Due to an author's error, the symbol definitions in Figs. A1 and A2 and a line in the legend to Fig. A2, both on page 1922, and two lines in a set of equations on page 1923 appeared incorrectly. The corrected versions appear below.

Fig. A1:

--- infinite; · · · · · · · , 100:1; --- --- , 10:1; --- --- --- , 4:1; --- --- --- , 3:1; --- --- --- , 2:1.

Fig. A2:

--- 3.16 x 3.16; · · · · · · · , 2.50 x 4; --- --- , 1.67 x 6; --- --- --- , 1.25 x 8; --- --- --- , 1.00 x 10; --- --- --- --- , 1 D.

Fig. A2 legend:

Recovery curves were calculated for rectangular regions with different ratios of L_a to L_v, keeping the area of the regions constant at 10 square units where the beam radius $2w = 1 U$.

Equations:

For a 2L_a by 2L_v rectangular region,

$$F(<0) = J \text{ erf}(L_a \sqrt{2/w}) \text{ erf}(L_v \sqrt{2/w})$$

$$F(0) = -J/K \sum_{n=1}^{\infty} (-\kappa)^n / n! \text{ erf}(L_a \sqrt{2n}/w) \text{ erf}(L_v \sqrt{2n}/w)$$

$$F(\infty) = F(<0) \left[1 + \frac{(\pi w^2)}{(8L_aL_v)} \sum_{n=1}^{\infty} \frac{(-\kappa)^n/\Gamma(2n)}{n!} \right].$$

Where $\text{erf}(z)$ represents the error function of z; $J = \pi w^2/2$; and κ has been defined above.

For a circular region of radius R,

$$F(<0) = J[1 - \exp(-2R^2/w^2)]$$

$$F(0) = -(J/K) \left\{ \exp(-\kappa) - \exp(-\kappa \exp(-2R^2/w^2)) \right\}$$

$$F(\infty) = F(<0) \left[1 + \frac{(w^2/2R^2)}{\sum_{n=1}^{\infty} \left[(-\kappa)^n/\Gamma(2n) \right]} \right].$$