Metastatic Behavior of Human Melanoma Cell Lines in Nude Mice Correlates with Urokinase-Type Plasminogen Activator, its Type-1 Inhibitor, and Urokinase-mediated Matrix Degradation

P. H. A. Quax,* G. N. P. van Muijen,† E. J. D. Weening-Verhoeff,* L. R. Lund,§ K. Danø,§ D. J. Ruiter,† and J. H. Verheijen*

*Gaubius Laboratory, IWO-TNO, P.O. Box 430, 2300 AK Leiden, the Netherlands; †Department of Pathology, University Hospital, Nijmegen, the Netherlands; §Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark

Abstract. Five out of six human melanoma cell lines tested were able to degrade in vitro a smooth muscle cell extracellular matrix in a plasmin-dependent way. In three of these five cell lines, this process was mediated by tissue-type plasminogen activator (t-PA) and in the other two cell lines by urokinase-type plasminogen activator (u-PA).

All melanoma cell lines produced t-PA mRNA and protein, whereas only the two cell lines showing u-PA-mediated matrix degradation produced u-PA mRNA and protein. These latter cell lines also produced plasminogen activator inhibitor type-1 (PAI-1) and type-2 (PAI-2) mRNA and protein. u-PA receptor (u-PA-R) mRNA and binding of radiolabeled u-PA was found in all melanoma cell lines. The metastatic capacity of these cell lines was studied in nude mice. All cell lines were able to develop primary tumors at the subcutaneous inoculation site. The production of plasminogen activators, their inhibitors and urokinase receptor by subcutaneous tumors corresponded with the production by the parental cell lines in vitro.

The two u-PA and PAI-1 producing cell lines showed the highest frequency to form spontaneous lung metastases after subcutaneous inoculation, whereas five of the six cell lines formed lung colonies after intravenous inoculation.

In conclusion, u-PA mediated matrix degradation in vitro and production of u-PA and PAI-1 by human melanoma cell lines correlated with their ability to form spontaneous lung metastasis in nude mice. No correlation was found with the ability to form lung colonies after intravenous injection. These findings suggest a role for u-PA and PAI-1 in a relatively early stage of melanoma metastasis.

During metastasis, tumor cells must penetrate basement membranes and interstitial tissues, when they detach from the primary tumor and intravasate into the circulation, and later when they extravasate at the site formation of the secondary tumor. This means that these tumor cells should express the right panel and adequate levels of proteolytic enzymes to degrade the extracellular matrix (15, 16, 24, 34, 49, 57). In addition, these enzymes may have a function in the process of angiogenesis when endothelial cells grow invasively into the newly formed tumor and form new blood vessels (25, 38). The serine protease plasmin is one of the major enzymes believed to be involved in such proteolytic processes (15, 16, 24, 42, 43). Plasmin has a broad substrate specificity and can digest most of the components of the extracellular matrix including the basement membrane, either directly or by activation of proenzymes of metalloproteinases, like type IV collagenase or interstitial collagenase (23, 39, 57). Plasmin is formed by a conversion of thezymogen plasminogen, which is regulated by plasminogen activators. Two distinct plasminogen activators are known, the tissue-type (t-PA),1 and the urokinase-type (u-PA). The activity of the activators can be regulated by interactions with specific inhibitors, of which two have been described, type 1 (PAI-1) and type 2 (PAI-2) (33, 53). In addition, u-PA and its proenzyme, pro-u-PA, can be localized at cell surfaces by binding through their growth factor domain to a specific receptor (u-PA-R) (2, 8, 12, 41, 51, 55, 56, 62).

To study the role of plasminogen activation system in metastasis of malignant melanomas, we have investigated the occurrence of its various components and their mRNA in a set of six human melanoma cell lines with different metastatic behavior in the nude mice. To study the different steps in the metastatic process (primary tumor growth, local invasion and detachment of tumor cells from the primary tumor, lodgement and invasion in distant tissues) the cells were inoculated either subcutaneously or intravenously.

