Inhibition of mos-induced Oocyte Maturation by Protein Kinase A

Ira Daar, Nelson Yew, and George F. Vande Woude
ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, P.O. Box B, Frederick, Maryland 21702

Abstract. The relationship between the mos protooncogene protein and cAMP-dependent protein kinase (PKA) during the maturation of Xenopus oocytes was investigated. Microinjection of the PKA catalytic subunit (PKA\(_\text{c} \)) into Xenopus oocytes inhibited oocyte maturation induced by the mos product but did not markedly affect the autophosphorylation activity of injected mos protein. By contrast, PKA\(_\text{c} \) did not inhibit maturation-promoting factor (MPF) activation or germinal vesicle breakdown (GVBD) that was initiated by injecting crude MPF preparations. In addition, inhibiting endogenous PKA activity by microinjecting the PKA regulatory subunit (PKA\(_\text{r} \)) induced oocyte maturation that was dependent upon the presence of the endogenous mos product. Moreover, PKA\(_\text{c} \) potentiated mos protein-induced MPF activation in the absence of progesterone and protein synthesis. These data are consistent with the hypothesis that progesterone-induced release from G\(_2/M\) is regulated via PKA\(_\text{r} \) and that PKA\(_\text{c} \) negatively regulates a downstream target that is positively regulated by mos.

FULLY grown Xenopus oocytes are arrested in prophase of meiosis I and are induced to mature upon exposure to progesterone (29). Synthesis of the mos protooncogene product, pp39mos\(^{\text{pp}} \), is required for the activation of maturation-promoting factor (MPF)\(^1 \), an activity responsible for coordinating the biochemical events of meiosis I and II (9, 22, 39, 41). Injecting the mos product into a two-cell embryo arrests the injected cell at metaphase, which led to the identification of mos as an active component of cytotatic factor (CSF) (41). CSF is a calcium-sensitive activity believed to be responsible for the arrest of an unfertilized egg at metaphase of meiosis II and for the stabilization of MPF (29, 31, 32, 41).

The observation that mos is synthesized prior to MPF activation during meiosis I, led us to propose that mos is an "initiator" and is required to activate MPF from pre-MPF (40). Furthermore, pp39mos\(^{\text{pp}} \) is required at all stages during oocyte maturation (9, 22). mos RNA or protein can initiate MPF activation when microinjected into fully grown oocytes (16, 40, 50). Recently, using recombinant mos protein (MBP-mos\(^{\text{pp}} \)), we have shown that the protooncogene product is both necessary and sufficient to initiate meiosis I (50). However, injected oocytes do not progress to meiosis II in the absence of protein synthesis (50), even though mos is required during this period (9, 22). This suggests that additional proteins synthesized de novo are required for meiosis II and CSF arrest (50).

Progesterone markedly enhances MBP-mos\(^{\text{pp}} \)-induced germ vesicle breakdown (GVBD) in the absence of protein synthesis (50), suggesting that the hormone removes a biochemical block to MPF activation that pre-exists in the oocyte. This system provided a means for testing the biochemical events involved in oocyte maturation in the absence of protein synthesis requirements. cAMP-inhibitory protein kinase (PKA) has been implicated as a negative regulator of G\(_2/M\) transition and it is generally believed that progesterone stimulation of oocytes causes a transient decrease in cAMP levels. This, in turn, leads to a decrease in PKA activity and results in the dephosphorylation of a presumptive maturation-inhibiting phosphoprotein (44). While the role of cAMP and PKA in oocyte maturation is unclear (44) the following observations support the above hypothesis: progesterone inhibits adenylate cyclase activity in frog oocytes (13, 20, 34, 36); cAMP levels decrease during oocyte maturation in several organisms including frog (24, 25, 42), starfish (30), and mammals (43); the injection of phosphodiesterase induces maturation (7); Foerder, C. A., T. J. Martins, J. A. Beavo, and E. G. Krebs. 1982. J. Cell Biol. 95:304a), while inhibitors of phosphodiesterase prevent maturation (7, 37, 43); activators of adenylate cyclase cause an increase in cAMP levels, resulting in inhibition of Xenopus and mammalian oocyte maturation (17, 34, 49); and the injection of either the PKA regulatory subunit (PKA\(_\text{r} \)), which binds to and inactivates the catalytic subunit, or the PKA inhibitory peptide (PKI) induces maturation (26), while the catalytic subunit of PKA (PKA\(_\text{c} \)) inhibits oocyte maturation in amphibians (26) and mammals (7).

