Saccharomyces cerevisiae and Schizosaccharomyces pombe Contain a Homologue to the 54-kD Subunit of The Signal Recognition Particle That in S. cerevisiae Is Essential for Growth

Byron C. Hann, Mark A. Poritz, and Peter Walter
Department of Biochemistry and Biophysics, University of California Medical School, San Francisco, California 94143-0448

Abstract. We have isolated and sequenced genes from Saccharomyces cerevisiae (SRP54c) and Schizosaccharomyces pombe (SRP54p) encoding proteins homologous to both the 54-kD protein subunit (SRP54m) of the mammalian signal recognition particle (SRP) and the product of a gene of unknown function in Escherichia coli, flh (Ränisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Nature (Lond.). 340:478--482; Bernstein H. D., M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, P. Walter. 1989. Nature (Lond.). 340:482--486). To accomplish this we took advantage of short stretches of conserved sequence between flh and SRP54m and used the polymerase chain reaction (PCR) to amplify fragments of the homologous yeast genes. The DNA sequences predict proteins for SRP54c and SRP54p that are 47% and 52% identical to SRP54m, respectively. Like SRP54m and flh, both predicted yeast proteins contain a GTP binding consensus sequence in their NH2-terminal half (G-domain), and methionine-rich sequences in their COOH-terminal half (M-domain). In contrast to SRP54m and flh the yeast proteins contain additional Met-rich sequences inserted at the COOH-terminal portion of the M-domain. SRP54p contains a 480-nucleotide intron located 78 nucleotides from the 5' end of the open reading frame. Although the function of the yeast homologues is unknown, gene disruption experiments in S. cerevisiae show that the gene is essential for growth. The identification of SRP54c and SRP54p provides the first evidence for SRP related proteins in yeast.

The signal recognition particle (SRP) was originally defined by in vitro assays as a soluble factor present in mammalian cells that is required for the targeting of nascent secretory proteins to the endoplasmic reticulum (Walter and Blobel, 1980). SRP, purified on the basis of this assay, is a small ribonucleoprotein containing six polypeptides and one RNA (7SL RNA) (Walter and Blobel, 1982). It functions as an adapter between secretory protein translation and secretory protein translocation across the membrane. Although protein translocation can occur after termination of protein synthesis in certain systems, SRP-promoted translocation is obligatorily cotranslational (Garcia and Walter, 1988).

Several groups have reconstituted translation and translocation of yeast proteins in vitro using cell extracts from the yeast S. cerevisiae (Hansen et al., 1986; Rothblatt and Meyer, 1986; Waters and Blobel, 1986). As yet there is no evidence for a component of this system that has the physical or mechanistic properties indicative of SRP, nor have attempts to reconstitute the yeast system with canine SRP proven fruitful. The strongest indication that an SRP-related machinery exists in yeast comes from the identification of RNAs in two species of yeast, Yarrowia lipolytica and S. pombe, which share strong secondary structure homology with higher eukaryotic 7SL RNA (Brennwald et al., 1988; Poritz et al., 1988; Ribes et al., 1988). However, no convincingly homologous RNA has been described in S. cerevisiae. While the gene for the S. pombe RNA (SRP7) is essential (Brennwald et al., 1988; Ribes et al., 1988), its function remains unknown.

Photochemical cross-linking experiments have shown that the 54-kD protein subunit of SRP (SRP54) binds to the signal sequence of nascent secretory proteins during their synthesis (Krieg et al., 1986; Kurzchalia et al., 1986). A cDNA clone for this protein has recently been isolated (Bernstein et al., 1989; Römisch et al., 1989). Its predicted amino acid sequence contains a putative GTP-binding site in the NH2-terminal half (G-domain) and an unusually methionine-rich COOH-terminal half (M-domain). The G-domain shares homology with the α-subunit of the SRP receptor (SRα, a known GTP binding protein [Connolly and Gilmore, 1989]) as well as with two previously uncharacterized E. coli pro-

© The Rockefeller University Press, 0021-9525/89/12/3223/8 $2.00
The Journal of Cell Biology, Volume 109 (No. 6, Pt. 2), Dec. 1989 3223-3230 3223
plasmid library of *S. cerevisiae* strain S288C (Carlson and Botstein, 1982).

A 2.3-kb Spe I-Hind III partial digest fragment was subcloned into the equivalent sites in pBluescript II SK+ generating the plasmid pS54-01. Both genes were sequenced by the dideoxy method (Sanger et al., 1977) using Sequenase. Internal oligonucleotide primers were used as necessary to facilitate sequencing. To confirm the putative splice site in SRP54+, a PCR reaction was performed using *S. pombe* cDNA prepared from total RNA as described above and the oligonucleotides 5'-ACTTCTGGTATTGGGAGCA-3' (sense, bases 51-67) and 5'-TTGGCCCAAGTGTGGTAC-3' (antisense, bases 606-587) as primers. The major amplified band of 95 nucleotides was sequenced directly as described above.

