Guanosine Diphosphatase Is Required for Protein and Sphingolipid Glycosylation in the Golgi Lumen of *Saccharomyces cerevisiae*

Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655; Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract. Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the luminal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the *S. cerevisiae* guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn decrease mannosylation of proteins and lipids in this compartment. In fact, we found a partial block in O- and N-glycosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of invertase. In addition, mannosylinositolphosphorylceramide levels were drastically reduced.

The lumen of the Golgi apparatus is the subcellular organelle where proteins and lipids become terminally glycosylated. In mammalian cells, nucleotide sugars are transported from the cytosol, their site of synthesis, into the lumen of the Golgi apparatus, via specific carrier proteins. After transport into the lumen and transfer of the sugars to the appropriate macromolecular acceptors, nucleoside diphosphates, the other reaction products are presumably substrates for a nucleoside diphosphatase, which converts them to nucleoside monophosphates. These exit the lumen of the Golgi in a coupled, equimolar, exchange with additional, cytosolic, nucleotide sugar (Hirschberg and Snider, 1987). Nucleoside diphosphates are inhibitors of glycosyl-transferases while the monophosphates are not (Khatra et al., 1974; Kuhn and White, 1977; Brandan and Fleischer, 1982). The Golgi membrane transporters for nucleotide sugars appear to be of physiological significance: mutant CHO and MDCK cells have been described in which a specific defect in nucleotide sugar transport leads to the corresponding defect in glycosylation of proteins and lipids in vivo (Hirschberg and Snider, 1987).

S. cerevisiae contains heavily mannosylated proteins, and a highly specific guanosine diphosphatase (GDPase) has been described and purified to homogeneity (Yanagisawa et al., 1990). This enzyme appears to be localized in the lumen of Golgi vesicles (Abeijon et al., 1989). Addition of mannose to outer chains of N- and O-linked oligosaccharides in glycoproteins as well as mannosylation of inositolphosphorylceramides (IPC) occurs in this compartment (Kukuruzinska et al., 1987; Puoti et al., 1991). In all these reactions, GDP-mannose, the mannosyl donor, is synthesized in the cytosol and translocated into the Golgi lumen via a specific membrane carrier (Abeijon et al., 1989). After GDP-mannose entry into the lumen and mannosylation of endogenous protein and lipid acceptors, GDP, is converted, presumably by the above GDPase, to GMP which, by analogy to the mammalian system, is the nucleotide which exits the Golgi lumen and allows entry of additional cytosolic GDP-mannose. In the absence of GDPase, a decrease of GMP, the putative antiporter, should lead to a decrease of GDP-mannose in the Golgi lumen and therefore to substantially reduced Golgi mannosylation.

To determine the in vivo role for the above described *S. cerevisiae* Golgi GDPase, its gene (*GDA1*) was cloned and a null mutation was constructed. The recovered strain was viable and showed no in vitro membrane-bound GDPase ac-

Please address all correspondence to Dr. C. Abeijon, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, MA 01655.

Dr. K. Moremen's current address is Department of Biochemistry, University of Georgia, Athens, GA 30602.

© The Rockefeller University Press, 0021-9525/93/07/307/17 $2.00
The Journal of Cell Biology, Volume 122, Number 2, July 1993 307-323
tivity. As predicted, the null strain showed a block of O-and N-mannosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of external invertase. In addition, a significant impairment of mannosylation of IPC was also found.

Materials and Methods

Restriction endonucleases and DNA-modifying enzymes were purchased from New England Biolabs (Beverly, MA) or GIBCO BRL (Gaithersburg, MD). pUC13, Small cut, and phosphatase treated was from Pharmacia LKB Biotechnology Inc. (Piscataway, NJ). Radiochemicals: [2-3H]Mannose, 14 Ci/mmol (American Radiolabeled Chemicals, Inc., St. Louis, MO); TranS-3S-labeling mixture (ICN Biomedicals, Inc., Costa Mesa, CA). [3H]myoinositol and [a-32P]dCTP (DuPont, New England Nuclear Boston, MA).

Strains and Growth Conditions

S. cerevisiae strains were grown in YEPD or SD medium supplemented with the required amino acids (Sherman et al., 1986). Cells were grown at 30°C. Solid media was made by adding 2% agar to the liquid stock. Sporulation and tetrad dissection were carried out according to published procedures (Sherman et al., 1986). *E. coli* DH5α and DH5α F" (GIBCO BRL) were used in the cloning experiments. The *E. coli* strains were grown in LB medium (Maniatis et al., 1982). Ampicillin [50 µg/ml] was added when needed. All nucleic acid manipulations and bacterial transformations were carried out according to Maniatis et al. (1982). Yeast transformations were carried out by the lithium acetate method of Ito et al. (1983).

Peptide Sequence Analysis

Approximately 80 µg of highly purified GDPase obtained after the second Mono Q column (Yanagisawa et al., 1990; see Fig. 5 a, lane 5) was subjected to SDS-PAGE, electroblotted to nitrocellulose, and stained with Pon-
gland Nuclear) and Klenow fragment of DNA polymerase I. The labeled product was used as a probe for screening a _S. cerevisiae_ genomic library in YEp3.

Screening of _S. cerevisiae_ Genomic Library and Overexpression of the GDA1 Gene

The _S. cerevisiae_ genomic library in YEp3 was plated on nitrocellulose filters on LB-ampicillin plates (~20,000 clones were screened). Two sets of replicas were prepared on nitrocellulose membranes (Schleicher and Schuell, Inc., Keene, NH). Both sets were prehybridized and hybridized according to Maniatis et al. (1982). The labeled PCR product was used as a probe. Positive clones were picked, purified, and plasmids isolated and subjected to restriction analysis. Southern hybridizations confirmed the presence of PCR product sequences in the isolated plasmids.

Five independent clones were isolated and used to transform _S. cerevisiae_ YPR223 strain. Cells containing YEp3 vector without insert were used as controls. Independent transformants were grown to early logarithmic phase and a crude membrane extract (Orlean et al., 1988) was tested for overexpression of GDA1Pase activity.

