Cachectin/Tumor Necrosis Factor Exerts Endocrine, Paracrine, and Autocrine Control of Inflammatory Responses

Barbara Sherry and Anthony Cerami

Laboratory of Medical Biochemistry, The Rockefeller University, New York 10021

Parasitic, bacterial, and viral infections and neoplastic disease profoundly affect host metabolism, disrupting normal homeostatic mechanisms both locally and systemically. A large body of research has documented that many of the observed biological responses to invasive stimuli are mediated by host-secreted cytokines, in particular, the secretory products of activated macrophages. One such cytokine, cachectin/tumor necrosis factor (TNF), has emerged as a particularly important mediator of inflammatory responses. Among its pleiotropic effects, cachectin/TNF has been shown to play a major endocrine role in the pathogenesis of gram-negative endotoxic shock (14, 118) and to induce catabolic responses which could contribute to the profound wasting (cachexia) associated with many chronic diseases (24, 83, 104, 121). It has been implicated in a variety of disease states including meningococcal septicemia (126), cerebral malaria (43), graft vs. host disease (93), and cancer cachexia (2, 8). Systemic exposure to this potent mediator might elicit the pathologic and catabolic derangements associated with such disease states.

Cachectin/TNF has also been shown to exert local, tissue-specific effects. Its wide range of bioactivities includes stimulation of collagenase activity and prostaglandin E2 production by synovial cells (33), stimulation of osteoclast activity and bone resorption (9), promotion of angiogenesis (41, 60), and stimulation of procoagulant and platelet-activating factor activity in endothelial tissue (19, 75). It has also been shown to stimulate proliferation of normal fibroblasts (40, 114, 125), and to induce the release of certain growth factors including interleukin 1 (IL-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), β2-interferon, and platelet-derived growth factor (46, 55, 58, 73). The ability of cachectin/TNF to modulate such activities raises the intriguing possibility that it may play a paracrine role in the regulation of normal tissue homeostasis.

Cachectin/TNF also exerts profound effects on its own principal cell of origin, the macrophage. It serves as an autocrine immunomodulator, activating macrophages and enhancing their cytotoxic potential in vitro (92). It has been shown to be chemoattractant for monocytes, suggesting that its production at a site of injury might function both to recruit additional macrophages and to activate those macrophages already present.

The capacity of this potent cytokine to mediate the inflammatory response, to modulate the metabolic activities of diverse tissues, and to augment the function of other cytokines necessitates that its synthesis and release be closely controlled in vivo. Local production of cachectin/TNF at a site of injury might act to limit tissue damage and to promote wound healing and tissue remodeling. Moderate systemic levels of the hormone might confer a survival advantage with respect to bacterial or viral infection by providing a useful mobilization of energy reserves for the acute metabolic demands of inflammatory responses. In sharp contrast to these beneficial effects, prolonged exposure to even low levels of cachectin/TNF might contribute to the cachexia associated with many chronic disease states. Rapid uncontrolled production of cachectin/TNF, like that observed in response to endotoxemia or overwhelming gram-negative sepsis, could act systemically to induce the metabolic derangements of septic shock leading to cardiovascular collapse, acute organ failure, and death.

