Organization of Desmosomal Plaque Proteins in Cells Growing at Low Calcium Concentrations

Rainer Duden and Werner W. Franke

Division of Membrane Biology and Biochemistry, Institute of Cell and Tumor Biology, German Cancer Research Center, D-6900 Heidelberg, Federal Republic of Germany

Abstract. Desmosomes are not formed in epithelial cell cultures growing in media with low (<0.1 mM) concentrations of Ca²⁺ (LCM) but appear rapidly upon shift to media of normal calcium concentrations (NCM). Previous authors using immunolocalization of desmoplakin, a marker protein for the desmosomal plaque, in LCM-grown cells have interpreted positively stained, dense, cytoplasmic aggregates on intermediate filaments (IF) bundles as preformed plaque units which upon NCM shift would move to the plasma membrane and contribute to desmosome formation. Studying various cell cultures, including primary mouse keratinocytes and human A-431 cells, we show that most, probably all, desmoplakin-positive aggregates in LCM-grown cells are associated with membranous structures, mostly vesicles, and also contain other desmosomal markers, including desmoglein, a transmembrane glycoprotein. We interpret such vesicles as residual desmosome-derived domains endocytosed upon cell dissociation. Only keratinocytes grown for long times (2–4 wk) in LCM are practically free from such vesicles. In addition, we demonstrate that certain cells such as A-431 cells, when passaged in LCM and in the absence of stable junctions, are able to continually assemble “half-desmosomes” on the plasma membrane which in turn can be endocytosed as plaque-bearing vesicles. We also show that in LCM the synthesis of several desmosomal proteins (desmoplakins I and II, plakoglobin, desmoglein, “band 6 protein”) continues and that most of the plaque protein, desmoplakin, is diffusely spread over the cytoplasm, apparently in a soluble monodisperse form of ~9S. From our results we propose that the plaque proteins occur in small, discrete, diffusible entities in the cytoplasm, in concentrations that are relatively high in LCM and low in NCM, from which they assemble directly, i.e., without intermediate precursor aggregates on IFs in the cytoplasm, on certain plasma membrane domains in a Ca²⁺ dependent process.

I NTERACTION and communication between vertebrate cells, notably the formation and maintenance of tissues, is largely dependent on semi-stable linkage structures, the intercellular junctions. Among the major categories of junctions (gap junctions, adhering junctions, tight junctions) the junctions of the adhaerens category are of particular interest in our understanding of cell and tissue morphology, as they are involved not only in cell–cell connections but also in the cell type-specific spatial organization of the filamentous cytoskeleton. Cytoplasmic plaques of adhering junctions of the desmosomal kind provide anchorage sites for the attachment of intermediate filaments (IFs) whereas the non–desmosomal junctions (zonulae and fasciae adhaerentes, puncta adhaerentia) are usually associated with actin microfilaments (22, 61). Primarily due to the availability of procedures for isolating sufficient quantities of desmosomes from certain stratified epithelia (13, 17, 19, 25, 59), special progress has been made in the identification of major desmosomal constituent proteins, including obligatory ones such as the plaque proteins, desmoplakins I (Mr ~ 250,000; 18, 46), and plakoglobin (Mr ~ 83,000; 10, 26; this protein also occurs in plaques of nondesmosomal adhering junctions; 11), and the transmembrane glycoprotein, desmoglein (Mr ~ 165,000; “band 3” polypeptide of isolated desmosomes from bovine muzzle epidermis; 6, 17, 24, 25, 43, 52, 53). Further minor and/or cell type-specific desmosome-associated components have been described (e.g., 62, 63). This compositional complexity suggests that the formation of the structure called desmosome requires the coordination of the synthesis and assembly of various transmembrane proteins and proteins exclusive to the

© The Rockefeller University Press, 0021-9525/88/09/1049/15 $2.00
The Journal of Cell Biology, Volume 107, September 1988 1049–1063
cytoplasmic compartment as well as of cell-type specific constituents.

Earlier electron microscopic studies have described the advent of desmosome-like structures during early embryogenesis (31, 40) and in cell cultures (e.g., 12; for reviews see references 9 and 39). It has also been observed, in certain tissues and in cell cultures depleted of calcium or treated with trypsin, that asymmetric plasma membrane domains equivalent to “half-desmosomes” are formed and rapidly internalized in the form of special plaque-bearing vesicles, usually with IF bundles still attached, resulting in intracellular accumulations of desmosome-derived vesicles (17, 36, 37, 42, 49; for reviews see also 9, 39). These and other studies have indicated that desmosomes, like other intercellular junctions, are dependent on calcium, at least in cell culture systems. Specifically, various epithelial cell cultures, when grown in media with low calcium concentrations (LCM; \(< 0.1 \text{mM}\)), do not form desmosomes but do so within a relatively short period of time upon shift to normal calcium concentrations (NCM; cf. 27–29, 32).

Using mouse keratinocyte cultures grown in LCM and immunolocalization techniques Jones and Goldman (32) have described reactions of desmoplakin antibodies with small spheroideal structures ("dots") abundantly present in the cytoplasm in association with IF bundles, and concluded that desmoplakin exists, in LCM-grown cells, in preformed aggregate structures on IF bundles which then, upon shift to normal calcium levels, move “as a package” to the cell surface, thus forming the typical desmosome–IF bundle architecture. As this interpretation was at variance with several observations made by us and other authors (e.g. 3, 41) we studied the state of desmosomal proteins in various cell cultures growing in LCM, including primary cultures of mouse epidermal keratinocytes. We report here that for several days, desmoplakin, together with other desmosomal proteins, can be identified in plaques attached to intracytoplasmic vesicles. In addition, we describe that “half-desmosomes” with typical plaques and IFs attached can be formed in LCM cultures of certain cell types. We also show that in such LCM cultures a considerable portion of the desmosomal plaque proteins occurs in distinct soluble forms which are rapidly recruited for the de novo formation of desmosomes, apparently in loco, i.e., at the plasma membrane, upon shift to NCM.