Subcloning, Plasmid Construction, and DNA Sequence Analysis

Restriction analysis of the five independent YEp3 clones showed that four had a 3.7-kb XhoI fragment in common, which hybridized with the PCR amplification product. This 3.7-kb XhoI fragment was subcloned in the Sall site of the vector YEp352 (Hill et al., 1986) to generate p3X (see Fig. 1).

The other YEp3 clone had a 3.5-kb HindIII fragment hybridizing with the PCR probe; it was cloned into the multiple cloning site of the vector YEp352 to generate p3H (see Fig. 1). This 3.5-kb HindIII fragment was also cloned into the vector pBluescript to generate p3HB, needed in the construction of the plasmid used in the gene disruption experiments (see below). A 3-kb PstI–XhoI genomic fragment was cloned into the PstI–XhoI sites at the multiple cloning site of the vector YEp352 to generate p3 PX (see Fig. 1).

Plasmids p3X, p3H, p3PX, and YEp352 without insert were used to transform _S. cerevisiae_ YPR223 and overexpression of GDA1Pase activity was tested as described in the previous section. Based on these results, a 2.2-kb, HindIII–Nhel genomic fragment (see Fig. 1) was selected for sequencing and cloned in both orientations into M13 mpl9. Sequential overlapping deletions were introduced on the M13 clones with T4 polymerase using the Cyclone biosystem kit (International Biotechnology, Inc., New Haven, CT). DNA sequence data were assembled into a contiguous sequence database with the SeqMan, DNAstar program. Each strand was sequenced at least twice, and gaps were filled by sequencing from synthetic oligonucleotide primers (see Fig. 2).

Sequence comparisons against the GenBank or GenPept sequence data base with the FastA (Pearson and Lipman, 1988) and BLAST (Altschul et al., 1990) programs. The hydrophobicity plot was determined as described for the paper strips.

Disruption of the GDA1 Gene

Construction of pGDA1. The pGDA1 plasmid contains the GDA1 gene, with 128 codons in the center of the GDA1-ORF were deleted and amplified as described for the paper strips. Then 9 ml of liquid scintillation cocktail were added and the radioactivity measured in a liquid scintillation counter. The thin layer chromatograms were treated with EN3HANCE reagent (New England Nuclear) for fluorography, and then exposed to Kodak X-OMAT X-ray film at –70°C. When quantitation was required, the area corresponding to the bands was scraped on the autoradiogram and the radioactivity determined as described for the paper strips.

Isolation of Chitinase from Culture Media by Chitin Binding

Native chitinase was isolated from saturated _S. cerevisiae_ cultures grown in YEPD basically as described by Kuranda and Robbins (1991). Chitinase from 10 ml of media from a saturated culture was allowed to bind ~30 mg of purified chitin (Sigma Chem. Co., St Louis, MO) for 4 h at 4°C. The washed pellet was suspended on 100 μl of SDS sample buffer (2% SDS, 5% β-mercaptoethanol, 10% glycerol) heated to 100°C for 10 min, and then analyzed by SDS-PAGE on 5% resolving gels with the discontinuous buffer system described by Laemmli (1970). The gel was then stained with Coomassie brilliant blue.

Radioiodinated chitinase was isolated from 1 ml of [2-3H]mannose-labeled chitinase.
beled cells as described by Orlean (1990). The material was then subjected to β-elimination and paper chromatography as described in the O-linked carbohydrate analysis section.

Immunoprecipitation of Carboxypeptidase Y

The method described by Orlean (1990) was followed. Briefly, logarithmically growing cultures (OD 600 ∼1) in methionine-free minimal medium and 2% glucose were used as starting material. Between 2 and 4, OD600 of cells were harvested and suspended in 1 ml of the same medium. Labeling was done for 30 min with 100 mCi/ml Trans 3H-labeling mix. After labeling, the cells were washed and suspended on 200 µl PBS with 1% SDS, and broken with glass beads. Triton X-100 was added to give a final concentration of 0.4%. Samples were precleared with preimmune serum and protein A-Sepharose (2 h at 4°C), and then immunoprecipitated with 5 µl of anti-CPY serum (a gift from R. Scheckman, University of California, Berkeley, CA) overnight at 4°C. Protein A conjugates were washed and boiled for 10 min in SDS-sample buffer, and run on SDS-PAGE. Acrylamide concentration was 10% on the resolving gel; the discontinuous system described by Laemmli (1970) was used. The gel was then treated with ENHANCE (New England Nuclear) and exposed to Kodak X-OMAT x-ray film at −80°C.

Analysis of External Invertase

Preparation of the invertase extracts, native PAGE of the external invertase, and activity staining were done as described by Ballou (1990) with minor modifications. Five OD600 of cells growing logarithmically on YEPD (2% glucose) were harvested and suspended in 3 ml of YEP containing 0.05% glucose to induce invertase during 4 h at 30°C. Further treatment was as described (Ballou, 1990) and 10 µl of total lysate was loaded on the gel. The crude extracts were heated to 50°C for 30 min before loading onto the native gel in order to convert the invertase to a single oligomeric form (Eamon et al., 1987). The concentration of acrylamide was raised to 8% and 30-cm-long slab gels were run for 10 h at 10 mA constant current. These changes were introduced in order to better resolve the highly glycosylated forms of invertase.

Partial Purification of Invertase

To increase the production of invertase, wild-type (G2-9) and gda 1 null cells G2-11 were transformed with the plasmid pRD58 containing the S/C2 gene (Carlson and Botstein, 1982). After transformation, the strains produced 4–5 times more invertase than the parents. Invertase was induced by growing cells for 3 h in YPD medium containing 0.1% glucose. Cells were harvested (80 g) and broken with a Bead Beater (Bio Spec Products, Inc., Bartlesville, OK) using 0.5-mm, acid washed, glass beads. Invertase purification was done as described previously by Verostek et al. (1991) up to the DE-52 cellulose column step. Invertase activity was measured as previously described by Golde and Lampe (1975).

SDS-PAGE and Western Blotting of Purified Invertase

Active fractions (0.5 U) of enzyme from wild-type and gda 1 null strains from the DE-52 cellulose column were combined into three pools and subjected to SDS-PAGE on 11% gels with the discontinuous buffer system described previously by Laemmli (1970). After electrophoresis, samples were blotted to PVDF membranes with CAPS buffer, pH 11. Equivalent membranes were probed with affinity-purified rabbit IgG antibodies against invertase core protein and against α,β,γ,3 mannose linkages (antibodies were a generous gift of Dr. Randy Schekman, University of California, Berkeley). Final visualization was obtained with anti-rabbit IgG conjugated with alkaline phosphatase and development with the stabilized substrate for alkaline phosphatase Western Blue TM (Promega).