History of Cachectin/TNF

A number of parasitic diseases including trypanosomiasis and leishmaniasis can profoundly alter host physiology leading to severe wasting of the body (cachexia), and ultimately death of the host. Early studies by Rouzer and Cerami elucidated the underlying mechanisms involved in the cachexia associated with parasitic infection (98). Rabbits chronically infected with *Trypanosoma brucei brucei* were observed to become anorectic and to undergo a life-threatening wasting of >50% of their original lean body mass (98). Surprisingly, this wasting syndrome was observed in animals with only a low parasitic burden, and was associated with a marked lipemia (45, 98). The elevated plasma triglyceride levels observed in infected animals were shown to result from systemic suppression of lipoprotein lipase, an enzyme which catalyzes the hydrolysis of lipoprotein-derived triacylglycerol, providing free fatty acids to the circulation for storage or catabolism (79, 108). A similar suppression of lipoprotein lipase (LPL) activity has also been observed in mice after treatment with endotoxin (100). Such observations led to the hypothesis that suppression of LPL activity and the onset of a lipolytic state were regulated by host factor(s) which were released in response to either parasitic or bacterial challenge. Taking advantage of the availability of two genetically similar strains of mice, one sensitive to lipopolysaccharide (LPS) (C3H/HeN) and the other resistant to LPS (C3H/HeJ),
Kawakami and Cerami showed that although LPL activity remained normal in LPS-resistant mice in response to LPS administration, serum from LPS-treated LPS-sensitive mice, when transfused into LPS-resistant mice, acted to suppress LPL activity in those mice (53). Macrophages isolated from LPS-sensitive mice were shown to secrete a factor in response to LPS stimulation in vitro which acted to suppress LPL activity in LPS-resistant mice. RAW 264.7, a mouse macrophage cell line, secreted a factor with identical properties when stimulated by LPS (11). Using the suppression of LPL activity in 3T3-L1 adipocytes as a bioassay, the factor responsible for the down-regulation of LPL activity in vivo in endotoxin-treated mice and in vitro in cultured adipocytes was isolated from LPS-stimulated RAW 264.7 cell supernatants, purified to homogeneity, and sequenced (11). The purified protein, referred to as cachectin, had a subunit molecular mass of 17 kD as determined by SDS-PAGE analysis. Its NH2-terminal amino acid sequence revealed a strong homology to that of human TNF, a macrophage-derived polypeptide hormone previously shown to cause hemorrhagic necrosis of certain tumors (10). With the observation of this striking sequence homology between cachectin and TNF, two disparate lines of research converged: the study of underlying mechanisms of cachexia and the study of mechanisms of endotoxin-induced necrosis of tumors.

The historical background of TNF has been extensively reviewed elsewhere and will only be discussed briefly here (81, 82, 84). As early as the late 1800's, the physician William Coley had observed hemorrhagic necrosis of tumors in selected patients, those with concurrent bacterial infections of streptococcal or serrata origin. Subsequent work established that endotoxin, a component isolated from the cell walls of gram-negative bacteria, was extremely effective at inducing tumor necrosis (106). In 1985, Carswell et al. documented that a factor was present in the serum of BCG-primed, endotoxin-treated mice that was able to induce hemorrhagic necrosis in vivo in endotoxin-treated mice and in vitro in cultured adipocytes. RAW 264.7, a mouse macrophage cell line, secreted a factor with identical properties when stimulated by LPS (11). The suppression of LPL activity in 3T3-L1 adipocytes as a bioassay, the factor responsible for the down-regulation of LPL activity in vivo in endotoxin-treated mice and in vitro in cultured adipocytes was isolated from LPS-stimulated RAW 264.7 cell supernatants, purified to homogeneity, and sequenced (11).

Cachectin/TNF has a subunit molecular mass of 17 kD and a pl of 3.9 (11). The physical properties of this molecule are quite similar irrespective of the species from which it is isolated (11, 47, 99). The amino acid sequence of murine, human, and rabbit cachectin/TNF have now been determined from cDNA clones (39, 51, 64, 127). The mature mouse protein is 156 residues long (39). The mature human protein is comprised of 157 residues due to the insertion of a histidine residue at position 73 (90), while the mature rabbit protein is only 154 residues in length due to the absence of two NH2-terminal residues (52).