Materials and Methods

Cell Culture

Primary cultures of epidermal keratinocytes were prepared from newborn NMRI-mouse skin by the trypsin-flotation procedure (65). The cells were plated in plastic dishes (Falcon, Oxnard, CA) in “normal Ca++ medium” (NCM; DME containing 1.8 mM Ca++, supplemented with 10% FCS) at a density of \(\sim 1 \times 10^6 \) cells per dish (5 cm diameter). After 6 h, the medium was removed, and cultures were washed once with Ca++-, Mg2+-free PBS to remove unattached cells. The cells were fed with "low Ca++ medium" (LCM; 3 vol DME and 1 vol HamF 12, without Ca++; from Biochrom, Berlin-West), supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin, and 10% Chelex-treated FCS (Chelex treatment was performed according to reference 5, with Chelex 100-resin; Bio-Rad Laborato-

Preparation of Cytoskeletons and Cell Fractionation Procedures

For the fractionation of cell components into pelletable (“insoluble”) and
nonpelletable ("soluble") proteins the procedures used in our laboratory for the detection of small amounts of soluble forms of cytoskeletal proteins were applied with minor modifications (11, 33-35, 60). For all steps cold buffer solutions (4°C) were used. Confluent cell cultures were rinsed in buffer of "near-physiological" ionic strength and pH (140 mM NaCl, 2.7 mM KCl, 50 mM Tris-EDTA, 6.5 mM NaH2PO4, 1.5 mM KH2PO4, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM e-aminocaproic acid, pH 7.4). Then 1 ml of the same buffer containing 0.05% saponin was added per 5-cm dish monolayer culture to lyse the cells. After 10-min incubation, cells were gently scraped off with a rubber policeman and homogenized by 20 strokes with a Dounce glass homogenizer. Low speed pellets obtained after centrifugation of the homogenate for 10 min at 4,000 x g were saved and supernatant fractions were centrifuged further for 2 h at 100,000 x g. The resulting high speed pellet, the 100,000 x g supernatant and the low speed pellet were processed for gel electrophoresis and immunoblotting.

Sucrose Gradient Centrifugation

Proteins of the 100,000 x g supernatant fraction described above were concentrated by vacuum dialysis against near-physiological salt buffer to a final volume of 500 µl (33, 34, 60). These samples were then loaded on top of a 11 ml of a 5-30% (wt/vol) continuous sucrose gradient and centrifuged in a Beckman SW40 rotor at 35,000 rpm for 18 h at 5°C. Fractions of 400 µl were collected with an Isco gradient fractionator model 640 (Isco, Lincoln, NE), and the proteins were precipitated with 10% trichloroacetic acid (TCA), washed twice with acetone, air-dried, and analyzed for the presence of desmosomal proteins by SDS-PAGE and immunoblotting (for details see reference 14).

Immunoprecipitation of Desmosomal Proteins

The protocol used followed the principles described by Bloise and Melzter (2), with some modifications as described by Penn et al. (52, 53). Cells growing in 5-cm Falcon culture dishes were labeled for 3 h with 400 µCi [35S]methionine (800 Ci/mmol Amersham International, Amersham, UK) in DME without methionine and Ca2+, supplemented with either 10% FCS or 10% FCS, after a 30-min preincubation in the same medium. The Ca2+-concentration of the labeling medium was adjusted to either 0.07 mM (for LCM) or 1.8 mM (for NCM). After labeling, the cells were washed once each with medium and PBS, homogenized in 250 µl of sample buffer (60 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol) and boiled for 10 min. The homogenates were centrifuged for 10 min at 10,000 x g. Aliquots of the supernatant were diluted to 0.1% SDS with dilution buffer (1% Nonidet NP-40, 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA) and reacted with either 2 µl of antisera or 5 µl ascites fluid (in the case of monoclonal antibodies) for 2 h at 4°C. 50 µl (5 ng) of a suspension of protein A-Sepharose in "immunoprecipitation buffer" (0.1% SDS, 0.5% deoxycholate, 1% Nonidet NP-40, 150 mM NaCl, 2 mM EDTA, 50 mM Tris-HCl, pH 7.5) were added, and this was incubated for another 3 h. In the case of antibody DG3.10, which does not bind protein A, protein A-Sepharose was complexed with rabbit anti-mouse Ig (Conco, Wiesbaden, FRG) for 2 h before addition. Negative controls were performed using protein A-Sepharose alone or with other antibodies. Finally, immunoprecipitates obtained were washed three times with immunoprecipitation buffer and once with PBS, and the final pellets were boiled in SDS-PAGE sample buffer containing 5% β-mercaptoethanol.