1. Abbreviations used in this paper: PAI, plasminogen activator inhibitor; t-PA, tissue plasminogen activator; u-PA, urokinase plasminogen activator; u-PA-R, urokinase plasminogen activator receptor.
Furthermore, the ability of tumor cells to degrade extracellular matrix produced by smooth muscle cells was used as an in vitro model in which the effects of antitumor antibodies against t-PA and u-PA were tested.

Materials and Methods

Cell Lines

All cell lines were derived from human melanoma metastases. The I66 (59) and MV3 (60) cell lines were developed from lymph node metastases of two different male patients. The BLN cell line is a subline of B16 (35) and was isolated from lung metastases after subcutaneous inoculation of nude mice with B16 cells. The M14 (31) cell line was kindly provided by Dr. J. de Vries (The Netherlands Cancer Institute, Amsterdam, The Netherlands). The 530 cell line (64) was established and kindly provided by Dr. P. I. Schrier (University Hospital, Leiden, The Netherlands).

Cell Culture

All cell lines were grown as monolayers in DME medium supplemented with 10% FCS, 2 mM glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin. To determine the protein and mRNA levels of plasminogen activators and their inhibitors fresh serum containing medium was added to the cells cultures shortly before they reached confluency, 24 h later when the cells had reached confluency, the conditioned medium was collected and cell extracts were prepared for antigen determination and RNA isolation.

Assay for PA and PAI Antigen

Antigen levels of t-PA, u-PA, PAI-1, and PAI-2 were determined in both conditioned media and cell extracts (extracted with 0.5% Triton X-100 and scraped with a rubber policeman) of cultured human melanoma cell lines. The antigen levels in tissue extracts of subcutaneous tumors derived from these cell lines after inoculation in nude mice were also determined. Extracts of subcutaneous tumors in nude mice were prepared using 0.1 M Tris-HCl (pH 7.5)/0.1% Tween 20 as a homogenization buffer. The final extracts contained 50 mg tumor tissue/ml.

mRNA Quantification

mRNA levels were determined as described by Quax et al. (48) using dot blots containing series of dilutions of in vitro transcripts of t-PA, u-PA, PAI-1 and PAI-2 as standards. These RNA transcripts were made using T7 RNA polymerase (Promega Biotec, Leiden, The Netherlands). After removal of the DNA templates with RQ1 DNase (Promega Biotec), the amounts of RNA transcripts synthesized were determined by measuring OD260. As an internal standard β-actin was used.

cDNA Probes

For the hybridization experiments the following cDNA fragments were used as probes: a 1.9-kb BglII fragment of the human t-PA cDNA (61), a 1.0-kb EcoRI-PstI fragment of the human u-PA cDNA (57), a 1.2-kb PstI fragment of the human PAI-1 cDNA (58), a 1.2-kb EcoRI fragment of the human PAI-2 cDNA, kindly provided by Dr. E. K. O. Kruithof (52), and a 1.2-kb PstI fragment of a hamster β-actin cDNA, kindly provided by Dr. W. J. Quax (18).

As a probe for the u-PA receptor mRNA the p-uPAR-1 plasmid containing the complete cDNA for human u-PAR (51) was used after random primer labeling and hybridization performed as described earlier (36).