In all three mammalian species characterized to date, cachectin/TNF is synthesized as a prohormone, which is subsequently cleaved at several discrete sites during processing to yield the mature 17-kD hormone (20, 39, 90). The uncleaved precursor sequence is composed of 79 amino acids in the mouse, 76 in the human, and 80 in the rabbit (39, 51, 90). The amino acid sequences of both the propeptide and the mature protein are highly conserved between mouse and human, with 79% of the residues in the mature hormone, and 86% of the residues in the propeptide sequence being conserved between the two species (20, 39, 89). The fact that the propeptide sequence is so highly conserved suggests that it may possess a distinct biological function. It will be of interest to determine if the higher molecular mass prohormone species exhibit preferential tissue specificity or unique biological functions, or if the clipped propeptides themselves are active in eliciting any biological activities distinct from those of either the uncleaved prohormone or the mature protein. Isolated human monocytes do not secrete the same array of precursor species after stimulation by gamma interferon and LPS, but they do secrete three distinct proteins (20, 23, and 25 kD), all three of which are recognized by polyclonal antisera raised against human recombinant cachectin/TNF (85).

Neither rabbit nor human cachectin/TNF contain potential glycosylation sites (20, 52, 89). In contrast, the amino acid sequence of native murine cachectin/TNF contains one N-linked glycosylation site, an asparagine located at position 7 (39). Glycosylation of murine cachectin/TNF has been shown to include sialic acid and galactosamine (44). What role, if any, glycosylation plays in the mechanism of hormone action is still unclear as recombinant murine cachectin/TNF expressed in Escherichia coli, although not glycosylated, retains potent biological activity.

All three species of cachectin/TNF sequenced to date contain two cysteine residues per subunit located at positions 69 and 101 (4). Circular dichroism studies and secondary structure prediction indicate that these two cysteine residues form an intrachain disulfide bridge on the surface of the molecule (4, 32). Reduction of the disulfide bridge has no detectable effect on either the secondary or the tertiary structure of the molecule (32). Studies involving cachectin/TNF analogues with substitutions at the two cysteine residues indicate that the disulfide bridge is not required for maintenance of either conformation or bioactivity of the molecule (74).

Amino acid sequence analysis indicates that cachectin/TNF is moderately hydrophobic (64). Hydrophobicity plots of rabbit, mouse, and human cachectin/TNF indicate characteristic hydrophobic regions in both the prohormone and the mature protein, which are conserved among all three species (51, 64). Sequence data indicate that cachectin/TNF bears an unusual secretory protein signal sequence. It con-
tains a centrally located hydrophobic region, but it is signi-
ficantly longer than the typical signal sequence, and it con-
tains a variety of basic and acidic residues in the first 30
amino acids (78, 90). Recently, a transmembrane form of
cachectin/TNF has been characterized (56). This transmem-
brane form is rapidly inducible in response to LPS and
PMA, and has been shown to be cytotoxic for L929 cells. It
has been postulated that such a membrane-bound form of ca-
chectin/TNF might allow for localization of the action of this
potentially lethal hormone.

It has been reported that cachectin/TNF associates into di-
meric, trimeric, or pentameric forms depending on the spe-
cies from which it is isolated and the method of purification
(4, 11, 44, 64, 107). Recombinant human cachectin/TNF
has been shown to associate into noncovalently linked tri-
mers under conditions of both low and high salt (5). Recent
cross-linking studies indicate that the trimer form is ap-
proximately eightfold more active than the monomer with respect
to receptor binding (109).

Gene Expression and Regulation

The cachectin/TNF gene is located on chromosome 6 in man
(78, 122) and chromosome 17 in the mouse (72, 77). In both
species it appears to be linked to the major histocompatibility
complex (72, 112). The human cachectin/TNF gene has
been linked to HLA-B and HLA-C on the one side and to the
class III complement/steroid 21-hydroxylase gene cluster on
the other using pulsed-field gel electrophoresis (22). Up-
stream from the cachectin/TNF gene lies the gene which
codes for lymphotoxin, a related hormone which is produced
by mitogen-stimulated lymphocytes and is thought to play a
role in lymphocyte-mediated killing (31). Cachectin/TNF
and lymphotoxin, sometimes referred to as TNFα and
TNFβ, respectively, share a 28% sequence homology (78),
and have been shown to exhibit a number of shared biological
activities including cytotoxicity for L929 cells and the ability
to cause hemorrhagic necrosis of tumors in vivo (3). In addi-
tion, these two molecules share a common receptor. It has
been postulated that both genes were derived from a com-
mon ancestral gene by means of a tandem duplication event.
It is of interest to determine the cellular and tissue sources
of both molecules and to determine whether they are secreted
in response to the same or distinct triggering mechanisms.

