Sequence of Contactin, a 130-kD Glycoprotein Concentrated in Areas of Interneuronal Contact, Defines a New Member of the Immunoglobulin Supergene Family in the Nervous System

Barbara Ranscht, with technical assistance from Maria Teresa Dours*
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and
*La Jolla Cancer Research Foundation, Cancer Research Center, La Jolla, California 92037

Abstract. The primary amino acid sequence of contactin, a neuronal cell surface glycoprotein of 130 kD that is isolated in association with components of the cytoskeleton (Ranscht, B., D. J. Moss, and C. Thomas. 1984. J. Cell Biol. 99:1803–1813), was deduced from the nucleotide sequence of cDNA clones and is reported here. The cDNA sequence contains an open reading frame for a 1,071-amino acid transmembrane protein with 962 extracellular and 89 cytoplasmic amino acids. In its extracellular portion, the polypeptide features six type 1 and two type 2 repeats. The six amino-terminal type 1 repeats (I–VI) each consist of 81–99 amino acids and contain two cysteine residues that are in the right context to form globular domains as described for molecules with immunoglobulin structure. Within the proposed globular region, contactin shares 31% identical amino acids with the neural cell adhesion molecule NCAM. The two type 2 repeats (I–II) are each composed of 100 amino acids and lack cysteine residues. They are 20–31% identical to fibronectin type III repeats. Both the structural similarity of contactin to molecules of the immunoglobulin supergene family, in particular the amino acid sequence resemblance to NCAM, and its relationship to fibronectin indicate that contactin could be involved in some aspect of cellular adhesion. This suggestion is further strengthened by its localization in neuropil containing axon fascicles and synapses.

Cellular adhesion plays a crucial role in guiding development and maintaining the integrity of the nervous system. During their maturation, neurons come in contact with a number of different substrates and cell surfaces that guide their axons to the appropriate targets and determine selectivity of axon fascicles and synapses. In particular during late phases of neuronal development, localized areas of the neuronal cell surface form stable contacts with adjacent cells or the surrounding extracellular matrix. The rationale for our work is the hypothesis that in analogy to adherens junctions (Volk and Geiger, 1984; Geiger et al., 1980, 1983; Singer and Paradiso, 1981) and desmosomes (Kartenbeck et al., 1983), the formation and maintenance of stable contacts of neurons with other cells or substrates involves transmembrane proteins that are tightly linked with the neuronal cytoskeleton.

Components of the membrane skeleton, as the linkage of membrane molecules with the cytoskeleton is referred to (Marchesi, 1985), can be isolated by virtue of their insolubility in nonionic detergents (Sheetz, 1979). We have successfully used this biochemical characteristic to identify and characterize elements of the membrane skeleton in neurons (Moss, 1983; Ranscht et al., 1984). The neuronal membrane skeleton was isolated from embryonic chicken neurons as a detergent-insoluble complex consisting of several polypeptides including actin. The most prominent component of the complex is a glycoprotein of 130 kD, so far referred to as GP130, that can be separated from the other members of the complex under denaturing conditions. Antibodies generated against GP130 demonstrated the presence of this molecule exclusively on neuronal cell surfaces and suggested that its developmental expression may correlate with fasciculation or synapse formation. GP130 is most abundant in the adult chicken brain, where it comprises ~0.1% of the total protein. The late developmental appearance and the association with the cytoskeleton may place this molecule into the group of membrane components found in areas of stable cell–cell contacts.

In recent years, the molecular analysis of polypeptides involved in cellular adhesion has revealed common structural features and defined new gene families (Suzuki et al., 1986; Ruoslahti and Pierschbacher, 1987; Hynes, 1987; Williams, 1987; Shirayoshi et al., 1986). I have undertaken the molecular cloning of the 130-kD protein and describe here the sequence and structure as derived from the cloned cDNAs. The nucleotide sequence encodes a polypeptide of 1,071 amino acids that can be divided into a large extracellular domain, a single membrane-spanning segment, and an 89-amino acid cytoplasmic tail. The structure of the polypeptide

B. Ranscht's present address is La Jolla Cancer Research Foundation, Cancer Research Center, La Jolla, CA 92037.

© The Rockefeller University Press, 0021-9525/88/10/1561/13 $2.00
The Journal of Cell Biology, Volume 107, October 1988 1561–1573
suggests that this molecule is a new addition to the members of the immunoglobulin supergene family expressed in the nervous system. In combination with the immunoglobulin-like domains, the 130-kD protein contains segments similar to fibronectin type III repeats. Both structures are known to like domains, the 130-kD protein contains segments similar

of the immunoglobulin supergene family expressed in the

Protein Isolation and Sequencing

was excised as a single band from lightly Coomassie

fodi. The proteins from this fraction were separated sequentially by isoelec-

thioglycolate in the cathode buffer (Hunkapiller et al., 1983). The polypep-

was blotted onto nitrocellulose paper (Towbin et al., 1979) and probed with

The 130-kD glycoprotein was isolated from 16-18-d-old chicken embryo

molecule contactin.

