Carbohydrate Binding Activities of Bradyrhizobium japonicum. II. Isolation and Characterization of a Galactose-specific Lectin
Siu-Cheong Ho, Melvin Schindler, and John L. Wang
Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824

Abstract. Extracts of Bradyrhizobium japonicum were fractionated on Sepharose columns covalently derivatized with lactose. Elution of the material that was specifically bound to the affinity column with lactose yielded a protein of $M_r \sim 38,000$. Isoelectric focusing of this sample yielded two spots with pI values of 6.4 and 6.8. This protein specifically bound to galactose-containing glycoconjugates, but did not bind either to glucose or mannose. Derivatives of galactose at the C-2 position showed much weaker binding; there was an 18-fold difference in the relative binding affinities of galactose versus N-acetyl-d-galactosamine. These results indicate that we have purified a newly identified carbohydrate-binding protein from Bradyrhizobium japonicum, that can exquisitely distinguish galactose from its derivatives at the C-2 position.

Materials and Methods

Isolation of Bradyrhizobium Lectin BJ38

Bradyrhizobium japonicum (R10d) was obtained from the late Dr. Barry Chelm of Michigan State University and was cultured in yeast extract-mannitol-gluconate medium as previously described (6). A 50-ml culture of the bacteria at stationary phase was inoculated into 2 liters of yeast extract-mannitol-gluconate medium and cultured for 2 d. Aliquots of 400 ml of this culture were then inoculated into another 2 liters of medium. The bacteria were cultured for 24 h at 30°C on a gyratory shaker set at 100 rpm. Bacteria were harvested by centrifugation for 15 min in a Sorvall GS3 rotor at 8,000 rpm.

The collected bacteria were frozen at −20°C overnight, thawed, and then resuspended in 150 ml of PBS (10 mM sodium phosphate, 0.14 M NaCl, 4 mM KCl, pH 7.4) containing 1 mM phenylmethylsulfanyl fluoride. The sample was subjected to two passages through the French press at 1,600 psi at 4°C. Triton X-100 was then added to a final concentration of 1% (vol/vol). The bacteria were extracted for 30 min at room temperature. The inclusion of detergent in the extraction buffer was intended to assure complete extraction of the lectin. After extraction, the lectin tends to be soluble even without detergent. The extract was centrifuged at 15,000 rpm in a Sorvall SS-34 rotor for 30 min. The supernatant was subjected to affinity chromatography on Sepharose covalently derivatized with lactose (Lac-Sepharose) at room temperature.

Lactose was coupled to epichlorohydrin-activated Sepharose 4B beads according to the procedure developed by Matsumoto et al. (13). For affinity chromatography, a column (1.5 x 7 cm) of Lac-Sepharose was equilibrated with PBS before the supernatant containing the bacterial extract was applied. The column was washed with 400 ml of PBS. Material bound to the column was then eluted with 50 ml of 0.1 M Lac in PBS. Fractions collected after the addition of Lac were concentrated on a filter (Amicon Corp., Danvers, MA) with PM10 membrane.

Radiiodination

Radiiodination was performed by the chloramine T method (11). Samples of BJ38 (100 µl) in PBS containing 0.1 M Lac were added to 1 mCi Na125I. Chloramine T (1 mg/ml) in 25 µl was added to start the reaction. After 1 min, 50 µl of sodium metabisulfite (1 mg/ml) in PBS was added to stop the reaction. The sample was applied to an AG1 x 8 ion-exchange column (0.6 x 3.5 cm; Bio-Rad Laboratories, Richmond, CA) to remove free 125I and Sephadex G-25 column (2.5 x 11 cm) to remove the Lac. The radioactive peak at the void volume of the Sephadex G-25 column was then subjected to affinity chromatography on Lac-Sepharose. The radioactive Lac-eluted fractions were then pooled and 1 ml of 5% BSA solution was added as carrier protein and then dialyzed against PBS to remove the Lac. This sample is designated 125I-BJ38.
Binding of BJ38 to Lac-Sepharose Beads

Lac-Sepharose beads were suspended in PBS at a ratio of 1:1 (vol/vol). Aliquots (0.2 ml) of this bead suspension were transferred to individual culture tubes (12 x 75 mm). Various reagents (in 0.1 ml total volume) were added, followed by 0.1 ml of [125I]-BJ38 (1.5 x 10^4 cpm) in PBS. The samples were incubated at room temperature for 4 h. The samples were then washed three times with 2 ml PBS. SDS-PAGE analysis was carried out on component B and compared to the original bacterial extract, as well as to the material not bound to the Lac-Sepharose affinity column (component A). On silver staining of the gel, component B yielded one predominant polypeptide (M_r \approx 38,000) plus additional bands (M_r \approx 50,000; M_r \approx 58,000; M_r \approx 62,000; M_r \approx 65,000) (Fig. 2, lane c). The material not bound by the affinity column (component A) showed a heterogeneous mixture of polypeptides (Fig. 2, lane b), as did the original extract (Fig. 2, lane a).

