Basic Fibroblast Growth Factor from Human Keratinocytes Is a Natural Mitogen for Melanocytes

Departments of Dermatology and Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Neuroendocrinology, Salk Institute for Biological Studies, La Jolla, California 92037

Abstract. To survive and proliferate in pure culture, human melanocytes require basic fibroblast growth factor (bFGF) and cAMP. Without these factors, even in the presence of serum, the cells die. Melanocytes cultured in the presence of keratinocytes, however, survive for weeks without added bFGF and cAMP. We show here that the growth factor for melanocytes produced by human keratinocytes is bFGF because its activity can be abolished by neutralizing antibodies to bFGF and by a bFGF synthetic peptide that inhibits the binding of the growth factor to its receptor. The melanocyte mitogen in keratinocytes is cell associated and increases after irradiation with ultraviolet B. Northern blots reveal bFGF gene transcripts in keratinocytes but not melanocytes. These studies demonstrate that bFGF elaborated by keratinocytes in vitro sustains melanocyte growth and survival, and they suggest that keratinocyte-derived bFGF is the natural growth factor for normal human melanocytes in vivo.

Materials and Methods

Cell Culture

Normal human melanocyte cultures were initiated from neonatal foreskins in TIP medium, consisting of 85 nM TPA (LC Services Corp., Woburn, MA), 0.1 mM IBMX (Sigma Chemical Co., St. Louis, MO), and 10-20 μg/ml protein/ml placental extract in Ham's F-10 medium (American Bionocics, Inc., N. Tonawanda, NY) that was supplemented with 10% newborn calf serum (Gibco Laboratories, Grand Island, NY), 200 U/ml penicillin, 100 μg/ml streptomycin (Halaban et al., 1986). Where indicated, melanocytes were grown in TIC medium in which 2.5 nM cholera toxin was substituted for placental extract. Contaminating fibroblasts were eliminated by incubating the cultures for 3-4 d in TIP medium supplemented with 100 μg/ml geneticin (G418 sulfate; Gibco Laboratories; Halaban and Alfano, 1984). The melanocytes used in the experiments had been in culture for no longer than 4 mo and had been passed no more than five times at a ratio of 1:3.

Keratinocyte cultures were initiated from neonatal foreskins and adult human skin on collagen-coated Petri dishes in modified MCDB-153 (a low calcium medium containing 0.03 mM CaCl₂; Irvine Scientific, Santa Ana, CA), supplemented with antibiotics as described above, 0.63 μg/ml fungizone (Flow Laboratories, Inc., McLean, VA), 70 μg protein/ml bovine pituitary extract (Pel-Freeze Biologicals, Rogers, AR), prepared as described by Halaban et al., (1987), 1 ng/ml epidermal growth factor (Sigma Chemical Co.), 50 μM hydrocortisone (Gibco Laboratories), 0.1 mM ethanolamine, and 0.1 mM phosphoethanolamine (Sigma Chemical Co.). Subsequently, keratinocytes were passed twice in the same medium in uncoated culture flasks. Adult keratinocytes were derived from uninjured skin of burn pa-
This preparation is referred to as immunoglobulin fraction. Fibroblasts from neonatal foreskins were grown in DME supplemented with 10% fetal calf serum and were used after the second or third passage. SK-HEP-1, a human hepatoma cell line, and 3T3-Swiss murine fibroblasts (Aubin et al., 1981) were grown in the same medium.

To compare the viability of melanocytes with and without keratinocytes, melanocytes obtained from the foreskin of a black baby were seeded onto (a) confluent cultures of allogeneic neonatal keratinocytes; (b) into wells in which approximately half the surface was occupied by keratinocytes; and (c) into wells without keratinocytes. Co-cultures were set up also with melanocytes and human amnion fibroblasts. The cultures were centrifuged at 13,500 g for 10 min at 4°C, resuspended in 0.2-0.5 ml PBS or double-distilled water and sonicated on ice, then centrifuged, and washed two times with PBS. The cell pellets were used to test for mitogenic activity toward melanocytes.