ship of the 130-kD protein to known cell adhesion molecules

was excised from a preparative SDS-PAGE gel as before and placed into the

V8 protease (Miles Laboratories Inc., Naperville, IL). The 130-kD protein

The tryptic peptides were separated by SDS-PAGE (12 % acrylamide). After

Cathala et al. (1983) and poly A + RNA was selected on oligo(dT)-cellu-

the presence of actinomycin D and second strand used RNase H and

thesized according to Gubler and Hoffman (1983). First strand synthesis was

Eco RI methylase and ends were made blunt with T4 DNA polymerase

(Maniatis et al., 1982). After ligation with Eco RI linkers and digestion with

lated Eco RI sites of ~,gt.10 and packaged into phage heads using ~, packag-

ing extract (prepared and donated by Dr. C. Kintner). The ~,gt.10 and gt.11

respectively, with an average insert size of 2.2 kb.

RNA Analysis

Total cellular RNA was isolated according to the guanidinium isothio-

cyanate method of Chirgwin et al. (1979). For some experiments, total RNA

was separated into poly A+ and poly A- RNA on oligo(dT) cellulose (Maniatis et al., 1982). RNA was separated on 1% agarose gels and transferred with phenol and phenol/chloroform after melting (low melting temperature agarose [International Biotechnologies Inc., New Haven, CT]) or by elec-

troelevation (Seakam agarose; FMC Bioproducts, Rockland, ME). Subclon-

ing was into the polylinker of the transcription vector SP 72 (Melton et al.,

1984). Templates for directed sequencing in M13mp18 and M13mp19

(Messing, 1983) were generated by Bal31 exonuclease digestion (Poncz et

Subcloning and Sequence Determination

λgt.11 DNAs containing selected cDNA inserts were purified from liter y-

sates on CsCl gradients (Maniatis et al., 1982). The longest cDNA clone

183 was chosen for nucleotide sequencing by the dyeodeoxy chain termination

method of Sanger et al. (1977). Eco RI/Kpn I restriction fragments were

separated on agarose gels and isolated either by successive extractions with

phenol and phenol/chloroform after melting (low melting temperature

agarose [International Biotechnologies Inc., New Haven, CT]) or by elec-

troelevation (Seakam agarose; FMC Bioproducts, Rockland, ME). Subclon-

ing was into the polylinker of the transcription vector SP 72 (Melton et al.,

1984). Templates for directed sequencing in M13mp18 and M13mp19

(Messing, 1983) were generated by Bal31 exonuclease digestion (Poncz et

and restriction site cloning (Maniatis et al., 1982). Synthetic oligo-

gonucleotide primers (synthesized by J. Knight, DNA Facility, La Jolla

Cancer Research Foundation) were used where sequences from different

templates did not overlap, were ambiguous or had been obtained only in

one direction. For partial sequencing of cDNA clones 17, 181 and 184,

templates were generated from cDNA restriction fragments that were iso-

lated from the insert containing λgt.11 clones.

Immunohistochemistry

Chickens were perfused with 100 mM Na-periodate, 75 mM lysine, and 3 %

paraformaldehyde. Nerve tissue was removed and immersion fixed in the

above fixative for an additional 2 h. The tissue was cryoprotected by over-

night incubation in 1.5 M sucrose in PBS, pH 7.2, embedded in Tissue-Tek

(Miles Laboratories, Inc.) and frozen at ~70°C. Cryostat sections were cut at

15 μm thickness and quenched with 20 mM lysine in PBS. Sections were
stained overnight with rabbit anti-GP130 antibody (1:100) or monoclonal antibody GP130-5 (1:400) (Ranscht et al., 1984). Binding of the monoclonal antibody was monitored after sequential incubation with affinity-purified rabbit anti-mouse Ig (1:200) and rhodamine-conjugated goat anti-rabbit Ig (1:150; Cappel Laboratories Inc.); binding of rabbit anti-GP130 antibodies was monitored by staining with the rhodamine conjugate alone. All antibody dilutions were in PBS containing 10% normal goat serum and 0.02% Triton-X100. The sections were washed after each incubation step by immersion in five changes of PBS and mounted with immunomount (Shandon Southern Instruments, Inc.; Sewickley, PA) for visualization.