Gel Electrophoresis and Immunoblotting

SDS-PAGE on 7.5% or 10% polyacrylamide slab gels and two-dimensional gel electrophoresis were as described (46). Labeled polypeptides of immunoprecipitates were visualized by autoradiography of the dried gels after treatment with 10Enhance (NEN, Dreieich, FRG) for 1 h. For immunoblotting, gel electrophoretically separated polypeptides were transferred to nitrocellulose and reacted with antibodies as described (10). Affinity purified, [125I]-labeled goat antibodies to mouse IgG and IgM (105 cpm/ml) or [125I]-labeled protein A (105 cpm/ml; Amersham) were used as a secondary Ig-binding reagent. Reactivity was visualized by autoradiography.

For immunoblot analysis of proteins of pellets and supernatant fractions described above, the separated polypeptides were transferred to nitrocellulose, stained with Ponceau S (Sigma, Taufkirchen, FRG), and the nitrocellulose paper sheets were cut horizontally into three strips containing the respective molecular weight regions of desmoplakin, desmoglein or plakoglobin. These strips were incubated separately with primary antibodies directed against the respective antigens, to analyze for the presence of these three antigens in the same experiment, followed by IgG detection and autoradiography.

Results

Light and Electron Microscopy

Cells Showing Dispersed Desmosomal Proteins in LCM.

Primary mouse keratinocytes grown in LCM do not possess desmosomes, as demonstrated by electron (28, 29) and immunofluorescence microscopy (Fig. 1 a; cf. 3, 32, 42, 43, 64). To study the appearance of desmosomal plaque proteins during desmosome formation we processed mouse keratino
cyte cultures, taken at different time points after plating in LCM, for immunofluorescence and electron microscopy. We found, by immunofluorescence microscopy using anti-desmoplakin and anti-plakoglobin, that cells grown in LCM for short (e.g. 2–3 d) and long (2–4 wk) periods of time displayed very different distributions of the plaque proteins. After 4 wk of culture in LCM, immunofluorescence staining obtained with both antibodies to desmoplakin (Fig. 1 a) and to plakoglobin (not shown) was of moderate intensity and diffusely spread throughout the cytoplasm. After shift to NCM, the immunostaining was still rather homogeneously disperse over the cytoplasm at 5 min, as shown for both desmoplakin (Fig. 1 b) and plakoglobin (Fig. 1 c), but within the subsequent 15–30 min, punctate staining arrays along cell boundaries as typical for desmosomes (17, 18) were seen with antibodies to both desmoplakin (Fig. 1 d) and plakoglobin (Fig. 1 e). In addition, however, some diffuse cytoplasmic fluorescence was still noticed. During this time we did not observe an intermediate state with accumulations of cytoplasmic dots. The clearance of most of this diffuse fluorescence from the cell interior progressed with increasing time of culture in NCM, and was inconspicuously low at 21 h after shift to NCM (Fig. 1 f) when practically all immunostaining of desmoplakin appeared at the cell periphery in desmosomal patterns (Fig. 1 f). This indicates that in undisturbed NCM cell cultures the steady state proportion of soluble desmoplakin is rather low, compared with LCM concentrations. With plakoglobin antibodies, the residual level of diffuse cytoplasmic immunofluorescence was somewhat higher, corresponding to observations in tissues and the known occurrence of sizable soluble pools of this protein (cf. 11, 33).

By contrast, cells grown only for 48 h in LCM showed a different picture in that both plaque proteins, desmoplakin (Fig. 2 a) and plakoglobin (not shown), were concentrated in brightly fluorescent cytoplasmic dots which tended to be enriched in the juxtanuclear region. By double label immunofluorescence microscopy, many of these spots appeared to be located at cytokeratin IF bundles (arrowheads in Fig. 2, a and b). In similar double-label experiments, sites of colocalization of desmoplakin and plakoglobin were demonstrated although, as expected (11), sites positive only for plakoglobin were also encountered (data not shown; for details see reference 14). This punctate distribution was very similar to that reported by previous authors for the same (27, 32) and other (e.g. 41, 64) cell cultures grown in LCM.

However, similarly abundant cytoplasmic dots of staining with antibodies to desmosomal plaque proteins, often showing perinuclear accumulations, had also been noted previ-
Immunofluorescence microscopy of primary mouse keratinocytes kept for 4 wk in LCM, after reaction with anti-desmoplakin (a, b, d, and f) and anti-plakoglobin (c and e). LCM-grown cells (a) and cells at 5 min (b and c), 30 min (d and e) and 21 h (f) after shift to NCM are shown. Note the diffuse cytoplasmic fluorescence for desmoplakin in unshifted cells (a). 30 min after a shift to NCM, the desmosomal staining at cell boundaries is prominent for both desmoplakin (d) and plakoglobin (e) but some diffuse cytoplasmic fluorescence is still notable (cell boundary staining in e shows both desmosomes and other adhering junctions; cf. reference 13). With prolonged exposure to NCM diffuse cytoplasmic fluorescence for desmoplakin is further reduced (f). Bars, 25 μm.