Melanocytes were seeded in 8-cm² Petri dishes (16,000 cells/cm²) and incubated in serum-supplemented Ham's F-10 medium containing TPA, IBMX, and cholera toxin (TTC); or TPA alone; or IBMX and cholera toxin without TPA or without any growth factor. The following day, 27 and 47 h later, set of two dishes from each culture condition were irradiated with 50 ml/cm² of UVB light. At various intervals thereafter, DNA synthetic activity was measured for 1 h by the [3H]thymidine incorporation assay described below. Nonirradiated cells served as controls. Tyrosinase activity of irradiated and nonirradiated melanocytes was measured in cell extracts as described (Halaban et al., 1983). A unit of tyrosinase was defined as the activity of enzyme that catalyzed the oxidation of 1 μmol of tyrosine in 1 min.

Preparation of Cell Extracts, Antibodies, and Assay for Mitogenic Activity toward Melanocytes

To prepare extracts, cells were scraped off the culture surface, suspended in PBS, centrifuged, and washed two times with PBS. The cell pellets were resuspended in 0.2-0.5 ml PBS or double-distilled water and sonicated on ice. Extracts were disrupted by three cycles of freeze-thawing. Mitogenic activity of the extracts was similar, regardless of the procedure used. The disrupted cells were centrifuged at 13,500 g for 10 min at 4°C, and 5-μl aliquots of the supernatants were taken for protein determination by the Bio-Rad assay (Bio-Rad Laboratories, Cambridgeshire, MA). BSA served as a control. To test the mitogenic activity of cell extract toward melanocytes, melanocytes, cultures, 24,000-80,000 cells/4-cm² well (Costar Data Pack), were collected 7-9 and 24 h after UVB irradiation. Extracts of these cells were used to test for mitogenic activity toward melanocytes. Tyrosinase activity of irradiated and nonirradiated melanocytes was measured in cell extracts as described (Halaban et al., 1983). A unit of tyrosinase was defined as the activity of enzyme that catalyzed the oxidation of 1 μmol of tyrosine in 1 min.

UVB Irradiation

Cells were irradiated with 150 ml/cm² of UVB light (wavelength 290-310 nm) from a panel of four lamps (model FS20 Sun Lamp; Westinghouse Electric Corp., Pittsburgh, PA) at 1.5 mW/cm². Incident dose at the cell surface was measured through one layer each of tissue culture plastic and medium by means of a UVX digital radiometer (Ultra-Violet Products, Inc., San Gabriel, CA; Kupper et al., 1987). Keratinocytes and fibroblasts, grown in 150 cm² flasks, were collected 7-9 and 24 h after UVB irradiation. Extracts of these cells were used to test for mitogenic activity toward melanocytes.

Results

Evidence that Keratinocytes Synthesize a Mitogen toward Melanocytes

The light microscopic appearance of melanocytes in MCDB-153 medium with and without keratinocytes is shown in Fig. 1. In mixed culture, those melanocytes that were in direct contact with a keratinocyte survived for >2 wk and sprouted dendrites toward neighboring keratinocytes. In pure culture and in mixed cultures in which keratinocytes were sparse, the melanocytes became spindle shaped then rounded up, and lost their viability after 1 wk. Loss of viability was defined as an inability to incorporate [3H]thymidine 1 day after restimulation with TPA and IBMX (Halaban, 1988). Conditioned medium from keratinocyte cultures in which melanocytes survived did not support proliferation or survival of pure cultures of melanocytes (Table I). The slight stimulation at low dilution of conditioned medium may have been due to mitogen released from lysed keratinocytes. These results indicate that direct contact of melanocytes with keratinocytes supports the viability of melanocytes and suggests that the growth factor for melanocytes, produced by keratinocytes, is not secreted freely into the medium. Keratinocytes were more effective than fibroblasts in supporting the survival of melanocytes because fibroblasts outgrew and hence overcrowded and displaced the melanocytes (data not shown).