Molecular Mass and Isoelectric Points of Lectin BJ38

Component B can be further purified by another cycle of affinity chromatography. The pooled material, accumulated from fractionation of 72 liters of bacterial culture, was concentrated and passed over a Sephadex G-25 column to remove the Lac. This material was then subjected to a second cycle of Lac-Sepharose affinity chromatography. SDS-PAGE analysis of the bound and Lac-eluted material from this second affinity column yielded a single polypeptide, as revealed by silver staining of the gel (Fig. 2). This polypeptide migrated to a position corresponding to the predominant band observed in the SDS-PAGE of the partially purified material after a single cycle of Lac-Sepharose chromatography (Fig. 2, lane c). Identical results were obtained when the electrophoresis was carried out both in the presence (Fig. 2, lane e) and the absence (Fig. 2, lane d) of reducing agents.

The material corresponding to this polypeptide band (Fig. 2, lane d) was designated hereafter as BJ38 (a M_r \approx 38,000 polypeptide from Bradyrhizobium japonicum). On two-dimensional gel electrophoretic analysis, highly purified BJ38 yielded two spots, corresponding to M_r \approx 38,000 with pI values of 6.4 and 6.8 (data not shown). The intensity of

Results

Carbohydrate-binding Protein from Bradyrhizobium japonicum

Cultures of B. japonicum were grown to late logarithmic phase. The cells were ruptured and fractionated by affinity chromatography on a column of Lac-Sepharose. The majority of the protein components, monitored by absorbance at 280 nm, was not bound by the column (Fig. 1, component A). After extensive washing, proteins bound to the column were eluted with 50 ml of 0.1 M Lac in PBS (Fig. 1, component B). Although the 280-nm absorbance profile after Lac addition did not show a distinct peak of protein eluting from the column, there were reproducible and specific proteins bound to the column that were released by the saccharide addition. This conclusion is derived from: (a) SDS-PAGE analysis of the material contained in fractions corresponding to component B; and (b) radioiodination of component B and rechromatography on a second Lac-Sepharose affinity column (see below).

SDS-PAGE analysis was carried out on component B and compared to the original bacterial extract, as well as to the material not bound to the Lac-Sepharose affinity column...
Figure 2. SDS-PAGE analysis of *Bradyrhizobium japonicum* components before and after fractionation on Lac-Sepharose affinity columns. The acrylamide concentration in the gels was 10%. Lanes: (a) Total bacterial extract (25 μg); (b) component A (25 μg); (c) component B was obtained from 24 liters of bacterial culture and concentrated by ultrafiltration. Protein was estimated to be ~0.1 μg; (d) component B was isolated from 72 liters of bacterial culture. After the second cycle of affinity chromatography, the Lac-eluted fractions were concentrated to dryness on ultrafiltration membrane PM10. The sample was extracted with 150 μl of sample buffer without β-mercaptoethanol. The sample (45 μl) was applied to lane d under nonreducing conditions. (e) The same sample as in lane d was treated with 10 mM β-mercaptoethanol. (f) Autoradiography of 125I-labeled BJ38 (3,000 cpm) described in Materials and Methods. XAR-5 film was exposed for 3 d and then developed. Lanes a–e were analyzed by silver stain.

staining of purified BJ38 (Fig. 2, lane d) with the silver reagent was compared with the intensities of staining with known amounts of carbonic anhydrase (M, ~31,000). On this basis, it was estimated that we could isolate 1 μg of BJ38 from 24 liters of *B. japonicum* culture.

To characterize the properties of BJ38, the protein was radiolabeled with 125I. The reaction was carried out in the presence of 0.1 M Lac, which may protect the carbohydrate binding activity during the iodination. After removal of unincorporated 125I and Lac, the radioactive polypeptide bound to Lac-Sepharose and was eluted with 0.1 M Lac (Fig. 1, inset). SDS-PAGE analysis yielded a single band (M, ~38,000) upon autoradiography (Fig. 2, lane f). Thus, 125I-labeled BJ38 exhibited the same molecular and binding properties observed for the unlabeled protein. Routinely, a specific activity of ~1 × 10⁸ cpm/μg was obtained for 125I-labeled preparations of BJ38.