Extracellular Matrix Preparation and Degradation

Bovine smooth muscle cells (kindly provided by Dr. G. Sperti, Harmsen medical Hospital, London) were grown to confluency in DME medium supplemented with 10% FCS, 2 mM glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin in 2-cm culture dishes. After the cultures had reached confluency and the formation of extracellular matrix was started, the cells were incubated for 4 d with medium containing a [3H]amino acid mixture (1 µCi/ml, Amersham International). Cells were then lysed using 0.5% Triton X-100 in PBS and the cytoskeleton was removed by 25 mM ammonium-hydroxide treatment. Unincorporated [3H]amino acids were washed from the remaining extracellular matrix using H2O (twice) and 75% ethanol. Matrices were dried and stored at −20°C until use. Before tumor cells were seeded onto the [3H]-labeled matrices, the latter were soaked with medium for 1 h. For the extracellular matrix degradation assay 106 cells/2-cm dish were seeded onto the matrix in 10% FCS containing DME medium or DME medium supplemented with 100 U/ml aprotinin (as plasmin inhibitor) or specific inhibiting antibodies against t-PA (50) or u-PA (6). Antibody concentrations used were ~30 µg/ml for anti-t-PA and 300 µg/ml for anti-u-PA. Human plasminogen, purified by affinity chromatography as described previously (63), was added to the medium in all experiments to a final concentration of 0.14 µM. After 2 d, the conditioned medium was removed and the remaining matrix was degraded with 0.25% trypsin (1 h at 37°C). The [3H]Amino acid release was determined and the [3H] release by the tumor cells was expressed as percentage of the total amount of [3H] released (the sum of the release by the cells and by the tryps in treatment).

u-PA Receptor Analysis

The presence of u-PA in the cells was determined essentially according to Nielsen et al. (41). Tumor cells were grown to confluency in DME medium plus 10% FCS, detached from the culture dishes using a rubber policeman and washed twice with PBS. After a moderate acid treatment (0.05 M glycine, pH 3.0, 0.1 M NaCl; for 3 min at room temperature) to remove the endogenous u-PA from the receptor, cells were lysed in 0.1 M Tris-HCl pH 8.1, 1% Triton X-114, 10 mM EDTA, 100 U/ml aprotinin, 1 mM PMSF and centrifuged for 10 min at 10,000 g. The supernatant was stored at −20°C. Diisopropylfluorophosphate (DFP)-treated u-PA (5) (kindly provided by Dr. N. Behrendt, Finsen Laboratory, Copenhagen) was radiolabeled using Na125I according to the iodogen procedure (Pierce Chemical Co., Rockford, IL). u-PA receptor was determined in crude cell extracts by incubation of a sample of the cell extract (of ~5 × 106 cells) with 512P-labeled DFP treated u-PA, with or without addition of a 100-fold excess of unlabeled u-PA, in 20 µl PBS, 0.1% Tween 80 for 1 h at 4°C, followed by incubation with the crosslinking agent diacinnimidyl suberate (2 mM) for 15 min at room temperature and with ammonium acetate (10 mM) for 10 min at room temperature. The samples were then analyzed by SDS-PAGE and autoradiography using Kodak XAR-5 film and intensifying screens at −70°C. Extracts of subcutaneous tumor tissue (50 mg/ml) were prepared by homogenization in 0.2 M Tris-HCl (pH 7.5). Subsequently, membrane fractions were purified by centrifugation of the extracts in an airfuge (Beckman Instruments, Fullerton, CA) at 130,000 g for 15 min. The pellet was re suspended in glycine buffer (0.05 M glycine, pH 3.0, 0.1 M NaCl), centri-
Nude Mice

Balb/c athymic nude mice (nu/nu) were purchased from the Laboratory Breeding Research Center (Gl. Bomholtgaard, Ry, Denmark) and kept in separate rooms in cages covered with air filters under SPF conditions. Mice were used when 4–6 wk old and were sex matched.

Tumor Cell Inoculation

Melanoma cells were harvested from subconfluent cultures by trypsinization, washed twice with serum containing medium, suspended in PBS (1–2 × 10^7 cells/ml) and inoculated (a) subcutaneously into the lateral thoracic wall to produce tumors at the inoculation site and to produce pulmonary metastases or (b) intravenously into the lateral tail vein to produce lung colonies. 1–2 × 10^6 Tumor cells were injected in both cases. Mice were routinely checked twice a week and killed when signs of illness were noted or, when they remained healthy, 3–4 mo after inoculation autopsy was performed and kidney, spleen, liver, lymph nodes, and lungs were routinely examined for metastasis both macroscopically and microscopically. Tissue samples from subcutaneous tumors and from the lungs were snap frozen and stored at −70°C for biochemical analysis and immunohistological staining.