Mitogenic activity toward melanocytes in extracts of keratinocytes is shown in Table I and Fig. 2. The data demonstrate that keratinocyte extract without addition of aCAMP stimulated DNA synthesis in melanocytes to some extent and that stimulation was enhanced 10-20-fold by 1 mM dbcAMP. MCDB-153 medium, optimal for keratinocyte proliferation, was not a requirement in the melanocytic response. In fact, PC-1 medium, which promotes optimal growth of most other cells, was also more conducive to the proliferation of melanocytes (Table I). Nevertheless, the medium in which the keratinocytes were maintained affected the level of melanocyte mitogen in the extracts. As shown in Fig. 2, extracts from keratinocytes grown in serum-free, low calcium medium (MCDB-153, optimal for keratinocyte proliferation, had ~20-fold higher mitogenic activity toward melanocytes than a similar amount of extract from keratinocytes grown in DME, containing serum and high calcium, optimal for keratinocyte stratification. The mitogenic dose response of melanocytes to keratinocyte extract was biphasic, similar to the

Published October 1, 1988

The Journal of Cell Biology, Volume 107, 1988 1612
Figure 1. Morphology of melanocytes cultured with and without keratinocytes. (Top) Phase-contrast and bright field photomicrographs, respectively, of human keratinocytes and melanocytes cultivated together in MCDB-153 medium for 2 wk. Melanocytes are viable and remain highly dendritic. (Bottom) Phase-contrast micrograph of a pure culture of melanocytes grown in MCDB-153 medium for 5 d. The rounded cells are dying melanocytes. Bar, 112 μm.

Table I. Mitogenic Activity toward Human Melanocytes in Keratinocyte Extracts

<table>
<thead>
<tr>
<th>Medium</th>
<th>Additions</th>
<th>[3H]Thymidine incorporation cpm/well</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-1</td>
<td>None</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>dbcAMP</td>
<td>1,180</td>
</tr>
<tr>
<td></td>
<td>Conditioned medium 1:1 + dbcAMP</td>
<td>1,900</td>
</tr>
<tr>
<td></td>
<td>Conditioned medium 1:20 + dbcAMP</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Keratinocyte extract</td>
<td>3,500</td>
</tr>
<tr>
<td></td>
<td>Keratinocyte extract + dbcAMP</td>
<td>40,300</td>
</tr>
<tr>
<td>MCDB-153</td>
<td>None</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>dbcAMP</td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td>Keratinocyte extract</td>
<td>1,260</td>
</tr>
<tr>
<td></td>
<td>Keratinocyte extract + dbcAMP</td>
<td>23,900</td>
</tr>
</tbody>
</table>

Human melanocytes were seeded in high calcium (3.0 mM) PC-1 or low calcium (0.03 mM) MCDB-153 medium in 12-well cluster plates (80,000 cells/4-cm² well), and experimental media were added the following day. Conditioned medium was collected after 3 d incubation from keratinocyte cultures grown in MCDB-153 at ~80% confluency in which the melanocytes appeared viable. The medium was passed through a Millipore filter and diluted 1:1 or 1:20 with PC-1 medium. Extract was prepared from adult keratinocytes grown in MCDB-153 medium and was added at 80 μg protein/ml. The concentration of dbcAMP was 1 mM. [3H]Thymidine incorporation was carried out during the last hour of a 48-h incubation with experimental media. Values are averages of cpm from duplicate wells.

Figure 2. Dose-related mitogenic stimulation of human melanocytes by extracts from human keratinocytes. Melanocytes, derived from newborn foreskin, were grown in Ham's F-10 medium supplemented with TPA, IBMX, and placental extract (TIP) and seeded without TIP into 4-cm² wells in PC-1 medium 1 d before the addition of keratinocyte extract. Extracts were added with (○) or without (●) 1 mM dbcAMP. Melanocytes treated with dbcAMP but without cell extract did not incorporate a significant amount of [3H]thymidine (<100 cpm/well). [3H]thymidine incorporation into melanocytes was measured over the final 2–3 h of a 24-h incubation with experimental media. Values are averages of cpm from two wells per 1 h.