Radiolabeling of S. cerevisiae Cells for the Analysis of Mannosylinositol Phosphosphigolipids

Exponentially growing cultures (OD600=1) in Wickerham's minimal medium (Wickerham, 1946) were used with 2% glucose as carbon source but omitting myoinositol. Cells (OD600=1) were labeled with 5 µCi/ml of [3H]myoinositol (20 Ci/mmol; New England Nuclear) or with 1 mCi/ml of [2-3H]mannose (14 Ci/mmol; American Radiolabeled Chemicals, Inc., St. Louis, MO) for 10 min. Routinely, 3 OD600 of cells per time point were used. Cultures were then diluted with 4 vol of minimal medium containing 40 µg/ml of cold myoinositol and incubated further for the periods indicated. At the end of the incubations, NaN3 (3 mM) was added, cells were washed four times, and the pellet was resuspended in 100 µl of 10 mM NaOH. Cells were broken by vortexing with glass beads (three times for 1 min each). 10 µl were used to determine protein concentration and total incorporation of substrate. Chloroform/methanol (1:1) was added to the remaining suspension to achieve a final concentration of chloroform/methanol/aqueous cell suspension of 10:10:3 (vol/vol/vol). After centrifugation, the pellet was extracted two more times with chloroform/methanol/water, 10:10:3 (vol/vol/vol). The pooled lipid extracts were dried under N2 and desalted by butanol extraction (Krakow et al., 1986).

Mannosylinositol Phosphosphingolipid Analysis

Lipid extracts were analyzed by ascending TLC on 0.2-mm thick silica gel 60 plates (Merck Sharpe & Dohme/Isotopes, St. Louis, MO) using CHCl3/CH3OH/H2O/0.22% KCl in water (55:45:10) as solvent system. Approximately 200,000 cpm per lane were applied. The developed TLC plates were sprayed with ENHANCE (New England Nuclear) and fluorograms were obtained after exposure of Kodak X-OMAT film for 3 d at −80°C. When quantitation was required, it was done as described for the O-linked carbohydrate analyses. Identification of the lipids was based on (a) reported Rf; (b) comigration with authentic standards (PI and lyso PI); (c) sensitivity to mild alkaline hydrolysis; and (d) analysis of head groups (Puoti et al., 1991).

Results

Cloning of the Luminal Golgi Guanosine Diphosphatase GDA1 Gene

In S. cerevisiae, GDP-mannose is the sugar nucleotide used for all known Golgi glycosylation reactions (Kukuruzinska et al., 1987; Puoti et al., 1991). A luminal, highly specific GDPase was previously found associated with this subcellular compartment (Abelj et al., 1989). The Golgi GDPase was purified to homogeneity (Yanagisawa et al., 1990) and tryptic peptides derived from the deglycosylated 48-kD enzyme were used to obtain amino acid sequence (Table I). De novo chemical sequencing of a complex peak; boxes represent positions where primary/secondary assignments were not possible; () indicate tentative identification of amino acids. I, inosine; s, sense; a, antisense.

Table I. Amino Acid Sequence of Tryptic Peptides from GDPase-Pured and PCR Primer Design

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Primer</th>
<th>aa Position in the protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td></td>
<td>366-374</td>
</tr>
<tr>
<td>1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td></td>
<td>399-412</td>
</tr>
<tr>
<td>2a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>238-257</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>125-144</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>276-282</td>
</tr>
</tbody>
</table>

Amino acid sequence of tryptic peptides from purified GDPase was obtained as described in Materials and Methods. Peptides 31 and 32 were obtained by sequencing of a complex peak; boxes represent positions where primary/secondary assignments were not possible; () indicate tentative identification of amino acids. I, inosine; s, sense; a, antisense.
Overexpression of GDPase activity

Figure 1. Restriction endonuclease cleavage pattern of S. cerevisiae genomic DNA isolated from the YEpl3 genomic library. The 140-bp amplification product of the PCR reaction is indicated with a hatched bar. Restriction fragments were subcloned into YEpl352 to generate p13X, p13H, and p13PX. Their ability to overexpress GDPase activity is shown. The 2.2-kb HindIII–NheI fragment was sequenced, and the GDA1-ORF is denoted as a black box flanked by ATG and TGA-codons. Disruption of GDA1-ORF was performed using the HindIII–BamHI fragment of pGDA1, which contains a LEU2 insertion and deletion of the PstI–HpaI (381 bp) fragment of the GDA1-ORF. The HpaI/SmaI ligation and the NheI/XbaI ligation in pGDAA1 did not regenerate either of the restriction sites.

Sequence of the GDA1 Gene

Sequence information was obtained from both DNA strands for the complete 2.2-kb HindIII–NheI fragment. A 1,557 bp ORF was found starting at a methionine residue 133 bp downstream of the HindIII cloning site (Fig. 2 A). The predicted protein contains the sequence corresponding to all the peptides obtained from the GDPase protein (Fig. 2 A). No NH2-terminal protein sequence was obtained. The hydrophobicity plot of the predicted protein shows a single putative membrane-spanning region of 15 amino acids, starting 9 amino acids after the first methionine (Fig. 2 B). Although this putative transmembrane domain is short, Adams and Rose (1985) demonstrated that mutants of vesicular stomatitis virus glycoprotein G containing 14 or more amino acids of the original 20-amino acid transmembrane domain assumed a transmembrane orientation and were correctly targeted. The deduced protein sequence of the GDA1 gene encodes a 519-amino acid polypeptide with a calculated molecular weight of 56,817 D. Three potential N-glycosylation sites are present within the coding region (Fig. 2 A). These results are in agreement with the observation that GDPase was purified as a luminal Golgi glycoprotein. The hydrophobic plot suggests a typical type II membrane protein with a single hydrophobic stretch acting as an uncleaved signal sequence and anchor to the membrane (Parks and Lamb, 1991) preceded by a short hydrophilic, cytosolic tail (Fig. 2 B). Most mammalian (Paulson and Colley, 1989; Moremen...
Table II. Guanosine Diphosphatase Activity after Disruption of GDA1 ORF