Figure 1. Immunofluorescence microscopy of primary mouse keratinocytes kept for 4 wk in LCM, after reaction with anti-desmoplakin (a, b, d, and f) and anti-plakoglobin (c and e). LCM-grown cells (a) and cells at 5 min (b and c), 30 min (d and e) and 21 h (f) after shift to NCM are shown. Note the diffuse cytoplasmic fluorescence for desmoplakin in unshifted cells (a). 30 min after a shift to NCM, the desmosomal staining at cell boundaries is prominent for both desmoplakin (d) and plakoglobin (e) but some diffuse cytoplasmic fluorescence is still notable (cell boundary staining in e shows both desmosomes and other adhering junctions; cf. reference 13). With prolonged exposure to NCM diffuse cytoplasmic fluorescence for desmoplakin is further reduced (f). Bars, 25 μm.
Figure 2. Double-label immunofluorescence of primary mouse keratinocytes, two days after plating in LCM, as seen with guinea pig antibodies to desmoplakin (a) and mouse antibody to cytokeratin (lu-5; b). Note the frequency of desmoplakin-positive "dots" deep in the cytoplasm, often in association with cytokeratin IFs (e.g., at arrowheads), and in juxtanuclear accumulations. High contrast print (a) is shown to emphasize the dots on the account of reduced diffuse desmoplakin fluorescence which is seen in the original photograph. Bars, 25 μm.

sites, the positivity for the plaque protein was slightly displaced from the reactive site of the membrane marker, indicating that the distribution of the two antigens often is very similar but does not precisely overlap. The frequent colocalization of transmembrane and plaque-specific proteins suggested that most, perhaps all, of the cytoplasmic dots represent complex structures comprising a membrane and a plaque attached to cytokeratin IF bundles.

Here we have presented the results obtained with murine keratinocytes in some detail, as this was the cell system in which the original observations of Jones and Goldman (32) had been made. However, results with human, bovine (MDBK) and canine (MDCK) epithelial cell lines were essentially identical (examples are seen in references 14 and 42).

In ultrathin sections through the cytoplasm of primary mouse keratinocytes grown for 2 d in LCM, we found numerous vesicles of various sizes, with attached "caps" of electron-dense cytoplasmic plaques, which often appeared to be enriched in the vicinity of the nuclear envelope (Fig. 4 a). Massive fleeces of bundles ("tonofibrils"; T in Fig. 4, a–d) were attached to the plaques of these vesicles (some are shown in greater detail in Fig. 4, b–d). The sizes and the thicknesses of these plaques were variable, and individual vesicles with two distinct plaque caps were also occasionally seen (e.g., Fig. 4 d). Similar observations were made with MDBK, MDCK, and BMGE cells (not shown; for cells grown in NCM, see references 17 and 18).

To correlate the dots observed by immunofluorescence microscopy (Figs. 2 a and 3, a–c) with the vesicles seen by electron microscopy, we lysed the cells with saponin in the same way as used for the light microscopic immunolocalization (see Fig. 3 a), followed by immunoelectron microscopy using anti-desmoplakin (Fig. 4, e–f) or anti-desmoglein (Fig. 4 g). Immunogold label could be seen in association with clusters of densely stained material most of which could be positively identified as caps of cytoplasmic plaques associated with vesicles (Fig. 4, e–g), either directly in cross-sections or in grazing or serial sections.

Cells Showing Assembly of Desmosomal Proteins in LCM. To our surprise we noted that in certain cell lines, when grown in LCM (0.04 mM Ca++) desmosomal proteins were not completely dispersed but that considerable amounts of desmoplakin, plakoglobin, and desmoglein ap-
Figure 3. Immunofluorescence microscopic comparison of the localization of desmoglein (a and b) and desmoplakin (c) in primary mouse keratinocytes 2 d after plating in LCM. Cells were gently lysed with 0.01% saponin in PBS (a) or fixed with methanol and acetone (b and c) and reacted with murine anti–desmoglein (a; DG3.20) alone or, in a double-label experiment (b and c), in combination with guinea pig antibodies to desmoplakin (c). Note the numerous desmoglein-positive dots (a and b), indicative of the presence of desmosome-derived vesicles and the frequent localization of desmoglein (b) and desmoplakin (c) in the same dots, depending on the focal plane (some are denoted by arrowheads). Bars, 25 µm.
Figure 4. Electron (a–d) and immunoelectron (e–g) microscopy of ultrathin sections through primary mouse keratinocytes, 2 d after plating in LCM. Cells in (a–d), conventionally fixed, show the ultrastructure of IF-attached vesicles in the cytoplasm ([a] survey of perinuclear region; [N] nucleus; [V] vesicles with tonofibrils, [T]: [M] mitochondrion). In certain situations (some are denoted by arrows) dense plaques are resolved. (b–d) Details of vesicles and their attached plaques (thin arrows) and IF bundles (tonofibrils, T). The large arrow in (b) points to a microtubule parallel to an IF bundle. (e–g) Immunogold (5 nm) label in cells gently lysed with 0.01% saponin in PBS, reacted with guinea pig antibodies to desmoplakin (e and f) and monoclonal antibody DG3.10 to desmoglein (g). Note that the vesicles with electron-dense plaques are heavily decorated with the desmoplakin antibodies (e and f) as well as, more weakly in this experiment, with anti-desmoglein (arrows in g). Bars, 0.2 μm.
A-431 cells grown in LCM for several months and serially passaged using trypsin-EDTA buffer always contained numerous dots positively immunostained for desmoplakin, desmoglein, and plakoglobin, and many of these dots seemed to be aligned on cytokeratin IF bundles (Fig. 5, a and b). Again, double-label immunofluorescence microscopy showed most of the dots positive for both the transmembrane glycoprotein marker, desmoglein, and the plaque proteins, desmoplakin and plakoglobin (not shown; for details see 14).