Disruption of SRP54

A 4.8-kb Hind III-Eco RI fragment containing the LYS2 gene from pBR322 (Barnes and Thorner, 1986) was inserted between the Hind III and Eco RI sites of the SRP54+ coding sequence in pS54-01, thereby deleting 258 bp of coding sequence from SRP54+ (see Fig. 4A). The resulting plasmid (pS54-L2) was cut with Xba I and Cla I to generate an 8-kb fragment containing SRP54+::LYS2 with 0.6-kb 5' and 1.4-kb 3' of *S. cerevisiae* DNA flanking the LYS2 gene. This fragment was introduced into a lys2+ diploid *S. cerevisiae* strain TR1 (a/a, trpl/trpl, lys2/lys2, his3/hi3, ura3/ura3, ade2/ade2; obtained from E. Schuster and C. Guthrie, University of California, San Francisco [Parker et al., 1988]) by one-step gene replacement (Orr-Weaver et al., 1981) using the LiOAc transformation method (Ito et al., 1983). After selecting for growth on Lys+ plates surviving colonies were sporulated. Tetrad dissection and genetic analysis were performed by standard procedures (Sherman et al., 1974).

Southern analysis was performed as follows. DNA was prepared from the parent and transformant (Davis et al., 1980) and digested with either *Ase I* or *Nsi I*. The resulting fragments were separated by electrophoresis in 0.8% agarose then transferred to Gene Screen (New England Nuclear, Boston, MA). A 32P-labeled probe was prepared covering a region of the SRP54+ from bases 584-1,288, roughly corresponding to the M-domain. Hybridization was performed as described (Church and Gilbert, 1984) at moderate stringency (42°C in 30% formamide, 7% SDS, 200 mM NaPO4, pH 7.5, 300 mM NaCl, 1 mM EDTA).

Results

To isolate yeast genes encoding homologues of SRP54+, we took advantage of regions within the G-domains that are highly conserved between SRP54+ and ffh. (We refer to the mammalian proteins as SRP54+ since canine and mouse SRP54 sequences differ in only 3 out of 504 amino acids.) Specifically, we chose two short, closely spaced sequence stretches, the first including part of the first consensus sequence (box I) characteristic of GTP binding proteins (Dever et al., 1987); the second, a highly conserved motif between consensus boxes I and II. Degenerate oligonucleotides encoding these amino acids sequences ("A," Fig. 1A) or their antisense ("B," Fig. 1A) were synthesized and used in PCR to amplify DNA sequences using canine cDNA or *S. pombe* genomic DNA as template. The data presented in Fig. 1B (lane 2) show that amplification of *S. pombe* DNA-generated multiple products. However, a major band comigrated with the amplification product of the canine cDNA template (Fig. 1B, lanes 1 and 2, arrow). These products were in the expected size range of 104-107 nucleotides, predicted on the basis of the conserved spacing between the two primers in SRP54+ and ffh. The analogous PCR reaction using genomic DNA from *S. cerevisiae*, however, resulted in a complex banding pattern in the relevant size range (data not shown). Many of these products were likely to be unrelated to the desired product since they were also generated if only oligonucleotide "B" was present in the reactions.

The 104 nucleotide PCR product of *S. pombe* genomic DNA was eluted from the gel and sequenced directly (see Materials and Methods). We found an open reading frame
that predicted an amino acid sequence with 66% identity with SRP54mm over a stretch of 18 amino acids. These results indicated that we had indeed amplified DNA from a \textit{S. pombe} gene homologous to SRP54mm. No conclusive sequence data, however, could be gathered from the various products generated from \textit{S. cerevisiae} template DNA. Using the sequenced \textit{S. pombe} PCR product as a probe, we isolated clones containing genomic DNA fragments from a plasmid library. Sequence analysis revealed an open reading frame (Fig. 2 A) with extensive homology to SRP54mm (Fig. 3 A). Towards the amino terminus, the reading frame lacked an initiating methionine; however, the presence of consensus sequences for 5' and 3' splice sites as well as for a splice branch point (boxed in Fig. 2 A) (Mertins and Gallwitz, 1987) predicted the existence of a 480-nucleotide intron that separates an exon encoding the NH\textsubscript{2}-terminus from the rest of the coding sequence. The 26 amino acids encoded by this exon were homologous to the NH\textsubscript{2}-terminus of SRP54mm (Fig. 3 A). Two oligonucleotides flanking the putative splice site were used in PCR to amplify cDNA prepared from \textit{S. pombe} RNA (see Materials and Methods). The major product was sequenced directly and confirmed the use of the proposed splice site in vivo (data not shown). The predicted translation product (Fig. 2 A) contains 522 amino acids with a predicted molecular mass of 57-kD and a pI of 9.9. Henceforth we refer to this gene as SRP54p.