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant genotype</th>
<th>GDPase (U*/mg protein)</th>
<th>UDPase (U*/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-9</td>
<td>GDA1</td>
<td>1.68</td>
<td>0.12</td>
</tr>
<tr>
<td>G2-10</td>
<td>GDA1</td>
<td>1.46</td>
<td>0.12</td>
</tr>
<tr>
<td>G2-11</td>
<td>gda::LEU2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G2-12</td>
<td>gda::LEU2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total membrane fractions were assayed for their ability to hydrolyze GDP, ADP, and UDP. GDPase and UDPase activity are defined as GDPase or UDPase minus ADPase. ADPase activity was 0.22 U/mg protein for every fraction. Results are the average of three independent determinations.

* One unit is the amount of enzyme that releases 1 μmol of inorganic phosphate per min under the standard assay conditions described in Materials and Methods.

and Robbins, 1991) and some yeast (Carmirand et al., 1991) glycosyltransferases and glycosidases sequenced to date share this characteristic; the bulk of the globular carboxy-terminal domain, with the potential N-glycosylation sites and catalytic activity, face the lumen of the organelle. The GDPase is known to be a “high mannose” glycoprotein since it binds to Con A and is deglycosylated by endo H (Yanagisawa et al., 1990). The discrepancy in the apparent MW of the purified, deglycosylated GDPase (48 kD on SDS-PAGE) and that predicted based from the ORF (57 kD) is probably the result of proteolytic cleavage of the enzyme during purification.

GDA1 Is Not Essential for Cell Viability and Growth

The GDPase gene (GDA1) was disrupted by replacing the 381 bp Pst–HpaI fragment in the center of the coding region with a fragment encoding LEU2 (Fig. 1). A linear 4.8-kb HindIII–BamHI fragment containing the gda::LEU2 allele was used for transformation of PRY225 and PRY238. A schematic representation of the disrupted allele is shown in Fig. 1. Eight independent diploid transformants from each background were sporulated and 12 ascii each from 4 of them were dissected. Viable colonies could be generated from each of the tetrad spores, indicating that the GDA1 gene is not essential for viability. Tetrads analysis showed that Leu+::Leu- segregated 2:2 in all cases. One tetrad from each genetic background was analyzed in more detail.

Southern analyses confirmed the correct replacement of the GDA1 gene by the gda::LEU2 allele (data not shown). Assays of GDPase confirmed the loss of this activity in the Leu+ strains. Table II shows the result of a typical experiment. GDPase activity is not detected in membranes derived from the disrupted strains. All values are corrected for production of inorganic phosphate from ADP, which is not a substrate for the enzyme (Yanagisawa et al., 1990). ADPase values were constant in the four samples from each tetrad (see legend of Table II).

GDA1 Is Required to Complete the O-Glycosylation of Proteins

Analysis of the O-linked carbohydrate chains was performed by labeling cells in vivo with [2-3H]mannose for 60 min. Total O-linked carbohydrates were then released by β-elimination and radiolabeled carbohydrate chains were resolved by either paper or thin layer chromatography. The oligosaccharide pattern from the wild-type strains agreed with those previously published (Häusler et al., 1992; Haselbeck and Tanner, 1983) and showed five species (ManrMans) (Fig. 3, lanes 1, 3, and 6). The gda::LEU2 strains showed accumulation of M1 and almost normal amounts of M2. There

Figure 2. (A) Nucleotide sequence of the HindIII–Nhe I fragment (Fig. 1) containing the GDA1 gene and (B) hydrophobicity plot of the GDA1 ORF Genebank accession number L19560. The aa sequence of the GDA1p is shown below the nucleotide sequence. The putative membrane-spanning domain is boxed and the experimentally determined peptide sequences are underlined. The open triangles indicate the asparagine residues of the potential N-glycosylation sites. Dotted boxes indicate probably regulatory sequences for transcription initiation and termination. The hydrophobicity profile of the GDA1 ORF was generated using the algorithm of Kyte and Doolittle (1982) with a window of 20 amino acids.

Figure 3. O-glycosylation: total alkali releasable saccharides. Total base sensitive oligosaccharides from various strains radiolabeled with [2-3H]mannose were separated on thin layer chromatography (butanol, ethanol, water-5:3:2) and subjected to autoradiography. Lanes 1 and 3 are strains G11-6 and G11-8, both wild type for GDA1; lanes 2 and 4 are strains G11-5 and G11-7 in which the GDA1-ORF is disrupted. Lane 5 is strain CGY2333 in which the PMR1-ORF is disrupted; lane 6 is strain CGY2332, the corresponding wild type. Approximately 100,000 cpm β-eliminated from 15 to 30 μg of protein were loaded on lanes 1–4, and 6. On lane 5, 160,000 cpm β-eliminated from 90 μg of protein were loaded. M1, mannose; M2, mannobiose; M3, mannotriose; M4, mannotetraose; and M5, mannopentose.
was an almost complete absence of chains with 3, 4, and 5 mannose residues (Fig. 3, lanes 2 and 4). To extend these findings, four tetrads from each genetic background were subjected to the same labeling protocol, total O-linked sugar chains were released, resolved by paper chromatography, and labeled M₁–M₅ species quantitated. We found a threefold increase of M₁ and a 1.2-fold increase of M₂ in the gdalΔ strains from both genetic backgrounds (not shown). The decrease in O-linked sugar chains with 3, 4, or 5 mannose residues was more pronounced in gdalΔ strains originated from the G2 diploid that in those originated from the G11 diploid strain. In the G2 derived disrupted strains, we detected a decrease of 4–5-fold in M₃, 10-fold in M₄, and 6–10-fold in the M₅ species. The decline was 2–3-fold in M₃ species, 4–5 in M₄, and 3–5 in M₅ species in the G11 derived disrupted strains (not shown). The wild-type strains corresponding to tetrads from both genetic backgrounds were indistinguishable (not shown).