Detection of Lung Metastases

At autopsy, lungs were taken for histopathological examination, fixed in formalin, and embedded in paraffin. To avoid missing micrometastases, 4-μm hematoxylin- and eosin-stained sections from at least three different levels were examined for the presence of lung metastases (59, 60).

Immunohistochemical Staining of u-PA

Indirect immunoperoxidase staining was done with two well-characterized polyclonal rabbit antibodies against human u-PA of different origins (6, 32) on 4-μm frozen sections of xenograft lesions of all six melanoma cell lines. As a first antibody fixation, sections were deparaffinized as described by Nakane and Pierce (40). As the second antibody, swine-anti-rabbit IgG conjugated to horseshadish peroxidase (Dakopatts, Denmark) was used and 3-amino-9-ethylcarbazole was used as a substrate. Harris hematoxylin (Merck, Darmstadt, Germany) was used to counterstain. As a control for specificity of the human u-PA antibodies rabbit nonimmune serum or antibodies absorbed with purified human u-PA were used (26).

Results

Extracellular Matrix Degradation In Vitro

The capacity of all six melanoma cell lines to degrade extracellular matrix was tested by culturing them on 3H-labeled extracellular matrix produced by bovine smooth muscle cells. Five of the six cell lines had the capacity to degrade the matrix (Fig. 1). Only Mel 57 showed no significant degradation of the matrix when compared to the background. In all cell lines studied, except Mel 57, matrix degradation could be inhibited almost completely by aprotinin addition (Fig. 1), indicating the involvement of trypsin-like proteases, probably plasmin, since there was a strong decrease in the matrix degradation when several cell lines were grown in the absence of plasminogen (serum free conditions without addition of plasminogen) (results not shown).

Cultivation in the presence of specific antibodies against t-PA showed a clear decrease in the matrix degradation caused by the M14, IF6, and 530 cells, but had no effect on the matrix degradation by the MV3 and BLM cells. Incubation with antibodies against u-PA showed a strong decrease in MV3- and BLM-mediated matrix degradation, but had no effect on M14-, IF6-, and 530-mediated matrix degradation. These results indicate that extracellular matrix degradation is mediated by t-PA in the M14, IF6, and 530 cells and by u-PA in MV3 and BLM cells.

Synthesis of PA and PAI by Melanoma Cells

To determine which types of plasminogen activators or plasminogen activator inhibitors are produced by the melanoma cell lines tested, preparations of total RNA were analyzed by Northern blot hybridizations, using cDNA probes for t-PA, u-PA, PAI-1, and PAI-2 (Fig. 2). In all the melanoma cell lines studied t-PA mRNA could be detected, while in only two cell lines, MV3 and BLM, u-PA mRNA was detected. PAI-1 and PAI-2 mRNA were also only detectable in these two latter cell lines. mRNA levels and the correspond-
ing protein levels were quantified in cell extracts and in conditioned media in parallel cultures (Table I). t-PA antigen was detected in all melanoma cell lines studied and >96% of the t-PA was found in the culture medium after 24 h incubation. u-PA was only detectable in MV3 and BLM. In this case, however, a significant fraction (16 and 30%, respectively) was cell associated after 24 h incubation. PAI-1 antigen was detected in the MV3 and BLM cell lines only and >97% was found in the culture medium. The highest levels of PAI-2 were detected in MV3 and BLM, but also in the other melanoma cell lines small amounts of PAI-2 were detectable although no mRNA could be detected. In all cases PAI-2 was mainly in a cell-associated form. In general, the mRNA levels correspond well with the protein levels.

Urokinase Cross-Linking to Cell Lysates

Radiolabeled DFP-treated urokinase was incubated and crosslinked with lysates of all six melanoma cell lines studied. In all cell lines, a 94-kD complex was detected after SDS-PAGE and autoradiography. The intensity of the 94-kD band was similar in all the cell lines except Me157, which showed considerably less complex formation (Fig. 3). In all cases complex formation could be prevented almost completely by addition of excess of unlabeled urokinase. These results indicate that 125I-u-PA binding is saturable and that the complexes formed have characteristics similar to u-PA/u-PAR complexes formed observed with other human cell lines (41).