When 125I-labeled BJ38 was subjected to gel filtration on Sephadex G-100 equilibrated with PBS containing 0.1 M Lac, a single component was observed (Fig. 3). A semilogarithmic plot of the molecular masses of standard proteins and their elution volumes on the same column showed that the position of elution of 125I-labeled BJ38 corresponded to that of a polypeptide M, ~38,000 (Fig. 3, inset). Similar results were obtained both in the presence and in the absence of Lac. These data indicate that in nondenaturing solvents, the BJ38 molecule exists in the monomeric form of the M, ~38,000 polypeptide.

Saccharide-binding Specificity of BJ38

To probe the sugar-binding specificity of BJ38, the 125I-labeled protein was passed over a Lac-Sepharose column. Various saccharides were tested for their capacity to elute the bound radioactive polypeptide. When the column was developed sequentially with 50 mM of glucose, mannose, N-acetyl-

![Figure 3](https://via.placeholder.com/150)

Figure 3. Gel filtration of 125I-labeled BJ38 on Sephadex G-100 column. The column (1.5 x 114 cm) was developed with PBS containing 0.1 M Lac. Fractions of 2 ml were collected. (Inset) Semilogarithmic plot of the molecular masses versus elution volumes of calibration standards, blue dextran, bovine serum albumin (BSA, M, 66,000), ovalbumin (Ova, M, 43,000), and chymotrypsinogen (Chy, M, 23,000).

<table>
<thead>
<tr>
<th>Saccharide</th>
<th>Bound</th>
<th>Binding %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No hapten</td>
<td>6,420 ± 132</td>
<td>100</td>
</tr>
<tr>
<td>Glucose</td>
<td>6,005 ± 7</td>
<td>93 ± 0</td>
</tr>
<tr>
<td>Mannose</td>
<td>6,420 ± 169</td>
<td>99 ± 2</td>
</tr>
<tr>
<td>Galactose</td>
<td>1,270 ± 98</td>
<td>19 ± 1</td>
</tr>
<tr>
<td>Galactosamine</td>
<td>3,895 ± 261</td>
<td>60 ± 4</td>
</tr>
<tr>
<td>N-Acetyl-D-galactosamine</td>
<td>4,970 ± 56</td>
<td>77 ± 1</td>
</tr>
<tr>
<td>Lactose</td>
<td>825 ± 120</td>
<td>12 ± 1</td>
</tr>
<tr>
<td>Melibiose</td>
<td>2,540 ± 155</td>
<td>39 ± 2</td>
</tr>
<tr>
<td>Sucrose</td>
<td>5,745 ± 106</td>
<td>89 ± 1</td>
</tr>
</tbody>
</table>

Table 1. Effect of Saccharides on BJ38 Binding to Lac-Sepharose Beads*

* Aliquots of 0.2 ml of Lac-Sepharose bead suspension (1:1 [vol/vol]) were incubated with 0.1 ml of various saccharides or PBS (as control) and 0.1 ml of 125I-labeled BJ38 (1.5 × 10⁶ cpm) for 4 h at room temperature. Samples were washed three times with PBS. The amount of radioactivity associated with the beads was determined. All saccharides were added to a final concentration of 50 mM. The data represent the means of triplicate determinations ± SD.

![Figure 4](https://via.placeholder.com/150)

Figure 4. Dose-response curves of the effects of various saccharides on the binding of 125I-labeled BJ38 to Lac-Sepharose beads. (v) N-Acetyl-D-galactosamine; (●) galactose; (○) lactose.
Table II. Effect of Chelating Agents on BJ38 Binding to Lac-Sepharose Beads*

<table>
<thead>
<tr>
<th>Chelator</th>
<th>Bound</th>
<th>Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cpm</td>
<td>%</td>
</tr>
<tr>
<td>No chelator</td>
<td>6,925</td>
<td>100</td>
</tr>
<tr>
<td>10 mM EDTA</td>
<td>5,835 ± 77</td>
<td>84 ± 1</td>
</tr>
<tr>
<td>10 mM EDTA + 50 mM Lac</td>
<td>1,276 ± 468</td>
<td>18 ± 7</td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>5,880 ± 593</td>
<td>99 ± 8</td>
</tr>
<tr>
<td>1 mM EDTA + 50 mM Lac</td>
<td>1,087 ± 120</td>
<td>15 ± 1</td>
</tr>
<tr>
<td>10 mM EGTA</td>
<td>5,720 ± 70</td>
<td>82 ± 1</td>
</tr>
<tr>
<td>10 mM EGTA + 50 mM Lac</td>
<td>993 ± 93</td>
<td>14 ± 1</td>
</tr>
<tr>
<td>1 mM EGTA</td>
<td>6,560 ± 141</td>
<td>94 ± 2</td>
</tr>
<tr>
<td>1 mM EGTA + 50 mM Lac</td>
<td>1,144 ± 147</td>
<td>16 ± 2</td>
</tr>
</tbody>
</table>