When examined by electron microscopy, these cells always contained a high number of intracellular vesicles with plaques and IF bundles attached (Fig. 5 c). In addition, they showed variously sized plasma membrane domains equivalent to "half-desmosomes", with dense plaques and IFs attached (Fig. 5, d–g), occasionally even showing the periodical small surface projections resembling those revealed in the desmosomal midline material (arrow in Fig. 5 d; cf. 9, 19, 61). Such half-desmosomal structures were not only seen in regions where cells approached each other (Fig. 5 d) and at the ventral side but also on the upper surfaces of cells (Fig. 5, e–g). They occurred on exposed ("free") cell surface regions (Fig. 5, e–g) as well as in invaginations that were in continuity with surface membrane caveolae (Fig. 5 h). Occasionally, "accessory plaque" structures (Fig. 5 g), similar to those previously described in certain bovine cell cultures kept in NCM (9, 57), were also noted.

Immunoelectron microscopy, notably double-label experiments, of LCM-grown A-431 cells identified both, cytoplasmic vesicles (Fig. 6 a) and half-desmosome equivalents (Fig. 6 b), as positive for all three markers, i.e., desmoplakin, plakoglobin, and desmoglein. Vesicles with plaques positive for desmosomal markers included some "multivesicular bodies" (Fig. 6 a), which might indicate the occurrence of lysosomal degradation of at least some desmosomal structures. Extended cell surface regions in which several relatively thin inner plaques were covered by a common thicker but looser, IF-interwoven plaque with positive desmoplakin label were also observed (Fig. 6 c) and might represent fused half-desmosomes (for fused desmosomes see, e.g., 9).

Upon shift to NCM, A-431 cells also formed desmosomes, and this process was accompanied by a gradual reduction of a moderate cytoplasmic background desmoplakin immunoreactivity (data not shown).

Biochemical Studies

Biosynthesis of Desmosomal Proteins in LCM. To examine whether the major desmosomal proteins studied were continually synthesized under LCM conditions we metabolically labeled murine keratinocytes grown for two weeks in LCM with [35S]methionine and immunoprecipitated, from total cell lysates, desmoplakin (Fig. 7 a, lane 1, and b), desmoglein (Fig. 7 a, lanes 2 and 3) and plakoglobin (Fig. 7 a, lane 5). These results showed that all three proteins were synthesized in LCM cultures. This was also found in bovine (MDBK) and human (A-431) cell cultures (see also below), confirming the results of Penn et al. (52) for desmoplakin and desmoglein. The LCM-grown mouse keratinocytes synthesized both desmoplakins I and II (Fig. 7 a, lane 1, and b) as well as the basic "band 6 polypeptide" (Fig. 7 a, lane 6), reflecting their derivation from a stratified epithelium. Identification of the same polypeptides metabolically labeled with [35S]methionine after the shift to NCM is shown in Fig. 7 a, lanes 8–14.

Distribution and State of Desmosomal Plaque Proteins in LCM. The major desmosomal proteins characterized so far, including plaque and membrane proteins, are known for their insolubility in buffers of physiological ionic strength and pH and are resistant to the action of non-denaturing detergents. They are also relatively resistant to extraction treatments with buffers of very low and high ionic strengths as well as very low and high pH values (pH 2.3–9.0; 13, 17, 19, 25, 59). Only for plakoglobin, a significant proportion has been recovered in a soluble, apparently dimeric form of ~7S from supernatant fractions of various epithelial and non-epithelial cells (11, 33–35). Remarkably, in cell fractionation studies of the distribution of desmoplakin in structure-bound (pelletable) and supernatant (soluble) fractions from mouse keratinocytes grown for 2 or 3 wk in LCM we found most of it (>90%) in a soluble form (Fig. 8 a, b and b'). Unexpectedly, however, the relative amount of soluble plakoglobin, which is between 20 and 30% of total plakoglobin in tissues and NCM-grown cultures of various sources, including keratinocytes (data not shown; cf. 33–35), did not considerably increase in LCM (Fig. 8, a and c).

Examination of the physical state of the LCM-soluble desmoplakin by sucrose gradient centrifugation (Fig. 8, d and e) revealed a monodisperse distribution with a peak fraction sedimenting faster than rabbit IgG and slower than catalase, corresponding to ~9S. This indicates that the soluble desmoplakin predominant in LCM-grown keratinocytes exists in a distinct molecular form, either as a monomer or as a complex (dimer or heterotypic).

When we examined the existence of a pool of soluble desmoplakin in LCM-treated murine keratinocytes in other cells such as in bovine MDBK (data not shown; cf. 14) and human A-431 (Fig. 9) cells, we observed essentially the same. For example, the result of a typical fractionation experiment in...
A-431 cells is shown in Fig. 9, a–d. While most of the desmoplakin was consistently recovered in the supernatant fraction (70–90% of the total desmoplakin I; Fig. 9 b) desmoglein was distributed over all fractions, apparently due to its partial solubilization with saponin (Fig. 9 c), and the percentage of soluble plakoglobin (Fig. 9 d) was again similar (i.e. ∼30%) to that found in NCM-grown cells of different kinds. In the interpretations of the different LCM behavior of plakoglobin, in comparison with desmoplakin, it should be kept in mind that plakoglobin but not desmoplakin also exists in other, i.e., nondesmosomal plaque structures (cf. 11, 34, 35; for different behavior of nondesmosomal adhering junctions during Ca\(^{2+}\) depletion and shift to NCM see references 36, 41, 42, 47).