Urokinase Receptor mRNA Analysis

RNA extracts of all melanoma cell lines were analyzed for the presence of the u-PAR mRNA using Northern blot hybridization with a specific u-PAR cDNA probe (51). In all the cell lines u-PAR mRNA was detectable (Fig. 4), however the intensity of the hybridization signals varied considerably. The strongest signal was found in RNA extracts from the MV3 and BLM cells.

Tumorigenicity and Metastatic Behavior of Melanoma Cell Lines

To assess the tumorigenicity in nude mice, melanoma cells were injected subcutaneously. The data concerning tumor formation at the site of inoculation (tumor take) are presented.
in Table II, left. Subcutaneous tumor development varied from 51 (M14) to 96% (MV3) of mice injected, and tumor latency ranged from 10 d (MV3) to 40 d (530). The capacity to develop lung metastases after subcutaneous inoculation is also presented in Table II, left (expressed as percentage of mice which developed subcutaneous tumors). As can be seen, two of the cell lines, IF6 and 530, did not develop metastases at all, two cell lines, M14 and Mel 57, only sporadically, and two cell lines, MV3 and BLM, very frequently. With respect to the nonmetastasizing cell lines IF6 and 530, we found in an additional experiment that even 6-7 mo after subcutaneous tumor cell inoculation or after inoculation of 10^5 tumor cells instead of the usual 1-2 x 10^6 cells, no lung metastases could be observed. The difference in invasive character of BLM and MV3 cells compared with the less or nonmetastasizing other cell lines was also consistently observed in the subcutaneous tumors. As illustrated in Fig. 5, subcutaneous xenografts of IF6 were encapsulated by host stroma (Fig. 5, A and C), while MV3 (and BLM) cells were not (Fig. 5 B). In addition, MV3 (and BLM) cells invaded into the subdermal muscles (Fig. 5 D). As it appears from Table II, the number of lesions found in the lungs of mice that developed metastases varied strongly and both tumor cell emboli (Fig. 5 E) and invasively growing lung metastases (Fig. 5 F) were observed.

The capacity to develop experimental metastases after intravenous tumor cell inoculation was investigated in another experiment and presented in Table II, right. All melanoma cell lines, except IF6, had the capacity to colonize to the lung and form metastases with frequencies between 50 (M14) and 95% (MV3) of mice injected.

Detection of Plasminogen Activator and Inhibitor in Tumor Extracts

Antigen levels in extracts of subcutaneous tumors were determined for t-PA, u-PA and PAI-1 (Table III). Similar to the results obtained with the corresponding cultivated cells (see Table I), all tumors contained t-PA while u-PA and PAI-1 only were detected in those derived from the MV3 and BLM cell lines. Extracts of subcutaneous tumors were also analyzed for the occurrence of u-PA receptor by cross-linking with ^125^I-labeled DFP-treated u-PA. In all tumor extracts studied, except in Mel57, 94-kD complexes could be detected, although at a low level (Fig. 6). After acid treatment of the membrane fraction of the tumor extracts (a procedure which dissociates endogenous u-PA from its receptor), a strong increase in the complex formation in the MV3 and BLM tumor extracts could be detected (Fig. 6). This indicates that receptors were present in all the tumors except Mel 57, that the levels of u-PAR in MV3 and BLM tumors were higher than in the tumors of the other cell lines, and that in these two tumors most of the urokinase receptors were occupied by u-PA, which because of a species specificity in the receptor binding (2, 21) must be of human origin.

Immunohistochemical Localization of u-PA in Tumors

To confirm the presence of u-PA in the tumors caused by the melanoma cell lines MV3 and BLM, sections of xenograft lesions were stained immunohistologically using two different u-PA-specific polyclonal antibodies. For both antibodies similar results were obtained. Fig. 7, a and c shows that BLM cells both in the subcutaneous tumor and in lung metastases derived from these tumors showed a strong, evenly distributed, u-PA staining. For MV3 a similar staining pattern was observed (data not shown). No u-PA staining was detected in the xenografts of any of the other four cell lines studied (Fig. 7 b).