(Top) Extract was prepared from proliferating keratinocytes derived from newborn foreskin and grown in MCDB-153 medium for a month. (Bottom) Extract was prepared from stratifying keratinocytes, derived from adult skin, propagated in MCDB-153 medium for 2 wk, and maintained thereafter in DME for 10 d to induce stratification. The experiments presented in the top and bottom figures were carried out at different times. Due to variations in [3H]thymidine incorporation between cultures, the kinetics of the response should be compared and not the cpm values.

dose response to bFGF (Halaban et al., 1987) in that keratinocyte extracts given at concentrations higher than those required for optimal melanocyte proliferation elicited only a suboptimal mitogenic response from melanocytes. The optimal concentration of extract from keratinocytes grown in MCDB-153 was ~40 μg protein/ml. Differences in the levels of melanocyte mitogen between rapidly proliferating versus stratifying keratinocytes were observed with and without...
Melanocyte Mitogen in Keratinocytes

The presence of IBMX, is known to stimulate the proliferative activity in keratinocyte cultures, contains pituitary extract. Pituitary extract, in the absence of IBMX, is known to stimulate the proliferation of normal human melanocytes (Halaban et al., 1987) in the absence of TPA. To eliminate the possibility that the stimulatory activity in extract from keratinocytes grown in MCDB-153 was due to a pituitary factor in the medium, we deprived the keratinocytes of pituitary extract for 3 d before preparing the extract. The mitogenic activity toward melanocytes remained unaltered (data not shown).

High levels of mitogenic activity toward melanocytes were found also in extracts of dermal fibroblasts, with 5 μg protein/ml exerting optimal stimulation of growth (Fig. 5). Stimulation by fibroblast extract required dbcAMP. Conditioned medium from fibroblast cultures had no mitogenic activity toward melanocytes (data not shown).

UVB Light Induces DNA Synthesis in Melanocytes and Melanocyte Mitogen in Keratinocytes

UVB irradiation is known to increase human skin pigmentation by increasing the number of DOPA-positive melanocytes, synthesis of melanin, and the transfer of melanin to keratinocytes (Mishima and Widlan, 1967; Quevedo et al., 1969). UVB light stimulates the proliferation of melanocytes and keratinocytes in murine skin (Rosdahl and Szabo, 1978; Rosdahl, 1978). We, therefore, tested whether UVB light regulates melanocyte proliferation directly and/or indirectly by modulating the level of the melanocyte mitogen in keratinocytes. The data presented in Figs. 6 and 7 show that (a) UVB light stimulates DNA synthesis of human melanocytes only in the presence of TPA and (b) UVB light increases levels of the melanocyte mitogen in keratinocytes.

Increase in [3H]thymidine incorporation by melanocytes were observed 35–50 h after the initial treatment with UVB, but only in cultures containing TPA (Fig. 6). The twofold increase in [3H]thymidine incorporation in response to UVB light was followed by a 20% increase in the number of melanocytes. There were ~19,000 and 23,000 cells/cm² in control and irradiated dishes, respectively, at the end of the 60-h incubation. Melanocytes incubated with IBMX and cholera toxin in the absence of TPA or without additions (data not shown, but similar to those presented in Fig. 6 C) did not respond to UVB light. Under the latter conditions, melanocytes deteriorated rapidly, as demonstrated by the sharp decline in DNA synthetic activity. In addition to its effect on DNA synthesis, UVB light caused a 50% increase in tyrosinase activity (from 870 to 1,240 μU/mg protein) over 5 d of daily irradiation. Extracts (80 μg protein/ml) from nonirradiated and irradiated human melanocytes (collected 4 and 8 h after UVB irradiation) did not stimulate the proliferation of human melanocytes (data not shown).