The alignment of SRP54p with SRP54mm revealed additional regions of identity that are not present between SRP54mm and ffh. Under the assumption that these new identities are characteristic of eukaryotic SRP54, we designed an additional oligonucleotide ("C") (Fig. 1 A) to amplify a homologous gene fragment from \textit{S. cerevisiae} DNA. The results of PCR using oligonucleotides A and C are shown in Fig. 1 C. A major product of the anticipated length of 125 nucleotides was obtained (Fig. 1 C, lane 3), comigrating precisely with a product obtained using mammalian cDNA as template (Fig. 1 C, lane 1). Direct sequencing confirmed its identity as an SRP54 homologue. We proceeded to isolate and sequence a genomic clone containing the complete gene. The primary sequence, depicted in Fig. 2 B,
Figure 2. Nucleotide sequence and deduced amino acid sequence of SRP54 \(^{\text{m}} \) and SRP54 \(^{\text{c}} \). A, The nucleotide and the deduced amino acid sequence of SRP54 \(^{\text{m}} \) are shown. Bases are numbered starting at the 5' end of the initiating ATG. Regions matching the consensus sequences (Mertins and Gallwitz, 1987) for the splice branch point and 5' and 3' splice sites are boxed. B, The nucleotide and the deduced amino acid sequence of SRP54 \(^{\text{c}} \) are shown. Bases are numbered starting at the 5' end of the initiating ATG. A characteristic tripeptide repeat, discussed in the text, is underlined.

The Journal of Cell Biology, Volume 109, 1989 3226
present in single copy in the haploid genome and is essential for growth.

Discussion

We have isolated genes encoding proteins homologous to SRP54\(^{\text{m}}\) from both the budding yeast *S. cerevisiae* and the fission yeast *S. pombe*. The cloning was accomplished using regions of homology between SRP54\(^{\text{m}}\) and ffh as a starting point for PCR. The yeast protein sequences reveal extensive regions of conservation between one another and with some extent regions of conservation between SRP54\(^{\text{m}}\) and ffh as a starting point for PCR. The yeast protein sequences reveal extensive regions of conservation between one another and with the positions of GTP binding consensus box I. Among the SRP54 homologues there is almost no variation between species (GLQGAGKT). As noted before, SRP54 is a member of a new subfamily of GTP binding proteins that also includes SRo~ and ftsY family of GTP binding proteins that also includes SRo~ and ftsY.

The M-domains of both yeast proteins are characterized by a GXXXXGKS/T sequence motif. SRo~ and ftsY also share homology in the region covered by the position of GTP binding consensus box I. Among the SRP54 homologues there is almost no variation between species (GLQGAGKT). As noted before, SRP54 is a member of a new subfamily of GTP binding proteins that also includes SRo~ and ftsY family of GTP binding proteins that also includes SRo~ and ftsY.

The M-domains of both yeast proteins are characterized by a GXXXXGKS/T sequence motif. SRo~ and ftsY also share homology in the region covered by the position of GTP binding consensus box I. Among the SRP54 homologues there is almost no variation between species (GLQGAGKT). As noted before, SRP54 is a member of a new subfamily of GTP binding proteins that also includes SRo~ and ftsY family of GTP binding proteins that also includes SRo~ and ftsY.

The M-domains of both yeast proteins are characterized by a GXXXXGKS/T sequence motif. SRo~ and ftsY also share homology in the region covered by the position of GTP binding consensus box I. Among the SRP54 homologues there is almost no variation between species (GLQGAGKT). As noted before, SRP54 is a member of a new subfamily of GTP binding proteins that also includes SRo~ and ftsY family of GTP binding proteins that also includes SRo~ and ftsY.
Figure 3. Alignment of SRP54 homologues. A. The deduced amino acid sequences (one-letter code) are aligned for SRP54mm (mouse) (Bernstein et al., 1989), SRP54yp, SRP54sp, and ffh (Byström et al., 1983). (In the canine SRP54 R[205], S[209], and P[344] are replaced by M[205], A[209], and L[344], respectively [Rönnm et al., 1989].) Two or more identical amino acids in one position are indicated by capital letters. Amino acids of similar chemical properties are boxed, using the following similarity rules: L=I=M=V=F=F~, K=R=H; D=E=Q=N; G=A=S; T=V; A=V; F=Y=H=W; T=S (Dayhoff et al., 1972). Note that some positions are boxed because of two independent pairwise similarities. Gaps are indicated by dashes. The positions of the regions matching the GTP-binding consensus sequences are indicated above the alignment. The consensus sequences are box I: GXX-XXGKS/T; box H: DXXG; box IH: NKXD (Dever et al., 1987). The division between the G- and M-domains (as defined from the alignment with SRc~ and ftsY by Bernstein et al., 1989), is indicated.