Results

Characterization of Antibodies and Protein Sequencing

Antibodies and oligonucleotide probes synthesized on the basis of partial protein sequences were used to select cDNA clones. Antibodies were generated against the 130-kD polypeptide excised from one-dimensional preparative SDS-PAGE gels (Ranscht et al., 1984). The specificity of these antibodies was examined by immunoblotting of a crude 130-kD preparation. A membrane–skeleton complex was enriched for the 130-kD glycoprotein by ion exchange chromatography (Ranscht et al., 1984) and separated in two dimensions by isoelectric focusing and SDS-PAGE. Staining with Coomassie Blue revealed only one protein spot of 130-kD which had a pI at pH 6.0. A similar gel was transferred to nitrocellulose and then reacted with the rabbit anti–GP130 antibody and 125I-protein A. The immunoblot analysis detected only one polypeptide at 130 kD (Fig. 1 left) indicating that the antisera was monospecific. Since the antisera was prepared against the 130-kD protein excised after one-dimensional SDS-PAGE, this result also indicated lack of significant levels of protein contaminants in this preparation. A single amino acid sequence was obtained when the 130-kD protein was excised and electroeluted from one-dimensional preparative SDS-PAGE gels and subjected to amino acid sequencing (Fig. 1 right). Peptides were generated by mild digestion of the 130 kD protein with V8-protease (Cleveland et al., 1977) in order to have available amino acid sequence information of an internal part of the molecule. After separation by SDS-PAGE, one peptide of 21 kD was chosen for amino acid sequencing (Fig. 1 right) since it could be well separated from other peptides on 12% acrylamide gels.

Isolation and Characterization of cDNA Clones

An unamplified chick brain Agt.11 library was screened with the rabbit anti-GP130, or with a mixture of six monoclonal anti–GP130 antibodies (Ranscht et al., 1984). Seven clones were isolated that gave above background signals with the rabbit antibodies; three of these clones also bound the monoclonal antibodies. All seven clones were plaque purified and further characterized.

To investigate the identity of the isolated cDNAs, the antibody-selected clones were rescreened with mixed oligonucleotide probes. The probes consisted of a 23-mer representing amino acids 5–9 of the amino-terminal sequence and a 17-mer representing amino acids 4–9 of the 21-kD peptide (bars above sequence in Fig. 1 right). Four clones (17, 181, 183, and 184) screened positive with the 23-mer oligonucleotide probe. The hybridization signal was mapped by Southern analysis to a 200-bp Eco RI/Xho I restriction fragment at the 5'-ends of the four cDNAs. No hybridization signal, however, was obtained with the shorter 17-mer oligonucleotide. Digestion with restriction enzymes and Southern blotting showed that the four cDNA clones hybridizing to the 23-mer oligonucleotide were related. The restriction maps of 17, 181, 183, and 184 cDNAs are shown in Fig. 2. These four cDNAs share restriction sites over most of their internal sequence and crosshybridize to each other. They were found to differ in the size of their 3' and 5' ends. Subsequent nucleotide sequencing revealed that the 3'-end

Figure 1. (Left) Characterization of antibodies and (right) protein sequencing. (Left) The 130-kD–containing membrane skeleton complex was resolved by IEF (O'Farrell, 1975) and SDS-PAGE (Laemmli, 1970). The gel was transferred to nitrocellulose and the blot probed with anti–GP130 antiserum and 125I-protein A. A single polypeptide with a pI at pH 6.0 is stained in the 130-kD molecular mass region indicating that the antisera is monospecific. The pH gradient is indicated on the horizontal axis, the migration of molecular mass standards is shown on the vertical axis. (Right) Amino acid sequence of the amino terminus of the 130-kD protein and a 21-kD protein generated by tryptic cleavage of the 130-kD protein with V8-protease (1 µg/ml). Polypeptides were separated by SDS-PAGE, stained lightly with Coomassie Blue, and then excised and electroeluted. Amino acid sequencing was performed at the Harvard Microchemistry Facility by Drs. W. Lane and D. Andrews. Bars above the sequences indicate regions according to which mixed oligonucleotides were synthesized.
sequences of the shorter cDNAs (not shown) are identical to the longest cDNA 183 (Fig. 4 b) but lack part of the 3'-untranslated region. Nucleotide sequences of the cDNA clones differ, however, within 0.1-0.3 kb Eco RI restriction fragments that mapped by Southern analysis to the extreme 5' ends of the cDNAs. The differences at the 5' ends could have arisen as an artifact during library construction, or indeed represent genuine differences in transcripts of the 130-kD protein.

Northern Analysis Detects Brain-specific Transcript

Since the expression of the 130-kD protein is restricted to nervous tissue (Ranscht et al., 1984), a genuine RNA transcript would be expected to be distributed accordingly. Northern analysis of RNA from different chicken tissues with the nick-translated cDNA probes detected a major transcript of approximately 5.5 kb in brain and retina (Fig. 3). No hybridization signal was obtained with RNA from sciatic nerve, that contains mainly Schwann cells and fibroblasts, or with RNA from the nonneural tissues heart, liver, lung, kidney, skin, and muscle. The blots were rehybridized with chicken actin (Cleveland et al., 1980; Kost et al., 1983) to demonstrate that intact RNA was present in each lane. The presence of a sec-

to demonstrate that intact RNA was present in each lane. The
with RNA from the nonneural tissues heart, liver, lung, kid-

Sequence of the cDNA Clones

The longest cDNA, clone 183, was chosen for sequence analysis and a partial nucleotide sequence of clones 17, 181, and 184 (thick arrows in Fig. 4 a) was obtained from templates generated by digestion with restriction enzymes of the cDNA inserts. The nucleotide sequence of 183 cDNA is shown in Fig. 4 b. The sequence of the additional three cDNA clones completely matched the sequence of 183 cDNA with the exception of the 5'-Eco RI restriction fragments as discussed above.