Discussion

It is found that five of the six human melanoma cell lines tested were able to digest in vitro an extracellular matrix synthesized by bovine smooth muscle cells in a largely plasminogen-dependent way. Degradation of the extracellular matrix was markedly inhibited by antibodies against either t-PA or u-PA. Moreover, it was blocked nearly completely by addition of aprotinin to the culture medium, which contained serum and additional plasminogen. These results suggest that plasmin is involved in the matrix degradation. As the extracellular matrices were produced by smooth muscle cells without ad-

Table II. Tumorigenesis and Metastasis of Melanoma Cell Lines in Nude Mice

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Number of mice injected</th>
<th>Tumor take</th>
<th>Lung metastasis</th>
<th>Number of metastases per mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV3</td>
<td>25</td>
<td>24 (96%)</td>
<td>22 (90%)</td>
<td>9 (1-25)</td>
</tr>
<tr>
<td>M14</td>
<td>45</td>
<td>23 (51%)</td>
<td>2 (9%)</td>
<td>25 (12-38)</td>
</tr>
<tr>
<td>IF6</td>
<td>50</td>
<td>30 (60%)</td>
<td>0 (0%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>BLM</td>
<td>60</td>
<td>46 (77%)</td>
<td>22 (48%)</td>
<td>12 (3-45)</td>
</tr>
<tr>
<td>530</td>
<td>30</td>
<td>19 (63%)</td>
<td>0 (0%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Mel57</td>
<td>40</td>
<td>25 (62%)</td>
<td>4 (16%)</td>
<td>14 (3-24)</td>
</tr>
</tbody>
</table>

*Frequency of lung lesions in absolute numbers and expressed as the percentage of the mice injected that give tumor formation at the subcutaneous inoculation site.

Number of colonies per mouse

<table>
<thead>
<tr>
<th>Number of mice injected</th>
<th>Lung colonies</th>
<th>Number of colonies per mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19</td>
<td>95</td>
</tr>
<tr>
<td>45</td>
<td>22</td>
<td>49</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>20</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>13</td>
<td>52</td>
</tr>
</tbody>
</table>

Mean value of number of lesions in maximally ten randomly chosen mice with metastases or colonies counted in three lung sections from different levels.

Number of colonies per mouse

Frequency of lung lesions after intravenous inoculation in absolute numbers and expressed as percentage of mice inoculated, detected microscopically as for subcutaneous inoculation.

Mean value and range of lung lesions determined as for subcutaneous inoculation.

Quax et al. Urokinase in Matrix Degradation and Metastasis

195
Figure 5. Morphological aspect of subcutaneous tumors after inoculation of IP6 cells (A and C) and MV3 cells (B and D) and of the metastases in lungs of mice subcutaneously inoculated with MV3 cells (E and F). In the lung sections both tumor cell emboli (E) and invasively growing metastases (F) were found. All sections were stained with haematoxylin and eosin. Bar, 1 μm.

Table III. PA and PAI Protein Levels in Subcutaneous Xenograft Lesions

<table>
<thead>
<tr>
<th>Tumors derived from cell line</th>
<th>t-PA (ng antigen per mg wet wt)</th>
<th>u-PA</th>
<th>PAI-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV3</td>
<td>0.060</td>
<td>0.91</td>
<td>5.3</td>
</tr>
<tr>
<td>M14</td>
<td>0.042</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IF6</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BLM</td>
<td>0.072</td>
<td>0.28</td>
<td>0.56</td>
</tr>
<tr>
<td>530</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mel57</td>
<td>0.036</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Protein levels of plasminogen activators and inhibitor type 1 in extracts of subcutaneous tumors derived from human melanoma cell lines in nude mice (dashes indicate levels below detection limits, 0.02 and 0.01 ng/mg for u-PA and PAI-1, respectively).