The biosynthesis of cachectin/TNF appears to be tightly
regulated both at the transcriptional level and the posttrans-
criptional level. Nuclear transcription assays indicate that
cachectin/TNF gene transcription is enhanced some three-
fold in macrophages after stimulation by endotoxin (12).
Dexamethasone was found to suppress this endotoxin-
induced increase in cachectin/TNF mRNA content (12). The
transcription of the cachectin/TNF gene may also be under
the control of short-lived repressor molecules which nor-
mally serve to suppress its release (26). A comprehensive
study of the upstream region of the cachectin/TNF gene with
respect to promoter and enhancer sequences has not yet been
reported. Such a study would be revealing, especially with
regard to any homology that might exist between the regula-
tory sequences of cachectin/TNF and the regulatory se-
quencies of other mediators of the host inflammatory re-
sponse.

Posttranscriptional regulation of cachectin/TNF produc-
tion involves in part the presence of a highly conserved AU-
rich sequence located in the 3'-untranslated region of cachec-
tin/TNF mRNA (20). This sequence is observed not only in
cachectin/TNF mRNA, but also in the mRNA of a variety
of inflammatory mediators including lymphotoxin, interfer-
on, and interleukin-1α and β, and more recently in the
mRNA of certain oncogenes including c-myc and c-fos (20).
It is thought to be a critical regulatory element controlling
both the half-life of mRNA molecules and the efficiency with
which they are translated (10, 20). This is supported by the
fact that insertion of the AU-rich sequence of GM-CSF into
the 3'-untranslated region of the globin gene seems to confer
upon the resultant mRNA a significantly shortened half-life
in fibroblasts (105). Beutler et al. have now identified a
nuclease present in the lysates of certain mammalian tissues,
including macrophages, that selectivity degrades mRNA
molecules containing this 3'-untranslated AU sequence (15).
From model studies using synthetic mRNAs they conclude
that the degree of message instability is dependent upon the
number of copies of inserted AU sequence present in the tar-
get mRNA molecule (15). Tagging cachectin/TNF mRNA
for rapid degradation may be one mechanism of controlling
the effects of this potent hormone.

Cachectin/TNF Receptor

Most cell types including liver, kidney, muscle, and adipose

tissue have been shown to possess specific high affinity
receptors for cachectin/TNF (11), and the consequences
of ligand binding appear to be tissue specific. Cachectin/TNF
exhibits a high affinity for its receptor with a K_d estimated
at 109 M$^{-1}$ (7, 11, 48, 123). Polyclonal antiserum raised in
rabbits against peptides representing the NH$_2$ terminus of
human recombinant cachectin/TNF have been shown to
block both receptor binding and bioactivity (111). Studies in-
volving NH$_2$-terminal deletion mutants of recombinant hu-
man cachectin/TNF support the requirement for an intact
NH$_2$ terminus in receptor binding (21, 28). Depending on
cell type, several hundred to several thousand cell surface
receptors for cachectin/TNF are available. Preincubation of
cells with γ-interferon significantly enhances the number of
cell surface receptors for cachectin/TNF (3, 50). This phe-
nomenon may be a contributing factor to the synergy ob-
served between these two cytokines (25, 40, 129). The recep-
tor has not yet been isolated, and the nature of the signal
transduced upon binding remains to be determined. A num-
ber of cross-linking studies with radiolabeled cachectin/
TNF ligand have indicated the existence of at least two poly-
peptide chains of 75 and 90 kD that participate in binding
(57, 103, 110, 122), and one recent study suggests that as
many as four proteins may be involved (29). In vitro and in
vivo studies indicate that the biological effects of cachec-
tin/TNF are maximally expressed at receptor occupancies as
low as 5-10%. Binding of cachectin/TNF to its receptor is
followed by rapid internalization (7) and degradation (123).