B. Aligned as in A, the M-domains of the four proteins are shown schematically. A secondary structure prediction was performed according to established methods (Gamier et al., 1978). Regions that are very likely to form α-helices are shaded in dark. The position MPG/N tripeptide repeat in SRP54yp is checkered. Above the alignment putative helices previously designated by Bernstein et al. (1989) are indicated.

an abundance of Met residues: 8% SRP54yp and 18% for SRP54sp (13% for ffh and 11% for SRP54mm). We have proposed that this domain contains a flexible signal sequence binding pocket composed, in part, of a number of amphipathic helices that bear clusters of methionines on one face (Bernstein et al., 1989). Secondary structure predictions of the M-domains of the yeast proteins suggest that helices of comparable length are likely to form in corresponding positions (see Fig. 3 B) (Piner-Moore and Stroud, 1984; Garnier et al., 1978). Although the putative helices in yeast are less amphipathic in character than their mammalian or bacterial counterparts, many of the Met residues are found clustered on one face of the predicted helices 2 and 3a (not shown). COOH terminal to helix 3a, the primary structures are more divergent from one another. Nevertheless, the structural motif is conserved in the case of SRP54yp (helix 3b in Fig. 3 B). Curiously, in the corresponding position, SRP54yp contains a tripeptide (MPG/N) repeated eight times (underlined in Fig. 2 B) in which Gly and Asn are found in an alternating pattern. Because of its Pro and Gly content, this sequence is unlikely to form a stable α-helix. The tripeptide repeats, however, resemble sequences found in collagen and related proteins where they form tight left-handed helices known as collagen helices (Traub and Piez, 1971). Since collagen helices have three residues per turn, the eight methionine residues would be found clustered on one face of the helix. While such helices are normally found oligomerized in triple-stranded helices, it is conceivable that this secondary structure element is present in SRP54yp as a single helix stabilized by other features in the M-domain. Structural analy-
Figure 4. Gene disruption of SRP54sc. A, The construction of plasmid pSC54-L2 containing SRP54sc::LYS2 is shown schematically. The open box indicates the coding sequence of SRP54sc reading from left to right; the shaded boxes correspond to vector sequences. Restriction sites referred to in the text are shown. The position of the probe used for the Southern analysis shown in panel B is indicated. Note that the fragment containing the LYS2 gene is depicted in a different scale. B, Southern blot analyses showing genomic DNA from the parent (lanes 1 and 2) or transformants containing the SRP54sc::LYS2 disruption (lanes 2 and 4) are shown. DNA was digested with Ase I (lanes 1 and 2) or Nsi I (lanes 3 and 4). Fragments corresponding to the intact gene are marked by asterisks; fragments corresponding to the disrupted gene are marked by arrows.

... will be required to elucidate the organization of the M-domain, however, the phylogenetic evidence has already suggested that an abundance of Met residues is important.

... questions remain to be answered. For example, is yeast SRP54 part of a ribonucleoprotein with similar properties to that of mammalian SRP, and, if so, does its RNA component contain the conserved motifs found in other SRP RNAs (Poritz et al., 1988; Struck et al., 1988)? In particular, does SRP54sc associate with the previously described SRP7 RNA? Most importantly, it remains to be determined that functional features of an SRP-dependent pathway are conserved in yeast.

If an SRP-dependent, strictly co-translational targeting pathway exists in parallel to the posttranslational mode of translocation, it is unclear how different proteins would choose which route to follow. A distinction may be required between signal sequences that at present are considered to be more or less interchangeable. Alternatively, yeast SRP54 could function either alone or as part of a ribonucleoprotein in a posttranslational pathway to help maintain preproteins in a translocation competent state after they have been released from the ribosome.

We thank Neil Green for his advice and steady hands during tetrad analysis. We thank V. Siegel, A. Johnson, and the members of the Walter lab for critically reading the manuscript.

B. C. Hann is supported by the National Institutes of Health (NIH) Medical Scientist Training Program. M. A. Poritz is supported by Lucille P. Markey Charitable Trust Predoctoral Award No. 84-012. This work was supported by NIH grants to P. Walter.

Received for publication 4 October 1989.

References

Garnier, J., D. J. Osguthorpe, and B. Robson. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure...
of globular proteins. J. Mol. Biol. 120:97–120.