The effect of UVB on the melanocyte mitogen in keratinocytes is shown in Fig. 7. At suboptimal doses of 2.5–5.0 μg protein/ml, the level of mitogenic activity in rapidly proliferating keratinocytes harvested 7 h after UVB irradiation was
By 24 h, the mitogenic activity had returned to control levels up to sixfold higher than that of nonirradiated keratinocytes. A response to UVB light was observed only in keratinocytes grown in MCDB-153 but not in DME. Interleukin 1, induced in keratinocytes in response to UVB irradiation (Kupper et al., 1987), did not stimulate the proliferation of melanocytes nor did it stimulate keratinocytes to produce higher levels of mitogenic activity toward melanocytes (data not shown).

The Melanocyte Mitogen in Keratinocytes Is bFGF

Because we had shown previously that bFGF was a natural growth factor for melanocytes, the only defined growth factor shown to be able to substitute for TPA (Halaban et al., 1987), neutralizing anti-bFGF antibodies (Halaban et al., 1987), and a synthetic peptide fragment of bFGF that inhibits bFGF activity (Shubert et al., 1987; Baird et al., 1988) as well as a bFGF-cDNA were used to probe the nature of the mitogen in keratinocytes.

As demonstrated in Table II, antibodies raised in rabbits against a synthetic peptide corresponding to a segment of the aminoterminal domain of bFGF (anti-bFGF[1-24]) and known to neutralize bFGF activity toward melanocytes (Halaban et al., 1987), neutralized at least 90% of the mitogenic activity in extracts of stratifying keratinocytes and 70% in proliferating keratinocytes. That the mitogenic activity in proliferating keratinocytes was neutralized at a lower percentage is probably due to the higher specific mitogenic activity in these cultures. With less extract (data not shown) or with more antibodies, >90% of the mitogenic activity was inhibited (Fig. 8). Fig. 8 also demonstrates that the mitogenicity of extract derived from UVB irradiated keratinocytes, supplied at 20 μg protein/ml, stimulated DNA synthesis in melanocytes to about the same level as did 160 pg/ml bFGF. Co-incubation with neutralizing anti-bFGF antibodies at dilution 1:40 reduced the mitogenicity of the keratinocyte extract by ~83% (Fig. 8) and that of 160 pg/ml bFGF by 80% (i.e., from 4,000 to 800 cpm/well per 3 h without and with anti-bFGF antibodies, respectively). The mitogenic activity in dermal fibroblasts was also completely abolished by the inhibiting anti-bFGF antibodies (data not shown).

A synthetic peptide that blocks the binding of [125I]-bFGF to PC12 pheochromocytoma cells (Shubert et al., 1987), baby hamster kidney (BHK) cells, ST3 fibroblasts and vascular endothelial cells (Baird et al., 1988), and human melanocytes (Baird, A., and R. Halaban, unpublished data) also blocked the mitogenic activity of bFGF and keratinocyte extract toward human melanocytes (Table II).

Northern blot analysis with a bovine cDNA probe for bFGF revealed that keratinocytes grown in MCDB-153 medium, but not in DME, produced bFGF gene transcripts (Fig. 9). The levels of bFGF gene transcripts varied from one culture to another (e.g., lanes 4 and 5) in concordance with...
Table II. The Melanocyte Mitogen in Keratinocytes Is Related to bFGF

<table>
<thead>
<tr>
<th>Additions</th>
<th>[3H]Thymidine incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cpm/well</td>
</tr>
</tbody>
</table>