Discussion

Under LCM conditions preventing the formation of desmosomes, cell cultures continue to synthesize all major desmosomal components, those exclusive to the cytoplasmic plaque as well as transmembrane glycoproteins (this study and 52; see, however, 41). Ben Ze'ev's (1) report of a de-
increased synthesis of desmoplakin in MDBK cell cultures in which cell contacts had been split with 12-0-tetradecanoylphorbol-13-acetate (TPA) is not relevant in this respect as his analysis was restricted to cytoskeletal fractions and soluble proteins were excluded. Clearly, the present study and that of Penn et al. (52) shows that the formation of desmosomes or other stable cell-cell contacts is not required for the maintenance of synthesis of desmosomal proteins, although intercellular contacts may result in modulations of the specific rates of synthesis and turnover of some desmosomal components, especially desmoglein (see Fig. 7c).

Figure 7. Synthesis of desmosomal proteins in primary mouse keratinocytes grown for 2 wk in LCM. Cells of the same primary culture were labeled in LCM (lanes 1–7) or 6 h after shift to NCM (lanes 8–14) with [35S]methionine, and desmosomal proteins were immunoprecipitated from total cell lysates, using the following antibodies: (Lanes 1 and 8) Anti-desmoplakin; (lanes 2 and 9) monoclonal antibody to desmoglein (DG3.10); (lanes 3 and 10) guinea pig antibodies to desmoglein; (lanes 4 and 11) negative controls (irrelevant guinea pig antiserum); (lanes 5 and 12) monoclonal antibody PG5.1 to plakoglobin; (lanes 6 and 13) guinea pig antiserum reactive with several desmosomal proteins, including desmoplakins, plakoglobin, and “band 6 polypeptide”; (lanes 7 and 14) negative controls (protein A-Sepharose alone). Dots in lanes 1 and 8 denote, from top to bottom, the positions of desmoplakin I and II, plakoglobin and “band 6 polypeptide” of bovine snout epidermal desmosomes. The open circle indicates the position of desmoglein. The bracket in the lower part of the gel denotes cytoskeletal complexes not denatured during electrophoresis in the first dimension. (A) Actin.

Figure 8. Fractionation and characterization of soluble and pelletable forms of desmosomal plaque proteins in LCM-grown primary mouse keratinocytes. (a–c) Primary mouse keratinocytes grown for 2 wk in LCM were homogenized in near-physiological salt buffer and the lysate fractionated as described in Materials and Methods. (a) Coomassie Blue-stained gel. (Lane 1) Molecular mass reference proteins (Dots denote, from top to bottom: 220,000; 116,000; 92,000; 68,000; 45,000). Lanes 2 and 3 contain the low and high speed pellets of the homogenate, respectively. (Lane 4) Blank. (Lane 5) 100,000 g supernatant. (b, b’, and c) Autoradiographs showing immunoblot reactions corresponding to lanes 1–5. Horizontal strips from the same nitrocellulose filter paper sheet were incubated with different antibodies. (b and b’) antibodies to desmoplakin (b’ shows a longer exposure of b), (c) plakoglobin antibody. Note that the vast majority of desmoplakin is found in the 100,000 g supernatant (lane 5) whereas only minor portions, with some enrichment of a component corresponding to desmoplakin II, are recovered in the pellet fractions (2’ and 3’). In (b and b’) the dots denote the positions of desmoplakins I and II, the arrowhead points to cross-linked desmoplakin not cleaved under the SDS–PAGE conditions used. Note that plakoglobin (dot in c) is recovered, at nearly equal proportions, in all fractions (arrowhead in c denotes proteolytic breakdown product of plakoglobin; cf. reference 45). (d and e) Characterization of soluble desmoplakin recovered in the 100,000 g supernatant fraction by centrifugation in a 5–30% (wt/vol) sucrose gradient and analysis of the fractions by SDS–PAGE and immunoblotting. (d) Coomassie Blue-stained gel. (Lane D) Proteins of a crude desmosomal fraction from bovine snout epidermis (dots denote desmoplakin I and II). (Lane M) Molecular mass reference proteins (Dots denote, from top to bottom: 220,000; 116,000; 92,000; 68,000). Fraction numbers (only even numbers are indicated) are given at the top margin. (e) Immunoblot with anti–desmoplakin of a gel with identical loading to that shown in (d). Note that the peak fraction of desmoplakin (no. 8) sediments between rabbit IgG and catalase with an estimated sedimentation value of about 9S. The relative positions of marker proteins are indicated: (B) BSA (4.3S); (Ig) rabbit IgG (70S); (C) catalase (11.15S); (T) thyroglobulin (16.5S).
Our results show that in LCM, most—in murine keratinocytes perhaps all—desmoplakin exists in a monodisperse, soluble form distributed over the cytoplasm. They also indicate that, at least in murine keratinocytes, new desmosomes emerge rapidly, i.e., in an interval between 5–20 min upon shift to NCM, directly at the cell surface, i.e., without detectable intermediate aggregate forms of desmoplakin on IF bundles deep in the cytoplasm, as it has been proposed by Goldman and colleagues (27, 32).

