DEMONSTRATION OF SURFACE ANTIGENS
AND PINOCYTOSIS IN MAMMALIAN
CELLS WITH FERRITIN-ANTIBODY CONJUGATES

JOHN M. EASTON, BURTON GOLDBERG, and HOWARD GREEN. From the Department of
Pathology, New York University School of Medicine, New York

Ferritin, a protein of high electron scatter due to
its high iron content, can be covalently conjugated
to antibody and the resulting molecule employed
as an “electron stain” for specific antigens (1, 2).
We have conjugated ferritin to gamma globulins
of antiascites tumor cell antisera, incubated the
cells in vitro with such “ferroglobulins,” and
examined the thin sectioned cells in the electron
microscope. Cell membrane antigens have been
demonstrated by this technique, and the ferritin
has also proved to be a convenient marker for
studying the process of pinocytosis.

MATERIALS AND METHODS
Preparation of cells, antibodies, and incubation con-
cditions have been reported in detail elsewhere (3, 4).
Horse ferritin was coupled to rabbit immune gamma
globulin by the original method of Singer (1), and
0.36 ml of the final product (ferritin, 5.6 mg/ml;
gamma globulin, 6.94 mg/ml) was incubated with a
washed suspension of Krebs ascites tumor cells
(approximately 3 X 10^6 cells) in a final volume of
1 ml. After 30 minutes’ incubation at 37°C with
gentle shaking, the cells were centrifuged and fixed
with 1 per cent buffered (pH 7.2) OsO₄. After de-
hydration and embedding in methacrylate, sections
were cut on a Porter-Blum microtome and examined
in an RCA EMU-3D electron microscope.

RESULTS AND DISCUSSION
I. Demonstration of Surface Antigens
Specific antibodies have been shown to induce
focal zones of evagination and invagination of the
plasma membrane of mammalian cells (3), and
this phenomenon was again observed in these
experiments. Fig. 1, taken from a cell incubated
with rabbit immune ferroglobulin, illustrates the
surface change; the labyrinthine folding is thought
to arise as normal surface membrane movements
bring separated antigenic points into sufficient
proximity to be fixed successively by antibody.
Higher resolution studies of such cells (Fig. 2)
showed a characteristic array of ferritin molecules
along the cell membrane, indicating that the
conjugated antibody was fixed to surface antigens.
Ferritin molecules did not appear in significant
numbers on the surfaces of control cells incubated
with non-immune conjugates or with uncoupled
ferritin and immune gamma globulin. It may
therefore be assumed that nearly every ferritin
molecule associated with the cell membrane in
Fig. 2 marks a site of antibody-antigen union.
This direct demonstration of the fixation of
antibodies to cell membrane antigens supports
the view that the cell membrane is the primary
site of attack of cytotoxic antibodies and comple-
ment (4, 5). Ferritin-antibody conjugates have
been employed in a more detailed study of the
events of immune cytolysis (6).

II. Pinocytosis of the Ferritin Label
The ferritin-antibody units did not appear able
to pass directly through the cell membrane into
the cytoplasmic matrix. When ferritin molecules
were identified in the interior of experimental
and control cells, they were always contained
within membrane-bounded profiles and pre-
sumably had entered the cells by the process of
pinocytosis (7–10). Cells incubated with immune ferroglobulin seemed to contain more pinocytosed ferritin than cells incubated with non-immune conjugate or with uncoupled ferritin and immune gamma globulin. This suggests that the specific fixation of the immune conjugate to the cell (11), the ferritin is incorporated into the interior, where it may be considered to lie within the system of membranes termed the endoplasmic reticulum (9). Most of the pinocytosed ferritin molecules were contained within simple vesicles of varying diameter and no internal structure.

Figure 1

Antibody-induced surface alteration in Krebs ascites tumor cell. Note that invaginated, apposed elements of the surface membrane tend to maintain a rather constant distance of separation (100 to 300 A). In contrast, elements of endoplasmic reticulum (arrows) tend to have sectioned profiles with diameters much greater than 300 A. N, nucleus. X 30,000.

surface provided a greater opportunity for pinocytosis of the label to occur. Fig. 3, taken from a control cell incubated with non-immune conjugate, demonstrates a series of small vesicles extending from the surface membrane to the cell interior, with ferritin molecules present in the deepest vesicle. Presumably by such a process of invagination and vesiculation at the cell surface (Fig. 4). However, ferritin was also identified within membrane-bounded profiles exhibiting polymorphic internal organization (Figs. 5 to 7). Ferritin was not identified in every sectioned granule of this type (Figs. 8 to 10); the ferritin may have been present but outside the plane of section, or the granule may have been formed before pinocytosis of the ferritin occurred. Both
Higher resolution study of zone of surface folding in cell incubated with immune ferroglobulin. Ferritin molecules are arrayed along the cell membrane and mark sites of antibody-antigen bonding. Arrow marks transition between apposed surface membranes and a large spherical profile. Its distance from the cell surface and its large diameter suggest that the profile is an element of smooth surfaced endoplasmic reticulum. \times 93,000.

The clear vesicles and the profiles with internal structure were bounded externally by a smooth 70 Å membrane. Ferritin was not identified within cavities of rough surfaced endoplasmic reticulum nor within mitochondria.

It thus appeared that ferritin, originally enclosed within invaginated segments of the plasma membrane, eventually became segregated in the cell interior in structures bounded by a smooth membrane and exhibiting varying stages of...
organization. It might be assumed that the latter structures were in at least intermittent continuity with the system of smooth surfaced endoplasmic reticulum, and they may represent further specializations of that system.

Studies by Parks et al. with Kupffer cells (12), by Odor with mesothelium (13), and by Harford et al. with HeLa cells (14) have also shown that pinocytosed colloidal particles appear in clear vacuoles and in cytoplasmic granules of varying size, density, and structure. Brandt's phase and fluorescence microscopic studies on the amoeba

![Figure 3](image)

Figure 3
Cell incubated with non-immune ferroglobulin. A series of small vesicles extend from the cell surface into the cytoplasmic matrix. Ferritin molecules (arrow) are identified in deepest vesicle. X 98,000.

Figure 4
Ferritin molecules within spherical profiles lacking internal organization. X 68,000.

Figures 5 and 6
Ferritin molecules segregated within profiles possessing internal folds or vesicles. N, nucleus. X 60,000.

Figure 7
Ferritin within large profile with polymorphic internal organization (compare with Fig. 9). X 75,000.

Figures 8 to 10
Additional examples of cytoplasmic bodies (arrows) that are thought to be lysosomes (see text). X 68,000.
Evidence has accumulated in recent years to suggest that cytoplasmic inclusions containing segregated phagocyted or pinocyted “foreign material” (“phagosomes,” “digestive vacuoles”) belong within the functional class of particles designated as lysosomes (16-22). Particles so designated, because of their complement of acid hydrolytic enzymes or content of segregated foreign material, exhibit a range of variation in size, density, and details of internal structure. The morphologic details seem to vary with the cell type and the functional state of a given cell.

We suggest that the structures illustrated in Figs. 5 to 10 of this paper can be considered to be lysosomes. Some of the granules clearly are involved in the pinocytic process, and within the noted range of variation they appear similar to lysosomes from other cell types (21, 23-26).

This investigation was supported by grants from the United States Public Health Service (PX-204-8-S 1, E-4140, GSF-424, C-3249, and SF-319) and by the Lillia Babbit Hyde Foundation.

Received for publication, July 20, 1961.

BIBLIOGRAPHY