Cachectin/TNF: Role in Endotoxic Shock

During lethal endotoxemia a complex pattern of responses
including metabolic acidosis, fever, hypotension, peripheral
tissue lactate release, elevation of plasma catecholamines,
disseminated intravascular coagulation, and renal, hepatic,
Cachectin/TNF: Role in Cachexia

One of the original motives for studying cachectin/TNF stemmed from the belief that it was involved in the severe wasting syndrome associated with chronic parasitic infection (1). Since then, the availability of recombinant material has allowed further characterization of the role cachectin/TNF plays in cachexia. Cachectin/TNF has been shown to induce a catabolic state in cultured 3T3-L1 adipocytes by suppressing key lipogenic enzymes including lipoprotein lipase, acetyl CoA carboxylase, and fatty acid synthetase (11, 87, 130); stimulating hormone sensitive lipase (86, 88); and increasing lactate production (86). Torti et al. demonstrated that cachectin/TNF inhibits adipocyte gene expression in TA 1 adipocytes inducing an in vitro "cachectic state" (116). Cachectin/TNF acts to prevent accumulation of lipid within differentiating preadipocytes and to cause mature lipid-laden adipocytes to lose stored triglycerides and to decrease adipose specific mRNAs by >90% (116). By analogy one can envision an in vivo situation in which cachectin/TNF, while functioning to provide a necessary mobilization of peripheral energy reserves for the acute metabolic demands of inflammatory responses, may at the same time be contributing to the cachexia associated with many chronic disease states.

Differentiated L6 myotubes respond to cachectin/TNF in a similar catabolic manner, with a marked stimulation of glycogenolysis characterized by a rapid increase in fructose 2,6-bisphosphate, depletion of glycogen reserves, and increased production of lactate (59). These rapid changes are followed more slowly by increased synthesis of hexose transporters and concomitant stimulation of glucose uptake. In vitro, isolated rat muscle fibers exhibit decreased membrane potential when incubated with low doses of cachectin/TNF (119). These decreases can be completely blocked by monoclonal antibody specific for this hormone. In vivo, dogs infused with cachectin/TNF exhibit reduced resting hindlimb muscle transmembrane potentials and increased lactate release (120). The latter study raises the possibility that the reduced resting skeletal muscle membrane polarization observed in many critically ill patients (30) may result at least in part from the action of this mediator. Recombinant cachectin/TNF does not appear to affect skeletal protein balance, suggesting the involvement of other mediators as well (71).

Recent in vivo studies using a rat model further support the role of cachectin/TNF in cachexia. Metabolic derangements typically associated with the cachexia of chronic disease (including anorexia, weight loss, depletion of whole body protein and lipid stores, and anemia) were reproduced in rats given twice-daily sublethal injections of recombinant human cachectin/TNF for 8 d (121). In addition, daily injections of anti-cachectin antibodies protected cachectin/TNF-treated animals against subsequent weight loss and anorexia (121). This study suggests that continual in vivo exposure to cachectin/TNF is sufficient to elicit many of the clinical manifestations of cachexia.

Additional support for the causative role of cachectin/TNF in cachexia was obtained in experiments in which the cachectin/TNF gene was inserted into a mammalian expression vector and transfected into Chinese hamster ovary cells (83). When these cells, which continuously secrete cachectin/TNF both in vitro and in vivo, were implanted into the hind
limbs of nude mice they produced measurable levels of cachectin/TNF in the circulation. Mice treated in this manner developed a wasting syndrome reminiscent of that seen in cancer cachexia. In sharp contrast, mice implanted with cells transfected with the expression vector alone continued to gain weight during the course of the experiment.