Since progesterone influences the PKA pathway and

1. Abbreviations used in this paper: CSF, cytotatic factor; GVBD, germ vesicle breakdown; MBS, modified Barth solution; MPF, maturation promoting factor; PKA, protein kinase; PKI, PKA inhibitory peptide.
potentiates mos-induced MPF activation in the absence of protein synthesis, we examined the effects of the PKA subunits on mos function. We show that the PKA, does not affect MPF-induced maturation, but markedly inhibits MBP-mos**-induced GVBD. By contrast, in the absence of protein synthesis the regulatory subunit (PKA,) potentiates MBP-mos** promotion of GVBD almost as efficiently as progesterone.

Materials and Methods

Frogs and Oocytes

Xenopus laevis females were purchased from Xenopus I (Ann Arbor, MI). Oocytes were surgically removed and defolliculated by incubation in modified Barth solution (MBS; 88 mM NaCl, 1 mM KCl, 2.5 mM NaHCO3, 10 mM Hepes, pH 7.5, 0.82 mM MgSO4, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2) containing collagenase A (1.5 mg/ml; Boehringer Mannheim Biochemicals, Indianapolis, IN) for 2 h (18). After several washes, oocytes were cultured overnight in 50% Leibovitz-15 media (Gibco Laboratories, vonchesville, Wis.) and incubated in fresh MBS for 9 h at 20°C. Over this period, groups of 10 oocytes were homogenized in lysis buffer (150 mM NaCl, 10 mM Hepes, pH 7.2, 15 mM MnCl2, 2 mM DTT, 10 µM EDTA, 1% deoxycholate, 1% Triton X-100). Extracts were clarified by centrifugation at 14,000 g for 16 h at 4°C. The ribosome pellets were resuspended in 2 x sample buffer, then resuspended in 2 x sample buffer, analyzed by SDS-PAGE on a 10% gel, and then visualized by autoradiography. The ribosomal S6 subunit bands were excised and counted.

Ribosomal Subunit S6 Phosphorylation

Stage VI oocytes were prelabeled for 3.5 h at 20°C in MBS containing 32P (0.3 mCi/ml; Amersham Corp., Arlington Heights, IL). Oocytes were injected with either MBP-mos** protein alone (9 ng per oocyte) or MBP-mos** (9 ng) with the PKA, (42 ng per oocyte; Promega Biotech, Madison WI) and incubated in fresh MBS for 9 h at 20°C. To the supernatant, 5S mAb was added, incubated 1 h, and then fixed and autoradiographed.

Histone H1 Kinase Assays

Crude MPF extracts were prepared by homogenizing groups of 10 to 20 oocytes in 20 to 40 µl of extraction buffer (80 nM β-glycerophosphate, 20 mM EGTA, 15 mM MgCl2, 20 mM Hepes, pH 7.2, 1 mM ATP, 1 mM DTT, and 5 mM NaF). Homogenates were centrifuged at 14,000 g for 5 min at 4°C. 2 µl of the supernatant were added to 50 µl of stabilization buffer (80 nM β-glycerophosphate, 20 mM EGTA, 50 mM MgCl2, 2.5 mM PMSF, 10 µg of leupetin per ml, 10 µM protein kinase A inhibitor). The histone H1 kinase assay was performed by adding 10 µl of stabilized extract to 6 µl of a mixture containing 2 µg of histone H1 (Sigma, St. Louis, MO), 1 mM ATP, and 1.5 µCi of [γ-32P]ATP. The reaction was incubated 15 min at room temperature, and then stopped with an equal volume of 2× sample buffer. Samples were resolved by SDS-PAGE on a 10% gel, and then fixed and autoradiographed.

Results

Inhibition of mos-induced Oocyte Maturation by the PKA Catalytic Subunit

PKA, injection into Xenopus oocytes blocks progesterone-induced meiotic maturation (26). We tested the influence of PKA activity on MBP-mos** induced maturation. MBP-mos** plus increasing units of PKA, protein were coinjected into fully grown oocytes (Fig. 1). At 1 ng per oocyte, PKA, prevented MBP-mos** induction of maturation in 50% of the oocytes (Fig. 1). Maximum inhibition was observed when 4 ng of PKA, was injected per oocyte. Similar levels of PKA, also inhibit progesterone induced GVBD (data not shown). When MBP-mos** was injected with PKA, and PKAr, GVBD occurred in 92% of oocytes, showing that the PKA, inhibition was specifically abrogated by the regulatory subunit. PKAr, also prevented the appearance of MPF and its associated histone H1 kinase activity (Figs. 1 and 2). Moreover, the ras oncoprotein (rasV12), which also efficiently induces GVBD (4, 8) and has been shown to be antagonistic to the PKA pathway (4, 38), was also blocked by injection of PKA, (Fish, S., D. Grieco, V. E. Arredamento, and M. E. Gottesman, unpublished data) (Fig. 2). By contrast, PKA, did not inhibit crude MPF preparations from efficiently inducing meiotic maturation (Fig. 2), even when PKA, was injected 1 h before MPF injection (data not shown). These results show that PKA, activity inhibits both ras or mos maturation either directly or indirectly by negatively regulating a downstream substrate. They also suggest that PKA, acts as an early inhibitor of maturation, upstream from MPF.