Mutations in PMR1, a member of the Ca++ ATPase family, have been reported to perturb the secretory pathway and Golgi N-glycosylation in yeast (Rudolph et al., 1989). The O-glycosylation phenotype of this mutant has not been reported. As with the gdalΔ deletion, we found that the pmr1::LEU2 mutants cannot complete the O-linked sugar chains; species with 4 and 5 mannoses were not found (Fig. 3, lane 5). We measured a 2.4-fold increase in the amount of M₁, a 1.3-fold increase in M₂, and 20% decrease of M₅ in the pmr1Δ. The almost normal amounts of M₃ in pmr1Δ are a significant difference from gdalΔ, where almost none was found.

Secreted, O-Mannosylated Chitinase Is Underglycosylated in gdal Mutants

S. cerevisiae chitinase is secreted into the growth medium and is extensively and exclusively O-mannosylated (Orlean et al., 1986; Kuranda and Robbins, 1991). The enzyme can be purified from culture media by chitin binding and its mobility on SDS-PAGE depends on the amount and length of the O-linked attached sugar chains (Kuranda and Robbins, 1991). As seen in Fig. 4, lanes 1 and 2 vs lanes 3 and 4, similar amounts of chitinase were isolated by chitin binding from the medium of saturated cultures of wild-type and gdalΔ strains indicating that mutant cells do not have a defect in

![Figure 4](image-url)
secretion. The mobility on SDS-PAGE was greater for the chitinase produced by the gdalA strains (Fig. 4, lanes 1 and 3 vs lanes 2 and 4). A smaller difference was observed when comparing chitinase produced by the pmrlA strain to the wild-type enzyme (Fig. 4, lane 6 vs lane 6).

To further substantiate the assumption that differences in apparent mobility of chitinase produced by wild-type and mutant strains were the result of differences in glycosylation, cells were labeled in vivo with [2-3H]mannose, chitinase was isolated by chitin binding, sugar chains were isolated by β-elimination and separated by paper chromatography (Orlean et al., 1991). The pattern seen in the O-linked chains released from wild-type chitinase was similar to that previously published (Häusler et al., 1992; Kuranda and Robbins, 1991; Orlean et al., 1991) (Fig. 5, A and B). Chitinase produced by the gdalA strains contained 35% of the radiolabel in the M1 species (relative to total M species); M1 was almost completely absent in chitinase from the wild-type. M2 had the remaining 65% of the radiolabel released from gdalA chitinase while M3, M4, and M5 were absent (Fig. 5 A). Chitinase produced by the pmrlA strain also showed a significant accumulation of the M1 species; M2 and M3 were also present, but in this case only M4 and M5 were absent (Fig. 5 B).

gdal Mutants Cannot Synthesize the Golgi p2 Form of Carboxypeptidase Y

The vacuolar enzyme Carboxypeptidase Y (CPY) has been extensively studied; it is a glycoprotein with four N-linked carbohydrate chains (Stevens et al., 1982). Three forms of the enzyme have been identified: the mature (proteolytically processed) vacuolar form, the core glycosylated ER form of the proenzyme (pl), and the more extensively glycosylated p2 form which is found in the Golgi (Stevens et al., 1982). The three forms were immunoprecipitated from wild-type extracts (Fig. 6, lanes 3 and 5); the GDA1 disrupted strain, however, showed only the ER precursor pl, and a smaller than wild-type mature form, while the Golgi modified p2 was not detected (Fig. 6, lanes 2 and 4). It had previously been shown that the conversion of pl to p2 is solely the result of further mannosylation of the N-linked core in the Golgi, and is not required for accurate proteolytic processing and targeting (Stevens et al., 1982). Thus, the mature form of CPY made by the gdalA strain lacks the additional carbohydrates normally added in the Golgi. The core protein of gdal::LEU2 was not significantly altered because immunoprecipitation of CPY from wild-type and gdalA strains followed by treatment with endo H and electrophoresis showed that proteins from both strains migrated equally (not shown). To further support this finding we immunoprecipitated CPY
Invertase Is Underglycosylated in gdal Mutants

Invertase is a highly glycosylated protein whose rate of migration on a native gel depends on the number and size of the N-linked oligosaccharide chains (Ballou, 1990). Moreover, the crude extracts were heated to 50°C for 30 min before loading on to the native gels in order to convert the invertase to a single oligomeric form (Esmon et al., 1987). Fully glycosylated external invertase from wild-type strains migrated as a diffuse band in the upper third of the gel (Fig. 7, lanes 2, 3, and 7) as reported by Ballou (1990). Invertase produced by pmrlΔ strains has been shown to migrate faster, at a rate similar to invertase from strains carrying the mnn9 mutation (Rudolph et al., 1989) consistent with the absence of outer mannan chains. This behavior was confirmed by the present study (Fig. 7, lanes 1 and 6). Invertase produced by the gdalΔ strains showed an intermediate phenotype (Fig. 7, lanes 4 and 5, vs lanes 1 and 6 and lanes 2, 3, and 7); it clearly is underglycosylated, but not completely devoid of outer mannan chains. This result was independent of the genetic background in which the null mutations were made (not shown).