In the sequence, the ATG encoding the methionine in the −20 position is flanked by nucleotides resembling the consensus sequence CCACCAUG(G) for eukaryotic initiation sites (Kozak, 1984). The putative AUG initiation codon is followed by a 3,273-nucleotide open reading frame potentially encoding for a 1,091-amino acid polypeptide. The open reading frame ends with a series of three termination codons (Fig. 4 b, boxed). The untranslated 3' region extends over a total of 1,676 nucleotides. Even though two potential poly(A) acceptor sites are found (Fig. 4 b, dashed boxes), the sequence does not reveal poly(A) sequences. This result indicates that parts of the 3'-end sequences present in the messenger RNA are missing in the cDNA clones.

cDNAs Encode a Transmembrane Protein with Immunoglobulin-like Domains and Segments Resembling Fibronectin Type III Repeats

Conceptual translation of the nucleotide sequence predicts a polypeptide of 1,091 amino acids. The amino-terminal region contains a typical signal sequence cleavage site (Von Heijne, 1982). Cleavage of the signal peptide from this site leaves a threonine residue as the NH2-terminal amino acid, in agreement with results obtained from polypeptide sequencing of the 130-kD protein (Fig. 1 right and underlined in Fig. 4 b with short dashes). The cDNA thus encodes for a hydrophobic 20 amino acid signal peptide (residues −20 to −1; Fig. 4 b, underlined), which is not present in the processed protein. The amino acid sequence of the 21-kD peptide ob-

Figure 2. Restriction maps of cDNAs. Four cDNA clones, 17, 181, 183, and 184 were positively identified with antibodies and oligonucleotide probes to represent cDNA encoding the 130-kD protein. Hybridization of the oligonucleotide probe representing the amino-terminal amino acid sequence of the 130-kD glycoprotein is marked with a bar labeled 23-mer. The four cDNA clones are 4.5-50 kb long and share restriction sites over their internal sequence. Differences occur in the length of 3' and 5' ends. All four cDNA clones have identical 3'-end nucleotide sequences; clones 17, 181, and 184, however, lack part of the 3'-untranslated region present in 183 cDNA. The location of the protein-coding region is indicated below the four cDNAs. Hydrophobic regions are in black, the extracellular portion is in white, and the cytoplasmic region is shaded.

The Journal of Cell Biology, Volume 107, 1988 1564
The mature protein contains a total of 1,071 amino acids with a predicted molecular mass of 119,956 D. The sequence indicates nine potential asparagine-linked glycosylation sites (NXT/S) which are marked by solid triangles in Fig. 4 b. Attachment of carbohydrates at these sites thus could explain the molecular mass of 130 kD determined by SDS-PAGE. The hydrophobicity profile of the translated cDNA sequence (performed according to Kyte and Doolittle, 1982; not shown) indicates only one hydrophobic region (amino acids 963–983; Fig. 4 b, underlined) large enough to span the membrane. Amino acids flanking this region meet the criteria for a membrane-spanning domain (Sabatini et al., 1982). Therefore, the deduced amino acid sequence of the cDNAs predicts a transmembrane protein that traverses the membrane once and extends 962 amino acids into the extracellular space and 89 amino acids into the cytoplasm.

The extracellular part of the deduced polypeptide chain can be subdivided into two domains: the cysteine-containing domain (amino acids 1–561) and the cysteine-free domain (amino acids 562–962). The two domains are separated by a collagen-like amino acid stretch (underlined with a thin line in Fig. 4 b) that could serve as a hinge region to provide structural flexibility to the extracellular part of the molecule (Bornstein and Traub, 1979; Miller and Gay, 1987).

The most striking feature of the polypeptide sequence is two types of repeating units in the extracellular portion. Six repeats of type 1 (I–VI) are located in the cysteine-containing amino-terminal half and two type 2 repeats (I and II) are in the cysteine-free carboxy-terminal half of the extracellular domain. Type 1 and type 2 repeats are unrelated to each other.