Kinetics of PKA, Inhibition during Maturation

The period of PKA, sensitivity was determined in maturing oocytes. Oocytes were either treated with progesterone or in-
Figure 2. Inhibition of MBP-mos^x and other inducers of GVBD by the PKA catalytic subunit. Oocytes were either treated or injected as indicated along with the coinjection of PKA_c (42 ng) (+) or in its absence (−). GVBD was examined 12-18 h later. The ratio of the number of oocytes with GVBD to the total number injected is displayed above each bar. Historic H1 kinase assays were performed on extracts from 10 appropriately injected oocytes and the autoradiograph is displayed above each bar.

Figure 3. (A) Determination of the PKA_c-sensitive period. Oocytes were either exposed to progesterone (5 μg/ml) (●—●) or injected with MBP-mos^x protein (10 ng) (Δ—Δ). At various times thereafter, 15 to 18 oocytes were injected with PKA_c (42 ng), and the percentage of oocytes that underwent GVBD was scored 7 h later. (B) Kinetics of GVBD induction by progesterone or MBP-mos^x protein. MBP-mos^x protein (9 ng) (Δ—Δ) was injected into each of 45 oocytes. Another 32 oocytes were exposed to progesterone (10 μg/ml) (●—●) at the same time, and the two sets of oocytes were scored for GVBD as a function of time.

PKA_c Does Not Inhibit MBP-mos^x Activation In Vivo

To determine whether PKA_c inhibition of maturation results from inhibition of mos activity, we injected MBP-mos^x either alone or with the PKA_c subunit into fully grown oocytes. We performed mos immune complex kinase assays on extracts prepared at various times after injection and measured MBP-mos^x autophosphorylation activity (50). These results show that MBP-mos^x autophosphorylation was not blocked by PKA_c and there was only a slight delay in the appearance of maximal activity (~0.5 h) (Fig. 4). Moreover, phosphorylation of MBP-mos^x by PKA_c in vitro did not diminish its autophosphorylation activity (data not shown) even though PKA_c prevents GVBD induced by MBP-mos^x protein (Figs. 1 and 2). These results suggest that the target of PKA_c inhibition may not be the mos product but, rather, a substrate downstream in the meiotic initiation pathway, prior to GVBD.

Inhibition of S6 Phosphorylation by PKA_c

The ribosomal subunit S6 is phosphorylated during oocyte maturation induced by insulin or progesterone (33) and requires endogenous mos protein function (3). We determined whether PKA_c has an effect on MBP-mos^x-induced S6 phosphorylation. Oocytes were pre-labeled with 32P, for 3.5 h and subsequently injected with MBP-mos^x protein either alone or with the PKA_c protein. Over a period of 9 h, ribosomes were isolated and phosphoproteins were analyzed by SDS-PAGE. Again, the injection of PKA_c inhibited MBP-mos^x-induced GVBD (Fig. 5) and S6 protein phos-
Figure 5. Phosphorylation of S6 protein in oocytes injected with MBP-mosex and PKA catalytic subunit. One hundred 32P-labeled stage VI oocytes were injected with MBP-mosex alone (A), or MBP-mosex and PKA catalytic subunit (B), PKA catalytic subunit alone (C), or buffer (D). 20 injected oocytes were harvested at the indicated times after injection, and phosphorylated S6 proteins in ribosomes were analyzed by SDS-PAGE followed by autoradiography. Maturation of oocytes induced by MBP-mosex alone (●) and with PKAex (◆) was determined for the same set of oocytes.

Phosphorylation was \sim50\% lower than in oocytes injected with MBP-mosex alone or PKAex alone (Fig. 5).