* Details for the Lac-Sepharose bead binding assay were as described in Table I, replacing saccharides for chelating agents.

tyl-D-galactosamine, and galactose, a prominent radioactive peak was observed only upon the addition of Gal. These results indicate that the binding specificity is restricted to Gal- and Lac-containing glycoconjugates.

Alternatively, the binding specificity of BJ38 could be more quantitatively assessed by comparing the capacity of various saccharides to inhibit the binding of the 125I-labeled protein to Lac-Sepharose beads. Similar to radioimmunossays, the assay conditions for these studies were chosen such that $\sim 40-50\%$ of the total radioactivity added was bound by the Lac-Sepharose beads in the absence of any hapten inhibitor. At a concentration of 50 mM, there was strong inhibition of BJ38 binding to Lac-Sepharose beads by Gal and Lac (Table II). In contrast to Lac (Gal-β1,4-Glc) (12% of control binding), melibiose (Gal-α1,6-Glc) showed less inhibition (40% of control binding). Derivatives of Gal at C-2, galactosamine, and N-acetyl-d-galactosamine, showed much less inhibition (60-80% of control binding). Finally, sucrose, mannosse, and glucose showed essentially no inhibition (Table I).

More refined dose-response curves were carried out for a few inhibitory saccharides (Fig. 4). Lactose was the most potent hapten inhibitor, with half-maximal inhibition at 0.46 mM. While Lac and Gal were both inhibitory, the former was ~ 13-fold stronger in terms of relative affinities of binding to BJ38. More strikingly, there was an even greater difference in the binding of BJ38 to Gal versus GalNAc; half-maximal inhibition was achieved at 6 mM for Gal, whereas the corresponding value was 110 mM for GalNAc (Fig. 4). All of these results confirm the conclusions obtained using different saccharides to elute 125I-labeled BJ38 from Lac-Sepharose and emphasize the details of specificity with respect to the equatorial group at the C-2 position of Gal.

Effect of pH and Chelating Agents on Saccharide Binding of BJ38

The effect of pH on the binding of BJ38 was tested using Lac-Sepharose beads and the 125I-labeled protein. The pH profile exhibited a broad optimum between pH 5 and 8 (data not shown). Above and below these pHs, there was a gradual decrease in the amount of 125I-labeled BJ38 bound to the Lac-Sepharose beads.

The question arose whether BJ38 had an intrinsic requirement for divalent cations such as Ca$^{2+}$ ion in order to bind the saccharide. To test this, the binding of 125I-labeled BJ38 to Lac-Sepharose beads was determined in the presence and absence of EGTA or EDTA. Neither chelator affected the binding of 125I-labeled BJ38 to any appreciable extent (Table II), nor did the presence of EDTA or EGTA alter the ability of Lac to inhibit the binding of 125I-labeled BJ38 to the beads. These results indicate that BJ38 most probably does not require divalent cations for binding.

Loss of BJ38 Lectin Activity in Mutants N4 and N6

We have isolated two mutants, designated N4 and N6, from Bradyrhizobium japonicum on the basis of defective binding to SB-1 cells (7). Since these mutants appeared to have lost or impaired binding in all four of the saccharide-specific assays, it was of obvious interest to test for BJ38 in the N4 and N6 cells. When extracts derived from wild-type R110d cells were fractionated on Lac-Sepharose affinity columns, the bound material could be eluted with Lac and then labeled with 125I. Upon rechromatography on an identical Lac-Sepharose column, the 125I-labeled BJ38 could be identified (Fig. 1, inset, and Fig. 2, lane f). In contrast, when extracts from N4 and N6 cells were fractionated and radiolabeled in parallel, we could detect no 125I radioactivity bound to the second Lac-Sepharose affinity column and eluted by the application of Lac (Fig. 5). It appears, therefore, that the mutants N4 and N6 have lost the BJ38 lectin activity.