Type 1 repeats I–VI each contain 81–99 amino acids, which are shown in their best alignment in Fig. 5 A. 20–30% of the amino acids within the repeats are identical with the exception of only 14% identity between repeats II and IV. Each repeat contains two cysteine residues spaced 38–56 amino acids apart, of which each second one is flanked by highly conserved amino acids (DXGXYXXCV/A). The cysteine residues and the amino acids flanking them align by visual inspection and using the align function of the Microgenie program (Beckman Instruments, Inc., Palo Alto, CA) with the corresponding residues of immunoglobulins and molecules with immunoglobulin-like structure (Saul et al., 1978; Amzel and Poljak, 1979; Williams and Gagnon, 1982; Cunningham et al., 1987; Salzer et al., 1987; Zimmermann et al., 1987; Yarden et al., 1986; Lewis et al., 1986; Williams, 1987). The cysteine residues of immunoglobulins and immunoglobulin-like molecules are suggested to form globular domains through intrachain disulfide bonding. This is also likely to be the case for this molecule since the 130-kD protein migrates as a single band on SDS-PAGE gels under both reducing and nonreducing conditions, whereby its mobility is increased when reducing agents are omitted (Moss, 1986).

The two type 2 repeats I and II consist each of 100 amino acids that exclude cysteine residues. Their best alignment is shown in Fig. 5 b; the similarity between the two repeats is 36%. Amino acids of type 2 repeats align with the characteristic tryptophan and tyrosine residues of fibronectin (FN) type III segments. The overall similarity of contactin type 2 repeats to FN type III blocks is between 20 and 31%, whereby amino acids of FN type III repeats are more conserved in contactin type 2 repeat I as compared with repeat II. In Fig. 6 b, the most related regions of contactin type 2 repeat I and bovine FN type III sequences (Peterson et al., 1983) are shown.

The putative cytoplasmic domain of the deduced polypeptide consists of 89 amino acids that could provide a link with the cytoskeleton. There is no apparent similarity to the cytoplasmic fragments of other cytoskeleton-associated membrane proteins such as the receptor for FN (Tamkun et al., 1986; Argraves et al., 1987), or components of the erythrocyte membrane skeleton band 3 (Kopito and Lodish, 1985) and glycophorin (Tomita et al., 1978).

Sequence Similarities of Contactin with Known Proteins

Search of the National Biomedical Research Foundation (Washington, DC) and the Genetic Sequence Data Bank (GenBank, Mountain View, CA) as compiled in the Microgenie program (Beckman Instruments, Inc., Palo Alto, CA) revealed only weak sequence similarities of the deduced polypeptide chain with known proteins. Two type 2 repeats I and II consist each of 100 amino acids that exclude cysteine residues. Their best alignment is shown in Fig. 5 b; the similarity between the two repeats is 36%. Amino acids of type 2 repeats align with the characteristic tryptophan and tyrosine residues of fibronectin (FN) type III segments. The overall similarity of contactin type 2 repeats to FN type III blocks is between 20 and 31%, whereby amino acids of FN type III repeats are more conserved in contactin type 2 repeat I as compared with repeat II. In Fig. 6 b, the most related regions of contactin type 2 repeat I and bovine FN type III sequences (Peterson et al., 1983) are shown.

The putative cytoplasmic domain of the deduced polypeptide consists of 89 amino acids that could provide a link with the cytoskeleton. There is no apparent similarity to the cytoplasmic fragments of other cytoskeleton-associated membrane proteins such as the receptor for FN (Tamkun et al., 1986; Argraves et al., 1987), or components of the erythrocyte membrane skeleton band 3 (Kopito and Lodish, 1985) and glycophorin (Tomita et al., 1978).

Abbreviations used in this paper: FN, fibronectin; MAG, myelin-associated glycoprotein.
Figure 4. (a) Sequencing strategy. Indicated restriction sites and deletion with Bal31 exonuclease of 183 cDNA were used to generate sequencing templates (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-kD protein. The longest cDNA 183 contains 4,998 nucleotides with an open reading frame for 1,091 amino acids. Termination codons are boxed. The sequence contains two potential poly(A)-acceptor sites (dashed boxes) but lacks polyadenylation. Hydrophobic regions representing the signal peptide (−20 to −1) and the transmembrane region (963–982) are underlined (thick bar). The cleavage point of the signal peptide is marked with an arrow. Sequences confirming amino acid sequencing are underlined (arrows). Thick arrows represent templates of cDNAs 17, 181, and 184. (b) Nucleotide sequence and deduced amino acid sequence of the 130-
Figure 5. Alignment of internal repeats. (A) The six type 1 repeats (I-VI) of 81-99 amino acids each contain two cysteine residues which are flanked by amino acids conserved in molecules with immunoglobulin structure. (B) The two type 2 repeats located in the cysteine-free extracellular region resemble fibronectin type III repeats.