The PKA Regulatory Subunit Enhances MBP-mosex-induced Maturation

Progestrone potentiates the ability of MBP-mosex to induce GVBD in the presence of cycloheximide. Since progestrone treatment of oocytes leads to reduced cAMP levels and presumably reduced PKA activity, we determined whether PKA enhances MBP-mosex-induced maturation in the absence of protein synthesis and progestrone. The concentrations of MBP-mosex or PKA, were titrated for their ability, to induce GVBD in cycloheximide-treated oocytes. The injection of 2.0 ng of MBP-mosex into cycloheximide-treated oocytes failed to cause GVBD (Fig. 6, bar 2). 1–3 U of PKA- induced GVBD (26) in 60 to 88\% of untreated oocytes, respectively, while PKA, did not cause GVBD in the presence of cycloheximide (Fig. 6, bars 7–9) even with progestrone present (data not shown). As previously shown, progestrone potentiates the induction of GVBD by MBP-mosex in cycloheximide-treated oocytes (50) (Fig. 6, bar 3). When levels of PKA, suboptimal for inducing maturation were injected with MBP-mosex in the presence of cycloheximide, a substantial increase in the percentage of oocytes undergoing GVBD was observed. Thus, from a baseline of 2\% for MBP-mosex alone, 63, 81, and 88\% GVBD was observed for 1.0, 2.0, and 3.0 U of PKA, respectively (Fig. 6, bars 4–6). These data show that PKA, potentiates MBP-mosex-induced GVBD almost as effectively as progestrone in the absence of protein synthesis.

PKAex-induced Maturation Requires pp39mos Synthesis

To determine whether the synergy between MBP-mosex and the PKA regulatory subunit is due to PKA activity functioning downstream of mos or through a parallel (mutually dependent) pathway, we metabolically labeled oocytes with 35S-methionine and microinjected PKA,. After 4 h, the mos product was precipitated from oocytes using a mos specific antibody. Oocytes treated with either progestrone or injected with PKA, expressed mos product indicating that mos synthesis was induced, while untreated oocytes did not express pp39mos (Fig. 7 A). We tested whether pp39mos is required for PKA, induced oocyte maturation by blocking mos protein formation with antisense oligonucleotides (39). Only 3\% of the antisense injected oocytes underwent GVBD, while 87\% of control sense oligonucleotide injected oocytes matured with PKA, (Fig. 7 B). These data show that PKA and mos function through a mutually dependent pathway.

Figure 6. Synergy between MBP-mosex and the PKA regulatory subunit in the absence of protein synthesis. Between 20 and 80 oocytes were injected with the indicated amounts of MBP-mosex and/or PKA regulatory subunit and scored for GVBD 8 to 12 h later. Mosex, MBP-mosex protein; PKA, regulatory subunit; C, cycloheximide (10 μg/ml); P, progestrone.

Figure 7. (A) The induction of pp39mos synthesis in PKAex-injected oocytes. 50 oocytes were metabolically labeled for 3 h in MBS containing 35S-translabel (0.5 mCi/ml), and then either injected with PKA, (R) (3.0 U), or treated with progestrone (P) (10 μg/ml) or left untreated (U). After 4 h, the oocytes were subjected to immunoprecipitation with a mos specific antibody (55) and analyzed by 10\% SDS-PAGE. (B) The requirement for pp39mos synthesis in PKA, injected oocytes. Fully grown oocytes were injected with either antisense mos oligonucleotides (39) (60 ng/oocyte) or sense oligonucleotides (60 ng/oocyte). After one hour, these oocytes were either treated with progestrone or injected with PKA, (3.0 U). GVBD was examined externally and internally after 12–14 h. The ratio of oocytes with GVBD to the number injected is displayed over each bar.
Discussion

In *Xenopus* oocytes, the introduction of 1–4 ng of PKA blocks MPF activation initiated by progesterone or the *mos* product. However, crude MPF preparations can induce GVBD (Fig. 2) and meiotic progression through meiosis II in the presence of PKA, (data not shown). Since the MPF preparations are crude, they contain many other proteins in addition to the active cdc2-cyclin complex, and thus cannot be excluded from influencing this result. The above results suggested that PKA inhibits, while *mos* positively regulates, a downstream target that is upstream of MPF during meiosis I, but this target is either inactive or absent between meiosis I and II, a period requiring *mos* function (9, 22). Consistent with this idea, PKA prevents maturation initiated by the ras oncprotein, which can induce GVBD when *mos* translation is blocked (8) and in the presence of cycloheximide (I).