To further determine the degree of underglycosylation of invertase, wild-type and gdal null cells were transformed with a multicopy plasmid carrying the external invertase gene (SUC 2). The enzyme was partially purified from these overproducing strains. Invertase from the wild-type strain eluted from the DEAE cellulose column as a sharp peak with maximum activity at 90–100 mM NaCl (Fig. 8 A). Invertase from the gdal null mutant was more heterogeneous eluting from the DEAE column as a broad peak with maximum activity between 95 and 130 mM NaCl (Fig. 8 A). This behavior is consistent with either underglycosylation, hyperphosphorylation, or both. Internal nonglycosylated invertase binds very tightly to DEAE, requiring 2 M NaCl for elution (Fig. 8 A). Fractions across the activity peak of each strain were divided into three pools (P1, P2, and P3 for wild-type enzyme and P4, P5, and P6 for gdal null mutant enzyme; Fig. 8 A) and subjected to SDS-PAGE followed by blotting to PVDF membranes as described in Materials and Methods. One membrane was stained with antiinvertase antibody (Fig. 8 B). Invertase from the wild-type strain migrated as a broad band with an apparent mobility of 100–150 kD (Fig. 8, lanes 1, 2, and 3); this is similar to the previously described behavior of invertase by Trimble et al. (1991). The mobility of the invertase from the gdal null mutant strain was clearly more heterogeneous, appearing as a diffused ladder of species migrating between 80 and 130 kD (Fig. 8 B, lanes 4, 5, and 6). Moreover, invertase which elutes later from the DEAE column (lane 6) was of the size range of invertase from Pichia pastoris and S. cerevisiae pmr 1 mutant strains (Fig. 8, lanes 7 and 8; B). Preparations of invertase from Pichia pastoris have been shown on SDS-PAGE as a ladder of species of the same size (85–95 kD) as the ER form of invertase from S. cerevisiae Sec 18 mutants.
Figure 8. N-glycosylation of invertase II: chromatographic behavior and analyses of mannose linkages. The wild-type strain (G2-9) and gda 1 null strain (G2-11) were transformed with pRD 58 containing the \textit{SUC2} gene; cultures were derepressed for invertase production and the enzyme was purified as described in Materials and Methods. (A) Profile from the DEAE-cellulose column. P1, pooled fractions 16-18; P2, pooled fractions 19-21; P3, pooled fraction 22-24, all from wild-type invertase; P4, pooled fraction 18-20; P5, pooled fractions 21-23; and P6, pooled fractions 24-26 all from gda 1 null mutants. Pooled fractions (0.5 U of activity) were resolved on 11% SDS-PAGE, Western blotted with rabbit anti-invertase antibodies (B) or rabbit anti-\textit{cdgl}3 linked mannos antibodies (C), and visualized with alkaline phosphatase conjugated to anti-rabbit IgG. In B and C, lanes 1, 2, and 3 are P1, P2, and P3 from wild-type invertase; lanes 4, 5, and 6 are P4, P5, and P6 from gda 1 null invertase; lane 7 is invertase from pmr 1 null strain (CGY 2333); lane 8 is invertase from \textit{Pichia pastoris} strain GS115.

at 37°C (Trimble et al., 1991). Chromatography of \textit{P. pastoris} oligosaccharides released by endo H showed that over 90% of the species were Man\textsubscript{8,11} GlcNac (Trimble et al., 1991). Invertase produced by pmr 1 mutants have also been shown to be devoid of outer mannan chains.

All the invertase fractions from the wild-type and gda 1 null mutant strains showed reactivity with antibodies against the \textit{al}, 6-mannose linkage (data not shown). Staining for the presence of terminal \textit{al}, 3 linked mannos showed that this linkage occurred, as expected, in the wild-type invertase (Fig. 8 C, lanes 1, 2, and 3). Invertase secreted by the gda 1 null mutants showed a wide range of reactivity varying in amounts similar from wild-type (Fig. 8 C, lane 4) to very reduced levels (lane 6), further supporting the heterogeneity of this enzyme's mannan chains. Invertase from \textit{P. pastoris} (lane 8) does not contain such linkage in agreement with previous biochemical studies (Trimble et al., 1991).

\textbf{The Cell Wall Is Altered in gda1 Mutants}

The \textit{MNT1} gene (Häusler et al., 1992) is identical to \textit{KRE2} (Hill et al., 1992), a gene isolated based on resistance of \textit{S. cerevisiae} to killer toxin \textit{K}. Wild-type \textit{S. cerevisiae} strains are sensitive to \textit{K}, while gda1 mutants were partially resistant (Bussey, H., personal communication) indicating a structural alteration of the cell wall. Although \textit{\beta}-1,6 glucans are components of the \textit{K}, killer toxin receptor on the cell
Biosynthesis of Mannosylinositolphosphorylceramides Is Severely Impaired in gdal Mutants

About one third of \textit{S. cerevisiae} lipids contain inositol; of these, 60\% is phosphatidylinositol (PI) which is essential for cell viability and growth (Culbertson and Henry, 1975; Henry, 1982; Nikawa et al., 1982). The remaining 40\% consists of three classes of related inositolphosphate-containing sphingolipids, they are: (a) IPC containing a single inositolphosphate; (b) mannosylinositolphosphorylceramides (MIPC), containing a single inositolphosphate with a mannose attached; and (c) the major sphingolipid, mannosyl-diphosphoinositolphosphorylceramide (M[IP]$_2$C) which contains a second inositolphosphate attached to the mannose of MIPC (Steiner et al., 1969; Smith and Lester, 1974). Diversity in the types of sphingoid bases and in the degree of hydroxylation and chain lengths of the fatty acids gives rise to many molecular species of these three lipid classes (Smith and Lester, 1974).

Yeast membranes contain activities which transfer (a) inositolphosphate from PI onto endogenous ceramides yielding IPC, and (b) mannose, from GDP-mannose, onto IPC to yield MIPC (Becker and Lester, 1980). It is also known that the biosynthesis of mannosylinositolphosphogogoids is dependent on genes controlling the flow of secretory vesicles from the ER to the Golgi apparatus (Puoti et al., 1991). Previous results suggest that IPC is the critical substrate transported between ER and Golgi vesicles, because ER blocked mutants like sec17 and sec18 accumulate IPC and cannot synthesize MIPC at the restricted temperature (Puoti et al., 1991).