Mice bearing a transplantable methylcholanthrene-induced sarcoma become cachectic, exhibiting significant weight loss, hypoalbuminemia, and increased serum amyloid P concentrations (62). Tumors recovered from these animals have been shown to spontaneously secrete cachectin/TNF in vitro (62). Studies are in progress to document to what extent in vivo production of cachectin/TNF in this model might contribute to the ensuing cachectic state.

Tissue-specific Effects of Cachectin/TNF

Endothelial Cells

Cachectin/TNF dramatically alters the properties of endothelial cells. In vitro, cachectin/TNF has been shown both to increase tissue factor procoagulant activity and to suppress cofactor activity for the anticoagulant protein C pathway which normally acts to block clot formation within the vascular bed (75, 113). The expression of thrombomodulin is also down-regulated (113). These changes are dependent upon protein synthesis and favor procoagulant activity on the endothelial cell surface. In addition, cachectin/TNF stimulates endothelial cells to secrete IL-1 which has also been shown to enhance tissue factor–like procoagulant activity (16, 18, 61, 76). The effects of cachectin/TNF and IL-1 in this regard are additive (16, 17). The altered surface properties of endothelial cells observed in vitro in response to cachectin/TNF could play an important role in certain phenomena observed in vivo after infection and injury. In uncompromised tissue the endothelial cell surface acts to control the coagulation of circulating blood and to restrict the penetration of fluid, cells, and macromolecules into the tissues. One of the hallmarks of endotoxemia is disseminated intravascular coagulation with increased capillary permeability and leakage of macromolecules into the tissue space. This could result from the interaction of cachectin/TNF and the vascular endothelium. The fact that activated protein C anticoagulant activity has been shown to protect against coagulopathy and death in bacteremic shock in a baboon model (115) suggests that the ability of cachectin/TNF to suppress this activity is an important component of the toxicity observed after bacterial challenge.

Cachectin/TNF also stimulates the expression of endothelial cell surface antigens including ICAM 1 (95) and the surface antigens recognized by monoclonal antibodies H4/18 and 60.1, which function to modulate adherence of inflammatory leucocytes to cultured endothelial cells (42, 94–96). In addition to these effects on the endothelial cell surface, cachectin/TNF induces the synthesis of an endothelial cell surface factor(s) that promotes neutrophil adherence to the luminal surface of the vascular endothelium by a mechanism involving the neutrophil membrane adhesion complex CD11a/CD18 (LFA-1/Mac-1/p150,95) (97). The expression of HLA-A and HLA-B on the surface of endothelial cells is also increased after exposure to cachectin/TNF (27). The adherence of blood cells to the endothelium is a critical factor in the development of an inflammatory state, and the ability of cachectin/TNF to modulate the expression of surface antigens that are involved in this process suggests that it may play a critical role.

Bone, Cartilage, and Fibroblasts

Inflammatory processes often lead to the destruction of host tissues. Cachectin/TNF has been implicated in a number of these processes including abscess formation and the resorption of cartilage and bone observed in rheumatoid arthritis (9). Cultured human synovial cells show an increased production of collagenase and prostaglandin E2 in response to cachectin/TNF (9). Collagenase can function to disrupt the extracellular collagen matrix in inflamed tissues, and PGE2 is thought to stimulate the production of intracellular proteases involved in tissue destruction and remodeling. Human recombinant cachectin/TNF causes chondrocytes to both degrade proteoglycan through limited proteolysis and to inhibit the synthesis of new proteoglycan (101). The destruction of proteoglycan, an essential component of the matrix of cartilage enabling tissue to resist compression during loading, results in severe impairment of the function of cartilage. Cachectin/TNF also acts indirectly, stimulating fibroblasts to produce IL-1, another mediator which is postulated to play an important role in the induction of proteolysis observed in inflammatory joint diseases (35). The two cytokines may act in concert to bring about the tissue destruction observed in rheumatoid arthritis, osteoarthritis, and other joint diseases.