A. Inhibition of mitogenic activity by anti-bFGF antibodies

<table>
<thead>
<tr>
<th>Experiment 1: keratinocytes grown in DME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Not detectable</td>
</tr>
<tr>
<td>Keratinocyte extract (80 µg protein/ml)</td>
<td>2,100</td>
</tr>
<tr>
<td>Keratinocyte extract (80 µg protein/ml) + anti-bFGF-(1-24) serum (10 µl/ml)</td>
<td>150</td>
</tr>
<tr>
<td>Keratinocyte extract (80 µg protein/ml) + nonimmune serum (10 µl/ml)</td>
<td>2,200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment 2: keratinocytes grown in MCDB-153</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Not detectable</td>
</tr>
<tr>
<td>Keratinocyte extract (50 µg protein/ml) + anti-bFGF-(1-24) serum (20 µl/ml)</td>
<td>6,000</td>
</tr>
<tr>
<td>Keratinocyte extract (50 µg protein/ml) + nonimmune serum (20 µl/ml)</td>
<td>19,400</td>
</tr>
</tbody>
</table>

B. Inhibition of mitogenic activity by a synthetic peptide fragment of bFGF

<table>
<thead>
<tr>
<th>Additions</th>
<th>[3H]Thymidine incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cpm/well</td>
</tr>
<tr>
<td>None</td>
<td>Not detectable</td>
</tr>
<tr>
<td>bFGF</td>
<td>5,000</td>
</tr>
<tr>
<td>bFGF + (1-10)OH</td>
<td>5,900</td>
</tr>
<tr>
<td>bFGF + (103-146)NH₂</td>
<td>400</td>
</tr>
<tr>
<td>Keratinocyte extract (25 µg protein/ml) + (1-10)OH</td>
<td>5,200</td>
</tr>
<tr>
<td>Keratinocyte extract (25 µg protein/ml) + (103-146)NH₂</td>
<td>1,400</td>
</tr>
<tr>
<td>Keratinocyte extract (20 µg protein/ml) + (1-10)OH</td>
<td>3,700</td>
</tr>
<tr>
<td>Keratinocyte extract (20 µg protein/ml) + (103-146)NH₂</td>
<td>190</td>
</tr>
</tbody>
</table>

All additions were made to PC-I defined medium supplemented with 1 mM dbcAMP. In experiment 1 of part A, extract was prepared from keratinocytes derived from adult skin grown in DME, and in experiment 2 of part A, and B, keratinocytes were derived from newborn foreskins grown in MCDB-153. Anti-bFGF-(1-24) serum was raised in rabbits as described before (Baird and Ling, 1987). bFGF (95% pure) was added at 1 ng/ml. Synthetic peptides (1-10)OH and (103-146)NH₂ were prepared as described by Shubert et al. (1987) and were added at 300 µg/ml. [3H]Thymidine incorporation was carried out during the last 2–3 h of a 24-h incubation with experimental media. Data are averages from two wells.

Discussion

Human melanocytes differentiate not only in regard to pigment formation and cell shape but also in regard to a strict dependency on specific growth factors to be able to survive and proliferate in culture. The specific agents are bFGF (or TPA) plus substances that increase intracellular levels of cAMP. Unlike endothelial cells and fibroblasts, which are stimulated by bFGF in addition to producing this polypeptide growth factor on their own (Gospodarowicz et al., 1986; Vlodavsky et al., 1987; Schweigerer et al., 1987; Shipley et al., 1988), bFGF is undetectable in melanocytes either as gene transcript (Halaban et al., 1988) or as immunoprecipitable protein (Halaban, R., unpublished data). The absence of bFGF by these biochemical criteria was supported by biological assay. Melanocyte stimulating activity could not be detected in extracts of highly proliferative human melanocytes grown in TIP, indicating that bFGF was not induced in detectable amounts in response to mitogenic stimulation by TPA. We had shown before that human metastatic melanoma cells contained bFGF and depended on their intrinsic bFGF activity for continued proliferation, suggesting that bFGF acts as a transforming growth factor in human melanomas (Halaban et al., 1988). Our conclusion has recently been strengthened by results from another laboratory in another cell system, demonstrating that aberrant expression of bFGF is a common feature in human cancer.
bFGF by way of transfected cDNA encoding for bFGF fused with sequences specifying a signal peptide, conferred the tumorigenic phenotype on NIH 3T3 cells (Rogelj et al., 1988).