From knowledge that MIPC is likely to be made in the Golgi, that GDP-mannose is the mannosyl donor, and that MIPC and M[IP]$_2$C are normally found in the plasma membrane facing the periplasmic space, we speculated that mannosylation of IPC probably occurs in the Golgi lumen and would be affected by mutations in the \textit{GDAI} gene. To test this hypothesis, we determined the kinetics of [H]H myoinositol incorporation into lipids of wild-type and \textit{GDAI} disrupted strains of \textit{S. cerevisiae}. After a 10-min labeling and 10-min chase, the major labeled species in the wild type was PI (Fig. 9, lane 1) in agreement with previous in vivo and in vitro results (Angus and Lester, 1972; Becker and Lester, 1980). After a 90-min chase (Fig. 9, lane 3), the label in PI decreased while that of IPCs, MIPC, and M[IP]$_2$C increased, also in agreement with previous observations (Angus and Lester, 1972; Becker and Lester, 1980; Puoti et al., 1991). In the gdalΔ strains, the kinetics of [H]H myoinositol incorporation into PI was not affected and formation of IPC was normal or slightly increased (Fig. 9, lanes 2 and 4 vs lanes 1 and 3), as expected for processes occurring in the ER. However, significant differences were seen with MIPC and M[IP]$_2$C, a dramatic decrease in the amount of these mannosylated ceramides in the mutants was observed after a 90-min chase (Fig. 9, lane 4 vs lane 3). Quantitation showed a 60\% decrease in the amount of mannosylinositol-sphingoids in the \textit{GDAI} strain (Table III) compared to wild type; moreover, the ratio of MIPC/IP to MIPC changed drastically, from 1.06 in the wild type to 0.28 in the gdalΔ strain. The only step affected is the addition of mannose from GDP-mannose to IPC to yield MIPC. The subsequent reaction, addition of a second inositol phosphate to MIPC, to yield M[IP]$_2$C occurs at a slightly higher rate in the gdalΔ strain compared to wild type as shown by the ratio 0.42 vs 0.32 (Table III). Also, the ratio of IPC/IP is elevated in gdalΔ cells from 0.23 to 0.32 (Table III). This accumulation of precursor indicates independently that the addition of mannose is the limiting step. Results very similar to the ones shown on Fig. 9 and Table III were obtained when the experiment was repeated with tetrads derived from both genetic backgrounds G2 and G11 (not shown).

Discussion

We have shown in the \textit{GDAI} null mutant that, (a) elongation of O-linked carbohydrate chains is blocked at the mannobisept step in bulk cell mannanproteins and in secreted chitinase; (b) N-linked carbohydrates of CPY are not elongated beyond the pl (ER) stage; (c) invertase is underglycosylated; and (d) biosynthesis of MIPC is severely impaired. All these processes have in common a requirement for GDP-mannose in the Golgi lumen for completion of glycosylation. \textit{GDAI} is the structural gene for a GDPase, previously localized by subcellular fractionation, to a Golgi-like compartment (Abeijon et al., 1989). \textit{GDAI} deletion was not expected to be lethal because mutants which can only complete glycosylation in the ER (like \textit{mnm9}) are viable (Ballou, 1990).

We shall briefly review the current status of \textit{S. cerevisiae} Golgi subcompartmentation before interpreting the phenotype of \textit{GDAI} strains in relation to this Golgi structure. The complexity of the \textit{S. cerevisiae} Golgi is just unravelling; few genes have been cloned whose products are specific markers of this compartment. Among these are integral membrane proteins responsible for Golgi functions, such as (a) \textit{mntlp}, an \alphaL2 mannosyltransferase involved in O-glycosylation (Häusler and Robbins, 1992; Häusler et al., 1992); (b) \textit{kex2p}, an endoproteinase that processes \textit{\alpha}-factor in a late Golgi compartment (Redding et al., 1991); and (c) \textit{pmrlp}, a P-type ATPase, homologous to mammalian Ca$^{++}$ pumps (Rudolph et al., 1989; Antebi, 1991). A null mutation in \textit{PMR1} exhibits pleiotropic Golgi dysfunctions (Antebi, 1991).

Other specific Golgi markers are peripheral membrane proteins such as \textit{sec7p} involved in vesicle-mediated protein sorting and traffic through the Golgi segment of the secretory pathway. Anti \textit{sec7p} IgG blocks ER to Golgi transport in vitro (Franzusoff et al., 1992) and conditional \textit{sec7} mutants accumulate Golgi-like structures (Novick et al., 1981). Other peripheral Golgi membrane proteins include small (20–25 kD) ras-like GTP-binding proteins such as \textit{arflp} and \textit{yptlp}. These are localized on the cytosolic surface of the Golgi complex and function in protein transport to and/or within the organelle (Stearns et al., 1990; Segev et al., 1988). \textit{Sec4p} is a peripheral membrane and cytosolic protein which cofractionates with the putative late Golgi marker \textit{kex2p} and has PI/PC transfer (exchange) activity; condi-
Figure 9. Effect of GDA1 disruption on the biosynthesis of MIPC. Wild-type (G2-10 strain, lanes 1 and 3) and gdalA (G2-12 strain, lanes 2 and 4) cells were incubated with [3H]myoinositol for 10 min, followed by addition of high concentration of unlabeled myoinositol and further incubation for 10 min (lanes 1 and 2) or 90 min (lanes 3 and 4). Labeled lipids, PI, IPC, MIPC, M(IP)2C were extracted and analyzed by thin layer chromatography (CHCl3/CH3OH/0.22% aqueous KCI, 55:45:10) and fluorography. Quantitation is presented in Table III.

Table III. Effect of gdalA on the Biosynthesis of Inositol-containing Phospholipids

<table>
<thead>
<tr>
<th>Incorporation of [3H]inositol (cpm/mg protein/90 min)</th>
<th>Wild-type</th>
<th>gdalA</th>
<th>gdalA/wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>42,700</td>
<td>47,700</td>
<td>1.12</td>
</tr>
<tr>
<td>IPC</td>
<td>10,000</td>
<td>15,500</td>
<td>1.55</td>
</tr>
<tr>
<td>MIPC</td>
<td>10,600</td>
<td>4,300</td>
<td>0.40</td>
</tr>
<tr>
<td>M(IP)2C</td>
<td>3,400</td>
<td>1,800</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratios of radioactivity of inositol-containing phospholipids</th>
<th>Wild-type</th>
<th>gdalA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC/PI</td>
<td>0.23</td>
<td>0.32</td>
</tr>
<tr>
<td>MIPC/IPC</td>
<td>1.06</td>
<td>0.28</td>
</tr>
<tr>
<td>M(IP)2C/IPC</td>
<td>0.34</td>
<td>0.12</td>
</tr>
<tr>
<td>M(IP)2C/MIPC</td>
<td>0.32</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Results were taken from the 90-min time point of the experiment described in Fig. 8.