Sequence of Contactin 1567

on April 20, 2017 Downloaded from Published October 1, 1988
genie sequence analysis program revealed no significant homologies of the deduced protein sequence with other proteins. Sequences of cell surface proteins that have recently been published, were placed into the laboratory data base and compared with the GP130 protein sequence using the Microgenie sequence analysis program (Queen and Korn, 1984). This comparison included members of the cadherin and immunoglobulin supergene families (E-cadherin: Nagafuchi et al., 1987; N-cadherin: Hatta et al., 1988; L-CAM: Gallin et al., 1987; N-CAM: Cunningham et al., 1987; Hemmerley et al., 1986; Barthels et al., 1987; myelin-associated glycoprotein (MAG): Salzer et al., 1987; I-CAM: Simmons et al., 1988; Staunton et al., 1988; carcinoembryonic antigen: Zimmermann et al., 1987; Thompson et al., 1987; Oikawa et al., 1987). The analysis detected a significant similarity of the 130-kd protein with the neural cell adhesion molecule NCAM (Cunningham et al., 1987). The GP130 amino acids 70-335 and 356-450 share a 31% identity with NCAM residues 62-322 and 360-452, respectively (Fig. 6 a). GP130 appears to be less similar to MAG (Salzer et al., 1987; Sutcliffe et al., 1983), since the Microgenie sequence analysis program revealed only short stretches of amino acid identity. In addition, alignment of the type 1 repeats I-VI with each of the five individual immunoglobulin-like domains of NCAM and MAG using the Dayhoff align program (Dayhoff et al., 1983) revealed higher align scores for the 130-kD glycoprotein with NCAM than with MAG (not shown).

Less striking than the sequence similarities of the 130-kD protein with NCAM were similarities with other members of the immunoglobulin supergene family. These include V- and C-regions of immunoglobulins (Saul et al., 1978), T cell surface receptors CD3 and CD8 (Gold et al., 1986; Johnson and Williams, 1986), Fc-receptor (Lewis et al., 1986), carcinoembryonic antigen (Oikawa et al., 1987), α.B-glycoprotein (Ishioka et al., 1986), peripheral myelin protein P0 (Lemke and Axel, 1985), link-protein (Neame et al., 1986; Deák et al., 1986), platelet-derived growth factor receptor (Yarden et al., 1986), and the kinase-related transforming protein v-fms (Hampe et al., 1984) whose cellular counterpart has been proposed to act as a receptor for macrophage CSF-1 (Sherr et al., 1985; Coussens et al., 1986). The similarity of the 130-kD glycoprotein with v-fms was detected as the most significant match to polypeptides in the Doolittle data base (Doolittle, R., personal communication). The matches of 130-kD sequences to the above polypeptides always include amino acids surrounding one or several of the extracellular cysteines and thus are likely to define part of the immunoglobulin-like structure. The structural resemblance of the 130-kD protein to molecules of the immunoglobulin supergene family and the similarity of its globular domains with NCAM define this molecule as a member of the immunoglobulin supergene family in the nervous system and suggest that it could have some role in cellular communication.

A second group of molecules with similarity to the 130-kD protein are oncogenes and growth factor receptors including the kinase-related transforming proteins src (Takeya and Hanafusa, 1983), yes (Kitamura et al., 1982), raf-1 (Mark and Rapp, 1984), mos (Van Beveren et al., 1981), and insulin growth factor receptor (Ullrich et al., 1985), as well as K-ras (Barbacid, 1987). These sequence similarities were detected in a search of the GenPro data bank (release 52.0; Riverside Scientific Enterprises, Seattle, WA) with the search parame-
In view of the suggestion that the 130-kD glycoprotein is related to cell surface molecules that are involved in cell–cell interaction, it is important to know where this molecule is localized in the nervous system. To gain a first understanding about the cells or substrates, the 130-kD protein may be interacting with in vivo, frozen sections of the adult chicken retina were stained in indirect immunofluorescence with anti-GP130 antibodies. The adult retina was chosen for two reasons: (a) since 130-kD protein is most abundant in the adult (Ranscht et al., 1984), adult tissue should display best co-localization of this molecule with nerve fibers is not only observed in the developing spinal cord and the cerebellum were stained with anti–GP130-antibodies. In both systems, a concentration of the 130-kD protein in the fiber-rich areas was observed (not shown).

Discussion

In neurons the linkage of membrane components with the cytoskeleton could play a crucial role in establishing cellular subcompartments by concentrating cell surface receptors to regions of axons and dendrites where they mediate selective adhesion or intercellular communication (Williams et al., 1987). A role of the 130-kD protein in cellular communication is suggested by both its structure and its immunochemical localization in neuronal cell surface areas that are in contact with adjacent neuronal cells. The association of this molecule with nerve fibers is not only observed in the developing and adult retina (Fig. 7), but also in the developing spinal cord and in the cerebellum (unpublished observations). While the name "GP130" was satisfactory for the initial characterization of this molecule, it now seems rather nondescriptive. To indicate its structural relationship to molecules that are involved in cellular communication and its localization in areas of cellular contact, I propose the name contactin.

Four cDNAs were isolated with specific antibodies and oligonucleotide probes representing amino-terminal amino acid sequence of the 130-kD glycoprotein. The four cDNAs, 17, 181, 183, and 184 crosshybridize to each other and detect

Figure 4 b) was noted to follow closely the above motif. In addition, 10 of the serine and threonine residues within the cysteine-free region are in the right context of amino acids (K/RXXT/S) to serve as potential autophosphorylation sites (Pearson et al., 1985). The significance of this sequence coincidence is not clear, since thus far no molecules with extracellular kinase activity have been reported.