When we compare our immunofluorescence and immunoelectron microscopic results with those of Jones and Goldman (32) we suspect that many, perhaps all of their "desmoplakin aggregates" on cytoplasmic, particularly perinuclear IF bundles are vesicle-associated and that many, probably all, of them are endocytosed residues of desmosomes split during dissociation of the tissue (cf. 36, 37, 49). We are aware, however, that our results do not exclude the possibility that some of these vesicles may be derived from newly formed (unstable) desmosomes or from half-desmosomes of the kind found in A-431 cells. The vesicular association of the desmoplakin-containing dense plaques, with IFs attached, may easily be overlooked in individual ultrathin sections. However, as we show in the present study, the vesicle membrane is readily demonstrable in graining and serial sections (cf. 36) as well as with markers of integral membrane proteins such as desmoglein. We also show that long periods of culturing in LCM are required to clear the cytoplasm completely from such desmosome-derived vesicles formed as the result of trypsinization and/or Ca$^{2+}$ depletion by chelation or by exposure to LCM. Obviously, 4 d of LCM culture are not sufficient to deplete keratinocytes from such desmosomal plaque-bearing vesicles (for related observations in MDBK and MDCK cells see also references 41 and 42). Therefore, in studies of the junction formation the longevity of such internalized domains should not be underestimated. Of course, the data presently available still leave the possibility that some of the desmoplakin-positive dots might indeed be aggregates of plaque material without a vesicle, or that some plaque-bearing vesicles may contribute to the formation of desmosomes by exocytosis, although we see no evidence for this process.

Several reasons may have contributed to the discrepant results of previous authors describing desmoplakin immunostaining in the cytoplasm of LCM-grown cells who have reported only weak, diffuse reaction in human keratinocytes (64) or no disperse but distinct "dotty" reaction in murine keratinocytes (32) or in MDBK and MDCK cells (41). For example, losses of soluble desmoplakin during immunolocalization preparations involving partial cell lysis, repeated washes, and prolonged incubations in buffers (cf. 38), may be responsible for an artificial reduction of the fluorescence of soluble proteins. Some of the differences could also be due to the different periods of time after LCM shift in the specific experiment. In addition, there seems to be a widespread tendency to adjust the illumination conditions to the detection of strong signals, in these cases punctate arrays, and to consider weak diffuse immunostaining as unspecific background noise.

Interpretations of morphological studies of the state of junctional components in LCM and of the formation of desmosomes upon shift to NCM are obviously even more complicated by our finding that, even in LCM, certain cells such as human A-431 cells are able to assemble desmosome-type plaques on desmoglein-containing membrane domains, resulting in the formation of half-desmosome equivalent structures on plasma membrane regions, which then may become endocytosed and end up as cytoplasmic vesicles. The mere existence of this phenomenon, which may be much more common than hitherto thought (see also references 44, 57, 58), shows that both the clustering of desmosomal membrane components (cf. 8) and the assembly of plaque proteins are not necessarily coupled to the formation of stable cell junctions. Therefore, cultures such as LCM-grown A-431 cells may provide an experimental system to separate processes of cell–cell junction formation from those involved in the assembly of proteins characteristic of the desmosomal complex. Similar small asymmetric desmosomal structures have also been described as possible intermediates of desmosome formation in studies of cell cultures growing in NCM (12) and during LCM–NCM shift (28), as well as in early embryogenesis (cf. 31) and certain adult tissues (for review see reference 9). Hence, it may be possible that such half-desmosomal complexes at the cell surface are recruited, upon shift to NCM, for the formation of complete desmosomes.

We interpret the recovery of most desmoplakin in supernatant fractions from LCM-grown cells lysed in buffers of near-physiological ionic strength and pH primarily to represent protein existing in this form within the living cell, in agreement with the dispersed immunofluorescence. The finding of a large proportion of soluble desmoplakin, even exceeding the relative amounts of soluble plakoglobin (33), is astonishing as desmoplakin in its desmosome-bound form is notoriously insoluble. Small pools of distinct soluble forms have recently also been described for various cytoskeletal systems, IF proteins included (e.g., 21, 60). From preliminary analyses of the state of desmoplakin in NCM-grown cells (not shown; cf. 14) we conclude that a certain small proportion of desmoplakin also exists in a soluble cytoplasmic state in desmosome-connected cells although it is technically
difficult to quantitate this pool. At present we do not know whether this small soluble pool in NCM-grown cells represents a special kinetic fraction, e.g., newly synthesized molecules, or a specifically modified form of the protein. In view of the reports that the soluble forms of other cyto- or karyoskeletal proteins such as nuclear lamins, vimentin, and desmin might be regulated by specific phosphorylation events (e.g., 23, 30, 48), it is worth mentioning that desmoplakin are, to a high degree, phosphorylated (46) and that the carboxy terminal amino acid sequence of desmoplakin contains clusters of oligopeptide repeats rich in arginine, glycine, and serine which could provide good substrate sites for certain protein kinases (Franke, W. W., H. Mueller, and P. Cowin, unpublished data). Because of the possibility that Ca$^{2+}$ itself may be involved in the regulation of desmoplakin phosphorylation and/or dephosphorylation we mention the calmodulin-binding protein, desmocalmin, which is enriched at the desmosomal plaque of certain bovine epithelia (63). The obvious effect of Ca$^{2+}$ on the assembly of the desmosomal plaque proteins could either be direct, e.g., by Ca$^{2+}$ binding to desmosplakin, or indirect through another Ca$^{2+}$-binding component. Among the possible candidates for the latter function one has to mention both kinds of major desmosomal glycoproteins, desmoglein, and the two desmocollins, which have been reported to bind calcium ions (43, 62).