The melanocyte mitogen in keratinocytes is probably bFGF because, as in melanoma cells, it is inhibited by two agents that inhibit the activity of bFGF. Those are antibodies to a synthetic peptide of bFGF (Halaban et al., 1987) and a synthetic fragment of bFGF that blocks the binding of bFGF to its receptor (Shubert et al., 1987; Baird et al., 1988). These two agents also inhibit the mitogenic activity of purified bFGF toward melanocytes as demonstrated here and before (Halaban et al., 1987). The presence of mRNA species that hybridize with a bFGF-cDNA probe is direct evidence that keratinocytes produce bFGF. The levels of bFGF gene transcripts in keratinocytes, like the levels of the melanocyte mitogen, are not constant. Such fluctuations may explain the failure of other investigators to detect bFGF gene transcripts in keratinocytes (Shipley et al., 1988). The two bFGF-mRNA species of 7.0 and 3.7 kb, known to be present in other tissues and cells that produce bFGF, are detected easily in keratinocytes grown in MCDB-153, the medium that promotes keratinocyte proliferation and production of the melanocyte mitogen. The bFGF-mRNA species were not detected in keratinocytes grown in DME, a medium that suppresses the levels of melanocyte mitogen in keratinocytes. Dermal fibroblasts, rich in melanocyte mitogen, also express high levels of the two gene transcripts.

Melanocytes in vivo can be triggered to divide in response to UVB (Mishima and Widlan, 1967; Quevedo et al., 1969; Rosdahl and Szabo, 1978; Rosdahl, 1978). The studies with human epidermal cells in vitro, described here, indicate that keratinocytes may regulate the proliferation of melanocytes through bFGF, whose production may be increased directly in response to UVB light or, indirectly, in consequence to UVB-induced keratinocyte proliferation. Our studies show that UVB irradiation, in addition to increasing DNA synthesis in melanocytes, raises the mitogenic activity toward melanocytes in highly proliferative keratinocytes. That UV irradiation induces DNA replication and can enhance the synthesis of selected proteins has been demonstrated for human fibroblasts (Cohen et al., 1984; Schorpp et al., 1984). These responses were suggested to have been generated through DNA damage because (a) other DNA damaging agents such as N-methyl-N-nitrosourea and N-acetoxy-2-acetylaminofluorene also induced DNA synthesis (Cohen et al., 1984), and (b) lower doses of UV light were sufficient to enhance the synthesis of protein in cells defective in DNA repair such as

![Figure 9. Expression of mRNA for bFGF in highly proliferative normal human keratinocytes. RNA samples from keratinocytes (lanes 1-5), hepatoma SK-HEP-1 (lane 6), and dermal fibroblasts (lane 7) were subjected to Northern blot hybridization with a bovine cDNA probe for bFGF (a 1.4-kb Eco RI fragment of pJJ11-1). (Lanes 1 and 2) Neonatal keratinocytes and (lane 3) adult keratinocytes, all grown in DME; (lanes 4-5) neonatal keratinocytes grown in MCDB-153 medium; (lanes 6 and 7) SK-HEP-1 and fibroblasts, respectively, harvested after a 4-h stimulation with serum. RNA quantities loaded onto the gel were as follows: lanes 1 and 4-6, 20 μg total RNA; lanes 2 and 3, 1 μg of poly(A)+ RNA; lane 7, 10 μg total RNA. Arrows indicate 7.0- and 3.7-kb gene transcripts.](image-url)
those from patients with Cockayne’s syndrome or xeroderma pigmentosum (Schorpp et al., 1984). In fibroblasts, UV light induces the expression of the same proteins that are induced by TPA (Stein et al., 1988). Similar responses to UVB or TPA appear to occur also in melanocytes. As shown here and by others, both induce DNA synthesis in melanocytes (Eisinger and Marko, 1982; Libow et al., 1988), increase synthesis of tyrosinase (Halaban et al., 1983), and increase the level of pigmentation (Friedman and Gilchrest, 1987).