The results also indicate a dual role for pp39 Mos as "initiator" and as CSF, since this inhibition only affects *mos* "initiator" function and not *mos* activity during the latter part of meiosis. The time period when MBP-mos[−]-induced GVBD becomes resistant to PKA activity (0.67–0.77 GVBD₅₀) in 50% of oocytes corresponds to the time when GVBD becomes independent of protein synthesis and MPF becomes activated. These results are not significantly different than those reported in an earlier study by Maller and Krebs (26), where 50% of GVBD was insensitive to PKA at 2.5 h (.75 GVBD₅₀). Consistent with these findings, it has recently been reported that when oocytes are treated with known elevators of intracellular cAMP (IBMX and cholera toxin), the nondegradable Δ90 cyclin cannot induce MPF activation, and in oocytes depleted of endogenous cyclins, p34^{cdc2} kinase is inactivated by phosphorylation on tyrosine 15 (35). Although the detectable decrease in cAMP levels occurs early in progesterone stimulated oocytes, this does not rule out the possibility that the target of PKA activity is involved in the activation of the MPF complex or possibly a component of the MPF complex which is already present in an inactive form. Although PKA, inhibited MBP-mos[−]-induced GVBD, it did not prevent the activation of the *E. coli* expressed recombinant protein in vivo. It is possible that PKA activity inhibits the ability of pp39 Mos to phosphorylate an important substrate required for MPF activation, but this would have to be accomplished without suppressing its autokinase activity.

Ribosomal S6 protein phosphorylation is implicated in cell proliferation and transformation (5, 6, 46, 48). In *Xenopus* oocytes, the ribosomal subunit S6 is hyperphosphorylated after the initiation of meiotic maturation by progesterone (12, 33), insulin (11, 25), and several oncogene products including ras (3, 21), v-src (45), v-<i>abl</i> (28), and <i>trp-met</i> (10). While hormonal stimulation of S6 phosphorylation is inhibited by *mos*-depletion (3), S6 kinase activity induced by activated ras or <i>trp-met</i> appears to be only partially affected by the lack of *mos* product (3, 10). In this study, nearly 50% of the ribosomal subunit S6 phosphorylation induced by MBP-mos[−] was suppressed by PKA activity, however, the remaining 50% appears to be the result of the injected PKA_c. Thus, PKA inhibits S6 phosphorylation induced by *mos*.

The cAMP-dependent protein kinase has been implicated as a negative regulator of meiosis and early mitosis in several organisms. Recently, inhibition of PKA has also been reported to play a pivotal role in the G₂/M transition of mammalian fibroblasts (23). We have shown that MBP-mos[−]-induction of the G₂/M transition in cycloheximide-treated oocytes was potentiated by progesterone exposure, suggesting a possible role for the inhibition of PKA in this event (50). Here, we report a synergistic effect between PKA and MBP-mos[−] that enhanced the number of oocytes undergoing the G₂/M transition in the absence of protein synthesis, thereby mimicking the effect of progesterone. It has been previously shown that during oocyte maturation certain substrates are hyperphosphorylated, while other proteins are dephosphorylated (27), and it has been suggested that these dephosphorylation events may be the result of PKA inactivation (23). It is possible that *mos* and PKA_c are antagonists, where *mos* may inactivate an inhibitor of MPF activation, while PKA_c phosphorylates this inhibitor or an activator of this inhibitor, and thereby causes its activation. However, it is also possible that *mos* may activate, while PKA_c, inactivates, an activator of pre-MPF. We have shown here that PKA requires *mos* synthesis to activate MPF. Perhaps, as has been suggested (19), progesterone acts by releasing the brakes (in this case, inhibiting PKA activity) and stepping on the accelerator (*mos* synthesis). Curiously, both PKA and pp39^{mos}, two proteins with significant homology (2), have been shown to associate with microtubules and phosphorylate tubulin in vitro (47, 51). Perhaps the antagonism between *mos* and PKA involves microtubule modification. Collectively, our results suggest that the inhibitory effect of PKA is a late step in the initiation of MPF activation and that inactivation of PKA, along with the promoting activities of the *mos* product, leads to MPF activation.

We thank A. Gian Asciome and Linda Miller for excellent technical assistance, Renping Zhou for helpful discussion, James Resnick and Deborah Morrison for critical reading of the manuscript, Anne Arthur for editorial assistance, and Joan Hopkins and Michelle Reed for exceptional performance in preparing the manuscript.

Research sponsored by the National Cancer Institute, DHHS, under contract no. NOI-CO-74101 with ABL. The contents of this publication do not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Received for publication 18 September 1992 and in revised form 12 November 1992.

References