The 130-kD Protein Is Concentrated in Areas of Interneuronal Contact

In the polypeptide sequence of the 130-kD protein, lysine 789 (marked with an asterisk in Fig. 4 b) was noted to follow closely the above motif. In addition, 10 of the serine and threonine residues within the cysteine-free region are in the right context of amino acids (K/RXXT/S) to serve as potential autophosphorylation sites (Pearson et al., 1985). The significance of this sequence coincidence is not clear, since thus far no molecules with extracellular kinase activity have been reported.

Figure 1. The 130-kD Protein Is Concentrated in Areas of Interneuronal Contact.

The polypeptide sequence of the 130-kD protein, lysine 789 (marked with an asterisk in Fig. 4 b) was noted to follow closely the above motif. In addition, 10 of the serine and threonine residues within the cysteine-free region are in the right context of amino acids (K/RXXT/S) to serve as potential autophosphorylation sites (Pearson et al., 1985). The significance of this sequence coincidence is not clear, since thus far no molecules with extracellular kinase activity have been reported.
Figure 7. Immunohistochemical localization of the 130-kD protein in the adult chicken retina. Immunoreactivity is concentrated in the synaptic inner and outer plexiform layers and the optic fibers. Little, if any, staining is seen on the neuronal cell bodies. PR, photoreceptors; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GC, ganglionic bodies; OF, optic fibers.

a major brain specific transcript of ~5.5 kb. Conceptual translation of the nucleotide sequence of the cDNAs predicts a 1,071-amino acid polypeptide that traverses the membrane once. The majority of the protein (90%) extends into the extracellular space, leaving only 89 amino acids in the cytoplasm. Experimentally this model is supported by the tryptic cleavage of a 120-kd polypeptide fragment from the surface of cultured neurons (Moss, 1986). The overall structure of contactin is that of a hybrid molecule containing six immunoglobulin-like domains and two segments that resemble fibronectin type III repeats (Fig. 8). The evidence for the inclusion of contactin in the immunoglobulin supergene family is as follows. (a) The polypeptide sequence contains repeating units of 81–99 amino acids that each contain two cysteine residues spaced 38–56 amino acids apart. (b) Amino acids flanking the cysteines are characteristic for molecules with immunoglobulin structure. For example, each second cysteine of the repeats is preceded by the amino acids DXGXYXC (Williams, 1987). (c) The cysteines of contactin and amino acids typically conserved in molecules with immunoglobulin structure align with the corresponding residues of other members of the family. Amongst those are the neural cell adhesion molecule NCAM (Cunningham et al., 1987), MAG (Salzer et al., 1987; Lai et al., 1987), platelet-derived growth factor receptor (Yarden et al., 1986), v-fms (Cousens et al., 1984), Fc-receptor (Lewis et al., 1986), immunoglobulin v- and c-regions (Saul et al., 1978), and others (not shown). The two cysteines within each repeat of these molecules have been implied to form globular domains through intrachain disulfide bonds. The amino acid sequence reported here suggests that contactin contains six globular domains of variable size (38 and 56 amino acids) through in-

Figure 8. Proposed structure of contactin. The polypeptide contains a single membrane-spanning segment and extends 962 amino acids into the extracellular space and 89 into the cytoplasm. The extracellular domain contains six cysteine-containing repeats of type 1 that resemble those of molecules with immunoglobulin structure. The cysteines are likely to be linked through intrachain disulfide bonds. The two type 2 repeats lack cysteines and resemble the type III repeats of fibronectin. The model is drawn to scale. The plasma membrane is indicated by shaded segments. Carbohydrate attachment sites are marked with ▼ and a collagen-like region is indicated with △.
trachain disulfide bonding of the cysteines (Fig. 8). It is known that the 130-kD glycoprotein does not form interchain disulfide bonds, since the molecule migrates as a single band on SDS gels under both reducing and nonreducing conditions (Moss, 1986).

Contactin is unusual with respect to the size of its extracellular domain. Between the putative globular and transmembrane domains, the protein contains an additional 400 amino acids. This region accommodates two type 2 repeats of 100 amino acids each. Interestingly, 20–31% of the amino acids within these repeats align with fibronectin type III segments, that include the cell-, heparin-, and DNA-binding regions of fibronectin (Hynes, 1985). The arg-gly-asp cell-binding sequence (Pierschbacher and Ruoslahti, 1984a; Yamada and Kennedy, 1984) is not contained in contactin. Instead, a conservative amino acid substitution leaves a lys-gly-asp sequence (amino acids 761–763) in contactin. Pierschbacher and Ruoslahti (1984b) reported this sequence to be inactive in cell adhesion. This may also be the case for this sequence in contactin. An alternative hypothesis is that neurons use a different, but related cell binding sequence that requires a yet unknown receptor.