Discussion

The results obtained in the present study indicate that we have purified, from Bradyrhizobium japonicum, a carbohydrate binding protein with the following key physical properties. First, the molecular mass of the polypeptide chain, determined by SDS-PAGE under both reducing and nonreducing conditions, was $M_r \sim 38,000$. In nondenaturing solvents, the protein chromatographed on gel filtration columns with an apparent molecular mass of $\sim 38,000$; therefore, it appears that BJ38 did not form oligomers of the polypeptide subunit. This conclusion should be qualified, however, by the knowledge that the gel filtration experiments were carried out using minute amounts of radiolabeled protein and, thus, the concentration of BJ38 used in our column experi-
ments may be below the threshold required for self-association.

Second, two-dimensional gel electrophoresis resolved BJ38 into two different spots, with PI values of 6.4 and 6.8. The relationship between these two polypeptides, of about the same molecular mass but of different isoelectric points, has not been determined. They could represent distinct gene products; alternatively, they may represent posttranslationally modified variants of the same gene product. In any case, the fact that both polypeptides were jointly isolated by Lac-Sepharose affinity chromatography suggests that each polypeptide can bind to carbohydrate. As emphasized above, BJ38 chromatographed to a position corresponding to a polypeptide of Mr \(\approx 38,000 \) in gel filtration experiments, both in the presence and absence of Lac. The result suggests that the two polypeptides do not form oligomers. It argues against the possibility that only one of the polypeptides binds to carbohydrate, and that the other polypeptide is noncovalently associated with the carbohydrate-binding polypeptide.

Third, BJ38 bound specifically to Gal and Gal-containing glycoconjugates. Epimeric sugars such as mannose and glucose did not show any binding. Moreover, alteration of Gal at the C-2 position resulted in drastic lowering of the binding affinity, relative to Gal. For example, GalNAc exhibited 18-fold lower binding than Gal. The binding of the disaccharide Lac, on the other hand, was 13-fold higher than that of Gal. Thus, the binding of GalNAc was some 200-fold weaker than Lac. Consistent with this large difference in affinities, GalNAc failed to release \(^{125}\)I-labeled BJ38 bound to Lac-Sepharose. This capability of BJ38 to distinguish Gal versus GalNAc is similar to that observed in the plant lectin ricin, which binds to Gal with higher affinity than to GalNAc (17). In contrast, soybean agglutinin (20) and discoidin from Dictyostelium discoideum (2) both have higher affinities for GalNAc than for Gal, although both saccharides are bound.

The ability of BJ38 to distinguish Gal versus GalNAc is also of particular interest in light of observations documented in the accompanying paper (7). We have found that B. japonicum exhibit four saccharide-specific binding activities: (a) adsorption to Lac-Sepharose; (b) autoagglutination; (c) binding to cultured SB-1 cells; and (d) adhesion to soybean roots. In all four of these assays, Gal inhibited the binding, while GalNAc did not. Similarly, Lac was a strong inhibitor, whereas melibiose showed much less inhibition (7), consistent with the data obtained for BJ38. At the correlative level, therefore, one likely candidate to account for the carbohydrate binding activities of B. japonicum is BJ38. Consistent with this hypothesis, we have found that the mutants N4 and N6, which have lost the carbohydrate binding properties of wild type B. japonicum, also appeared to have lost the lectin activity corresponding to BJ38.

Finally, preliminary evidence indicates that BJ38 did not carry enzymatic activities such as \(\beta \)-galactosidase. We have also failed to find identities between the polypeptide molecular mass, PI value, and pH optimum for BJ38 with the corresponding molecular parameters for a number of bacterial galactosidases (23, 24), arabinogalactanases (25), pectin lyase (21), and pectin esterases (4) reported in the literature.

Many hemagglutinins of bacterial origin have been previously identified and characterized (1, 3, 8, 9, 12, 15, 16, 19, 22). These exhibit distinct sugar specificities. Moreover, some bacterial cells often express three or four hemagglutinins, each with a different carbohydrate binding specificity. A comparison of the data accumulated for BJ38 in the present study with the known properties of other bacterial lectins suggest that we have identified and isolated a new carbohydrate binding protein, BJ38.

We thank Elizabeth A. Cowl and her help with the two-dimensional gel analysis, Edward Yuan for his technical assistance, and Linda Lang for her preparation of the manuscript. This work was supported by grant 86-2042 from the U.S. Department of Agriculture and by the Michigan Agricultural Experiment Station.

Received for publication 22 January 1990 and in revised form 7 May 1990.

References