Cachectin/TNF modulates the function of a broad range of normal fibroblasts. Dermal fibroblasts respond to cachectin/TNF with an increased production of collagenase and PGE2 (33). Normal lung fibroblasts show an enhanced production of prostaglandin in response to cachectin/TNF, and this response is augmented by IL-1 (37). Fibroblasts from several tissues have been shown to be growth stimulated by cachectin/TNF (40, 114, 125). This proliferative effect can be explained at least in part by the ability of the mediator to stimulate fibroblasts to produce β2-interferon, a cytokine shown to function in an autocrine manner enhancing cell proliferation (55). The ability to stimulate fibroblast proliferation may play a role in the repopulation and tissue remodeling which occurs after inflammation. This mediator has also been shown to induce an antiviral state in certain fibroblast cell lines (69).

Leucocytes

During sepsis and bacteremia marked changes are observed in both the number of circulating leucocytes, and in their state of activation. Cachectin/TNF has been shown to play an important role in these changes. It induces neutrophil degranulation (54), and stimulates the release of reactive oxygen intermediates including superoxide anion (124) and hydrogen peroxide (54). It also acts to increase the phagocytic capacity of treated neutrophils and to enhance their cytotoxicity to certain pathogens (36). This multifunctional mediator has also been shown to be chemotactic for neutrophils (70).

Cachectin/TNF acts in an autocrine fashion as well, activating macrophages and enhancing their cytotoxic potential in vitro (34, 92). It elicits an increase in the production of
IL-1 and PGE₂ by cultured macrophages (6). Cachectin/TNF also induces the expression of the class II MHC antigen, I-A, on the surface of macrophages. It synergizes strongly with interferon-γ in this regard. In addition, cachectin/TNF is chemotactic for monocytes (70), and its production locally may serve to attract these cells, as well as neutrophils, to a site of injury.

One of the hallmarks of the cellular response to tissue injury and sepsis is the recruitment and activation of both polymorphonuclear leukocytes and macrophages. The ability of cachectin/TNF to activate these different effector mechanisms suggests that it may play a pivotal role in mounting a well-coordinated cellular response to infection and injury.

Hepatic Tissue

Cachectin/TNF has been shown to regulate the expression of acute phase proteins in vitro in human hepatoma cell lines through a transcriptional mechanism (91). What role this may play in vivo is still unclear, although similar changes are observed in vivo in response to inflammation and injury. Recombinant human cachectin/TNF has been shown to stimulate rat liver amino acid uptake in vivo (128), and to increase responsiveness to plasma glucagon (128): two metabolic alterations observed early in acute tissue injury or sepsis. The significance of these findings is unclear as cachectin/TNF has no direct effect on hepatocyte amino acid uptake in vitro (128) but does elevate hepatic lipogenesis in vivo (38).

Conclusions

Cachectin/TNF has been shown to be a pluripotent mediator influencing the growth, differentiation, and function of a broad range of cells and tissues. It has been shown to function at many levels, exerting endocrine, paracrine, and autocrine control of inflammatory responses. The various bioactivities this mediator exhibits in vitro and in vivo lends support to the hypothesis that it plays an important role in both humoral and cell-mediated immune and inflammatory responses to injury and infection, and raises the possibility that it is involved in the regulation of normal tissue homeostasis. In addition to the direct actions of cachectin/TNF, its interaction with other host-secreted cytokines including IL-1, β-interferon, γ-interferon, and lymphokinin allows it to play an even more powerful role in the regulation of cell growth and function. To try to harness the beneficial effects of cachectin/TNF while controlling its adverse effects is a daunting task, but one which if achieved, even to some degree, would reap substantial rewards.

Received for publication 6 July 1988.

References