Although it is obvious that desmosomes, through their anchorage of IF bundles, provide a major principle of IF architectural organization our results with LCM-grown cells of diverse kinds such as mouse keratinocytes, human A-431 cells and bovine MDBK cells show that extended IF bundle arrays, approaching the cell cortex, can also be formed and maintained in the absence of desmosomes (see, e.g., Figs. 2b and 5a). This conclusion, which is in variance with other authors' concepts of a mutual dependence of IF formation and/or organization on the one hand and desmosome formation on the other (e.g., 3, 32, 64), is supported by the existence of certain cells such as rat kangaroo PtK2 which possess massive meshworks of cytokeratin IF bundles in the absence of true desmosomes and of desmocollins (15, 17, 18; for review see reference 9).

After completion of the present study (cf. 14) a bipartite publication has appeared (50, 51) in which the biochemical and morphological state of desmoplakin in LCM-grown MDCK cells has been studied. These authors' biochemical data are compatible with ours in that they show desmoplakin synthesis in LCM and a special pool of desmoplakin that is soluble in Triton X-100—high salt buffer (however, to a lesser degree, i.e., 65%) in a monodisperse form (reported, however, to sediment at 7.35S) although their use of an extraction medium of high ionic strength and relative high Mg$^{2+}$ concentration (3 mM) does not allow a direct comparison with our results. We also agree that the diffuse cytoplasmic desmoplakin immunostaining described for LCM cells by these authors reflects the soluble pool of desmplakin, as in our study. However, their interpretation of immunofluorescent cytoplasmic dots as precursor structures of desmosome formation, which is essentially identical with that of Jones and Goldman (32), is at variance with our results and those of others (42). Obviously Pasdar and Nelson (30, 51) dismiss the possibility of the existence of intracellular vesicles and half-desmosomes on the cell surface, i.e., states of desmosomal material that have been demonstrated in these and other cell cultures at the times used for LCM exposure in their study, i.e., from 12 h to 2.5 d. Moreover, in contrast to these authors we have no difficulties in detecting the preservation of numerous desmoplakin dots in the cytoplasm of cells fixed 9 h after LCM—NCM shift (e.g., Fig. 3D of reference 51).

Our observations suggest that the assembly of desmosomal plaques and desmosomes upon shift from LCM to NCM does not require the formation of large plaque precursor aggregates on IFs in the cytoplasm and the subsequent movement of these preformed large plaque—IF bundle complexes from the interior to distinct sites at the plasma membrane but occurs by the direct assembly of desmoplakin and plakoglobin from pools of diffusible proteins which is nucleated at certain membrane domains. The latter in turn, may be provided by the clustering of integral membrane components such as desmogelin. This membrane domain-nucleated assembly of proteins from a soluble pool would allow a fast, effective and site-targeted formation of desmosomes, independent from the amounts and patterns of distribution of IF bundles. Considering the speed with which IF protein assembly can generally occur we see no difficulty assuming that these nascent plaques are immediately active in nucleating IF protein assembly and IF bundle anchorage.

We thank Drs. Gerhard Fürstenberger, Michael Rogers (this Center), Pamela Cowin (New York University School of Medicine, New York, NY), Jürgen Kartenbeck and Hans-Peter Kapprell as well as Monika Schmelz (this institute) for helpful discussions; and Christine Grund, Birgit Hub, and Sabine Stumpf for expert technical assistance.

The work has been supported by the Deutsche Forschungsgemeinschaft.

Received for publication 12 April 1988, and in revised form 17 May 1988.

References

13. Drochmans, P., C. Freudentein, J.-C. Wason, L. Laurent, T. W. Kee-
nan, J. Stadler, R. Leloup, and W. W. Franke. 1978. Structure and bio-
chemical composition of desmosomes and tonofilaments isolated from

attachment of desmin filaments to desmosomal plaques in cardiac myo-

localization of the predominant nuclear protein of the amphibian oocyte

16. Larsen, W. J., and M. A. Singer. 1985. The history of life inter-

complex of surface cells in the developing Fundulus blastoderm. J. Cell

18. Matty, D. L., and D. R. Garrod. 1986. Calcium-induced desmosome for-

the desmosomes of cultured kidney epithelial cells by reduction in calcium

HeLa cell actin filaments, clathrin-coated membranes, and other cyto-
plasmic structures by tannic acid-glutaraldehyde-saponin fixation. J. Cell

The catalog of human cytokeratins: patterns of expression in normal and

characterization of desmoplakins I and II, the major polypeptides of the

817.

Madin-Darby canine kidney epithelial cells: temporal and spatial regula-
tion of desmoplakin organization and stabilization upon cell-cell contact.

Madin-Darby canine kidney epithelial cells: temporal and spatial regula-
tion of desmoplakin organization and stabilization upon cell-cell contact.

Structure and assembly: desmosome junctions: biosynthesis and regu-

assembly: desmosome junctions: biosynthesis, processing, and trans-
port of the major proteins and glycoprotein components in cultured epi-

pression of different keratin genes in cultured keratinocytes detected by
moxspecific antibodies to unique peptides of mouse epider-
mal keratins. Differentiation. 35:143–150.

ive transmembrane glycoprotein of M, 165,000 (desmoglein) in epider-
mal and non-epidermal desmosomes. I. Identification of the polypeptide
and desmosomes: experimental separation of lateral contacts induces en-
docytosis of desmosomal plaque material. EMBO (Eur. Mol. Biol.

32. Skerrow, C. J., and A. G. Matoltsy. 1974. Isolation of epidermal desmo-

33. Steinberg, M. S., G. J. Giudice, M. Shida, N. H. Patel, and O. W.
Steinberg, M. S., G. J. Giudice, M. Shida, N. H. Patel, and O. W.