The addition of ascorbic acid to the culture medium they contain little or no collagen (10, 29, 30). The matrix degradation was mediated virtually only by t-PA in three of the cell lines (M14, IF6, and 530) while in two cell lines (BLM and MV3) it was mediated virtually only by u-PA (Fig. 1). Very little, although significant matrix degradation was observed with Mel57 cells. This matrix degradation could not be inhibited by antibodies to u-PA or t-PA and could only partly (50%) be inhibited by aprotinin. The finding that u-PA can mediate degradation of extracellular matrix in this system is in agreement with a previous report by Cajot et al. (10), in which mouse L-cells transformed with the human u-PA gene were studied.

All melanoma cell lines studied produced large quantities of t-PA mRNA and antigen, which was mainly secreted into
Figure 6. Analysis for u-PA receptor in extracts of subcutaneous tumors derived from human melanoma cell lines (A) or isolated, acid treated, membrane fractions (B) were incubated with \(^{125}\)I DFP u-PA. After crosslinking with disuccinimidylsuberate, samples were analyzed using SDS-PAGE and visualized using autoradiography. Lysates of U937 cells were used as a positive control.

Figure 7. Immunohistochemical staining of tumors for u-PA. Primary tumors obtained by subcutaneous inoculation of (A) BLM cells and (B) Mel 57 cells and (C) a lung metastasis produced after subcutaneous inoculation of BLM cells. Frozen sections were stained with polyclonal rabbit anti-human-u-PA antibody (56) as described, with nuclear counterstaining. No staining was obtained with the antibody after absorption with purified human u-PA (26). Staining with a different polyclonal rabbit anti-human-u-PA antibody (32) gave identical stain. Bar, 1 \(\mu\)m.
produce subcutaneous tumors at the site of inoculation. Since human melanoma cell lines were used in mice it was possible to study the expression of t-PA, u-PA, and PAI-1 by the tumor and the metastases in vivo in the mouse tissue, using species specific antibodies. The expression of human t-PA, u-PA, and PAI-1 in these tumors in vivo corresponded well with the expression in vitro. t-PA was found in extracts of all the tumors, while u-PA and PAI-1 was found only in the MV3 and BLM tumors. The presence of u-PA in the MV3 and BLM tumors and its absence in the other tumors was confirmed by the immunohistochemical studies. No mouse u-PA could be detected in the tumors (not shown). In extracts of all the subcutaneous tumors, except the Mel 57-derived tumor, u-PAR was detectable. After mild acid treatment, u-PA binding to lysates of the MV3 and BLM tumors increased dramatically, indicating that in these two cases the receptor was already largely occupied by u-PA produced by the human tumor cells, because the human urokinase receptor can not efficiently bind mouse u-PA (2, 21).

Out of the six cell lines only MV3 and BLM frequently developed lung metastases. These two cell lines were also the only ones having u-PA mediated matrix degradation in vitro and u-PA and PAI-1 production in vitro and in vivo. The melanoma cell lines that only produce t-PA did not, or only sporadically, develop lung metastases after subcutaneous inoculation. The cells forming metastasis sporadically, Mel57 and M14, might use other proteolytic enzymes. Matrix degradation experiments with Mel57 reveal no inhibition by antibodies against t-PA and u-PA and only a very limited effect of aprotinin, suggesting the involvement of non-serine proteases. These observations suggest a correlation between u-PA production, PAI-1 production and frequent spontaneous metastasis after subcutaneous inoculation. Statistical analysis reveals that there is only a 0.5–7% probability that this correlation is based on chance, depending on the fact whether u-PA and PAI-1 production are completely independent or strictly coupled.

All the human melanoma cell lines, except IF6, caused lung colonies in at least 49% of the mice when inoculated intravenously in the tail vein (Table II B). The differences in metastasis formation after subcutaneous versus intravenous inoculation suggests that u-PA and/or PAI are involved especially in the early steps in the metastatic cascade and not in the lodgement of melanoma cells in the lung. This conclusion is in contrast to previous reports in which a role of plasminogen activator: proenzyme, receptor, and inhibitors. J. Cell Biol. 104:801-804.

References

Urokinase in Matrix Degradation and Metastasis