In type 2 repeat I, lysine 789 was noted to describe a potential nucleotide-binding site similar to those that mediate kinase activity of oncoproteins, growth factor receptors, and tissue specific kinases (Hunter and Cooper, 1985; Van Beveren and Verma, 1986; Ullrich et al., 1984, 1985; Yarden et al., 1986; Shoji et al., 1981; Bennett and Kennedy, 1987). In addition, 10 potential autophosphorylation sites K/RXXT/S (Pearson et al., 1985) were identified within the type 2 repeats. Since no examples of molecules with extracellular kinase activity are known, it is not clear if the nucleotide binding and the autophosphorylation sequence motifs are of any functional relevance.

Contactin shares significant similarity (31%) with the neural cell adhesion molecule NCAM (Cunningham et al., 1987), a molecule that mediates cell–cell interactions in the nervous system via homotypic binding (Edelman, 1987). The region of similarity is restricted to the globular regions and includes the homotypic cell-binding region of NCAM, which is located within the four amino-terminal globular domains (Cunningham et al., 1983, 1987). Since, however, a cell-binding region of NCAM has not been closely mapped, it is not clear whether some of the amino acids conserved in the two molecules indicate similar binding capacities. Despite the similarities of contactin and NCAM in their globular domains, amino acid sequences carboxy terminal to these regions are distinct. The structural resemblance of contactin to the members of the immunoglobulin supergene family is known to interact with members of their kind (Edelman et al., 1987; Lewis et al., 1986). It will be interesting to know the structure of other axonal glycoproteins and if contactin interacts with any of these. If a homotypic-binding mechanism (contactin–contactin) mediates adhesion between neuronal cell surfaces, then it would be of low affinity, since most, if not all of the extracellular part of the 130-kD glycoprotein exists as a monomer in dilute solutions (Moss, 1986). Recent work also demonstrated an interaction between a member of the immunoglobulin and a member of the integrin families (Marlin and Springer, 1987); with respect to the resemblance of contactin segments to fibronectin type III repeats, a similar mechanism could exist for this molecule. However, other possibilities are conceivable.

The accumulation of the 130-kD protein at discrete areas of the neuronal cell surface could explain its tight association with the membrane skeleton. The linkage with the cytoskeleton could serve, for example, to immobilize membrane components at some, but not other regions of the neuronal cell surface and thus establish neuronal subcompartments. The short length of the cytoplasmic segment indicates that the putative interaction of the 130-kD polypeptide with actin filaments is most likely not a direct one. In analogy with the β chain of the fibronectin receptor, a transmembrane protein with 47 cytoplasmic amino acids (Tamkun et al., 1986; Argraves et al., 1987) that connects the extracellular matrix
with actin via talin and vinculin (Horwitz et al., 1986; Singer and Paradoiso, 1981), it seems more appropriate to suggest that the putative interaction of the 130-kD protein with the cytoskeleton is mediated through one or more additional polypeptides. Since GP130 is isolated as part of an actin-containing complex consisting of ~20 polypeptides, it is reasonable to assume that one of these polypeptides serves as an intracellular ligand for the 130-kD transmembrane protein. We are now testing this hypothesis with peptides representing intracellular contactin sequence. The proline–cysteine motif adjacent to the transmembrane domain on the cytoplasmic site could serve as a kink to bend the cytoplasmic region into the correct orientation for its interaction with the cytoskeletal elements.

Contactin is one of the first selectively expressed neuronal glycoproteins with a known structure. The immunoglobulin-like repeats and the sequence similarities to NCAM and fibronectin strongly suggest that contactin is involved in some aspect of cellular adhesion in the nervous system. Because of its putative association with the cytoskeleton and its concentration in axon fascicles and synapses, it appears a reasonable hypothesis that contactin could act in the formation or maintenance of stable contacts between neuronal cells. The probes described here will greatly facilitate the testing of this hypothesis and help to determine the role of contactin in the molecular puzzle of neuronal communication.

I wish to thank Dr. Ron McKay, in whose laboratory at the Massachusetts Institute of Technology (MIT) a large part of this work was carried out for his encouragement and support. Dr. C. Kinne for his help in the construction of the cDNA libraries and Drs. D. Melton and D. Weeks for introducing me to DNA sequencing. The help of Drs. R. F. Doolittle and C. Van Beveren in searching data bank sequences and C. Lai for running the Dayhoff ALIGN Program is gratefully acknowledged. I am thankful to Drs. T. Jessel and C. Goodman for their suggestion to investigate the relationship of contactin with fibronectin and to Drs. C. Kintner and E. Ruoslahti for valuable secretarial work.

My work at MIT was supported through the German Gene Technology Program (fellowship and research award 312 402 609/5 obtained through the German Academic Exchange Service (DAAD)) and at the La Jolla Cancer Research Foundation through Public Health Service grant NS 25194 (to B. Ranscht).

Received for publication 18 May 1988, and in revised form 13 July 1988.

References

