. A genetic test measured nuclear fusion directly by determining the ploidy of first zygotic buds. This test required that large-budded zygotes formed in the cold be shifted back to permissive temperature to complete nuclear division and cytokinesis. Four of the tub2 mutations block nuclear fusion indicating that the shift back to permissive temperature did not allow nuclear fusion even though the tub2 defect is reversed and mitosis proceeds. It appears, then, that nuclear fusion must occur soon after cytoplasmic fusion or it will not occur at all. The results of the genetic test were confirmed by microscopic examination of nuclei in large bud-arrested zygotes. The four mutations that produced a defect in nuclear fusion also prevented the movement of haploid nuclei toward each other. The other two mutations produced zygotes with a single nuclear staining region indicating that nuclear migration and fusion occurred.

Nuclear fusion occurs efficiently in matings between a tub2-104 or tub2-401 mutant and a wild-type strain in the
cold. By definition, then, these are “bilateral” karyogamy-defective mutations because both parental strains must be mutant to observe a karyogamy defect. These differ from the “unilateral” kar1 mutation: a karyogamy defect is observed when only one of the parental strains is kar1 (Conde and Fink, 1976). It has been shown that the KARI gene product must act before cell fusion (Dutcher and Hartwell, 1983). The bilateral nature of these tub2 mutations could be explained if microtubule function in the mutant cell is not required before cell fusion. After cell fusion, the wild-type cytoplasm may provide tubulin that can be assembled into microtubules at the mutant cell’s spindle pole body. An alternative explanation is that tubulin function in both cells is redundant. It may be sufficient that microtubules originate from only one of the two nuclear envelopes during mating. Our results do not distinguish these possibilities.

Cytoplasmic Microtubules Do Not Play a Role in Secretory Vesicle Transport

Movement of vesicles and organelles along the length of microtubules has been demonstrated in vitro and in vivo (Allen et al., 1982; Vale et al., 1985). The observation that cytoplasmic microtubules extend into the cell bud (Byers, 1981; Byers and Goetsch, 1975; Kilmartin and Adams, 1984) has led to the suggestion that these microtubules are responsible for the transport of secretory vesicles in yeast. However, the tub2 mutations demonstrate that cytoplasmic microtubules do not play an essential role in the transport of secretory vesicles. None of the tub2 mutations inhibit bud formation. Even cells carrying the nonfunctional allele, tub2-401, arrest as large-budded cells. In addition, inversive secretion is not affected by these mutations. We have not ruled out the possibility that cytoplasmic microtubules play a role in distributing other organelles to the bud before cell division. However, DAPI staining of the large bud-arrested tub2 mutant cells indicates that all of the buds contain mitochondrial DNA. It, therefore, appears unlikely that mitochondrial transport requires microtubules.

We thank John Kilmartin and Frank Solomon for providing antibodies; John Pringle for communicating results before publication; and Frank Solomon, Alison Adams, and David Drubin for comments on the manuscript. This work was supported by a postdoctoral fellowship from the Helen Hay Whitney Foundation to Tim C. Huffaker and by grants from National Institutes of Health (GM18973 and GM21253) to David Botstein.

Received for publication 13 November 1987, and in revised form 2 February 1988.

References