UVB increases DNA synthesis in cultured melanocytes directly without intervention by keratinocytes, but only under culture conditions that are supportive of melanocyte proliferation and viability, such as in the presence of TPA. Because melanocyte proliferation depends stringently on the biochemical pathways induced by the combination of TPA (or bFGF) and elevated levels of cAMP, the stimulation of DNA synthesis by UVB irradiation in melanocytes incubated with TPA alone, but not with IBMX and cholera toxin alone, suggests that UVB light induces an increase in intracellular cAMP. An immediate effect of UVB light on the turnover of membrane phospholipids in keratinocytes has been reported recently (De Leo et al., 1984). The effect was suggested to be a direct one on membranes rather than the result of damage to nuclear DNA. Membrane perturbation in cultured amphibian melanophores by odorants results in increased cAMP and a mimicking of the hormonal action of melatonin (Lerner et al., 1988). Our results suggest that in vivo, UVB light stimulates melanocytes indirectly through neighboring irradiated keratinocytes via increased bFGF production and directly by substituting for the cAMP requirement.

The studies described here demonstrate that in vitro, rapidly proliferating keratinocytes produce higher levels of bFGF than do stratifying keratinocytes. This is a provocative finding that is in agreement with the preferred location and/or activity of melanocytes in intact skin. Studies of [H]thymidine uptake by normal palmar epidermis of humans and monkeys have shown that 80% of the labeled nuclei are in the tips of the deep rete ridges, indicating that the keratinocytes in these areas are highly proliferative (Lavker and Sun, 1983). These deep ridges are also more heavily pigmented than shallow ridges or inter-ridge epidermis. It is thus possible that actively dividing keratinocytes stimulate neighboring melanocytes to divide and/or produce more melanin. Another well-known site of growth-associated, cyclic melanocyte activity is in anagen hair follicles, where melanocytes come to lie in close proximity to the rapidly proliferating keratinocytes that constitute the cellular bulb matrix. In mice, UVB irradiation causes an increase in the mitotic frequency in melanocytes and basal keratinocytes, and the correlation between the number of mitotic figures in basal keratinocytes and melanocytes of irradiated versus nonirradiated mouse ear is positive (Rosdahl, 1978).

The mechanism by which bFGF gets from keratinocytes to melanocytes is not clear. bFGF lacks a signal peptide (Abraham et al., 1986a,b) that would enable it to be secreted by classical exocytosis. However, in vivo, bFGF accumulates in extracellular matrices produced by vascular endothelial cells (Vlodavsky et al., 1987; Baird and Ling, 1987) and corneal epithelium and endothelium (Jeanly et al., 1987) probably through its high affinity to glycosaminoglycans (Gospodarowicz et al., 1984). Melanocytes could be exposed to bFGF through direct contact with keratinocytes and by way of the extracellular matrix deposited by neighboring keratinocytes.

bFGF is also an angiogenic factor (Folkman and Klagsbrun, 1987), and the finding that highly proliferative keratinocytes produce bFGF may thus explain clinical conditions that involve a combination of rapid proliferation of keratinocytes and microvascular endothelial cells, such as occur in wound healing and psoriasis.

We thank Dr. A. B. Lerner for support; Drs. J. A. Abraham and J. C. Fiddes for the bovine bFGF-cDNA; S. Straight and L. Kim for growing the cells; and J. Schreiber for secretarial assistance.

This work was supported by National Institutes of Health grants 5 ROI CA04679, 5 P01 AR25252, 5 ROI AR13929, HB 09690, and DK 18811.

Received for publication 9 March 1988, and in revised form 15 June 1988.

References