Biochemical, functional, and morphological results support Golgi subcompartmentalization in *S. cerevisiae*. Golgi markers have been separated from those of other organelles and from each other. Subcellular fractionation can clearly dissociate kex2 endoprotease from GDPase-containing compartments (Bowser and Novick, 1991); kex2p and α1,3 mannosyltransferase can be partially separated (Cunningham and Wickner, 1989) while GDPase and the α1,2 mannosyltransferase, responsible for the addition of the third O-linked mannose (mntlp, Häusler et al., 1992) cosediment (Abeijon et al., 1989). Furthermore, the bulk of pmlrp comigrates with kex2p and GDPase, clearly separating from markers of the ER, plasma membrane, vacuole and ERD2, and the yeast HDEL receptor (Antebi, 1991). However, peak and shoulder fractions of pmlrp, GDPase, and kex2p do not overlap completely (Antebi, 1991). At least three functionally distinct Golgi subcompartments have been postulated in *S. cerevisiae* containing from cis (early) to trans (late) α1,3 mannose.
alpha,6-mannosyltransferase, (b) alpha,3-mannosyltransferase, and (c) kex2 endopeptidase (Graham and Emr, 1991). S. cerevisiae strains which lack clathrin heavy chains mislocalized Golgi proteases involved in alpha factor maturation like kex2p and dipetidylaminopeptidase A to the cell surface, while other Golgi integral membrane proteins such as GDPase were not affected (Seeger and Payne, 1992).

Recently, improved ultrastructural EM analyses with permanganate staining and serial sectioning, showed that wild-type S. cerevisiae cells contain ~30 Golgi-like structures (Preuss et al., 1992) slightly concave disks, typically observed as single isolated cisternae (60% of cases). Occasionally two (30% of cases) or up to three (10% of cases) of these structures are in parallel stacks, often associated with nearby 50-nm vesicles. Golgi structures are always discrete, not contiguous with ER or other organelles. The yeast Golgi compartments are equidistant from the nucleus and the cell wall (Preuss et al., 1992), and different from the mammalian Golgi complexes which are near the nucleus as a consequence of their association with the microtubule organizing center (Kreis, 1990). Permanganate staining in S. cerevisiae revealed morphological features and structures similar to the cisternae and vesicles labeled with antibodies against yptlp, sec7p, and alpha,6-mannose residues (Preuss et al., 1992) the latter recognizing proteins which have gained access to the Golgi (Ballou, 1982). Unfortunately, no colocalization of these antigens was done in this EM study.

The above ultrastructural studies agree with previous immunofluorescent experiments which showed yeast Golgi associated antigens dispersed in many locations within the cell, but not overlapping with other organelles. By immunofluorescence sec7p colocalizes with kex2p in most instances (60-80%) (Franzusoff et al., 1991). Kex2p is thought to occupy a late Golgi subcompartment whereas sec7 appears to be associated with several Golgi subcompartments (Franzusoff et al., 1991; Franzusoff and Schekman, 1989). PMR may be in another subcompartment because in direct immunofluorescence showed a punctate pattern resembling Golgi staining, but double-labeling experiments in wild-type cells (Antebi, 1991) revealed only a small degree of congruence (although in close juxtaposition) between pmrlp and sec7p (17%) or pmrlp and kex2p (26%); pmrlp accumulated in aberrant Golgi-like structures that occur in sec7 mutants.

How does knowledge of the above Golgi subcompartments relate to the phenotype of gdal null mutants and our current hypothesis of the Golgi localization and function of the gdalp? Current models of nucleotide sugar transport into the Golgi lumen predict a critical role for gdalp in those luminal reactions requiring GDP-mannose as substrates: after mannosylation of proteins and lipids, GDP, a reaction product, is converted by gdalp to GMP which can exit the Golgi lumen, we were initially surprised by the amount of O-linked mannose chains with 3, 4, or 5 sugars though, unexpectedly, mannobiose was similar to wild type. Because the second O-linked mannosylation is thought to be added in the Golgi lumen, we were initially surprised by the amount of O-linked mannobiose found in gdal mutants. However, Kuranda and Robbins (1991) reported that intracellular chitinase from sec18 labeled at the restrictive temperature contained more than half of the sugars as mannobiose, the remainder being mannose. Significant amounts of mannobiose, in addition to mannose, were also detected in cell wall mannans of sec18 (Haselbeck and Tanner, 1983). Recent studies have shown that sec18 (together with sec7 and 22) belongs to a subset of sec mutants blocked in ER to Golgi transport (class II), in which 50-nm vesicles and enlarged ER structures accumulate (Kaiser and Schekman, 1990). These mutants are believed to be blocked in fusion of these vesicles to the target compartment while class I mutants (sec2, 14, 16, and 23), which accumulate only ER structures appear to be blocked earlier in secretion, during the budding stage (Kaiser and Schekman, 1990). It will be important to determine the length of the O-linked mannose chains synthesized by these mutants.

The alpha,1,2 mannosyltransferase (mnulp) responsible for the addition of the third O-linked mannose has been localized by subcellular fractionation to the Golgi, and colocalizes with the GDPase activity (Abeijon et al., 1989). This alpha,2 mannosyltransferase activity is inhibited in the gdal mutant; thus the O-glycosylation phenotype of gdal is very similar to that of mnulp null mutants (Hausler et al., 1992). This provides independent evidence for both activities occurring in the same subcellular compartment.

Bulk mannoproteins and secreted chitinase from pmrlp strains contained almost normal amounts of O-linked M3 species and thus appear to be blocked in O-mannosylation later than gdal mutants. Subcompartmentation may play a role in the differential effects of these mutations on Golgi processing, since gdalp and pmrlp would be thought to alter Golgi glycosylation in a general, non-specific fashion.

The vacuolar serine protease CPY has been used to detect
alterations in Golgi N-glycosylation since conversion of the core glycosylated 61 kD, ER, form of the proenzyme (pICPY) to the 69 kD precursor 2 (p2CPY) is solely due to the addition in the Golgi of five mannoses to each of the four N-linked core units present in the proenzyme (Hasilik and Tanner 1978a). This precursor is converted by proteolytic cleavage to a mature, 61-kD form in the vacuole. Glycosylation is not required for correct targeting and processing of CPY (Hasilik and Tanner, 1978b). As predicted, gdal mutants could not synthesize p2CPY and the mature form migrated faster than wild-type on SDS-PAGE. These differences were solely due to glycosylation because mutant and wild-type CPY showed equal SDS-PAGE migration after endo H treatment.

External invertase synthesized by wild-type strains has long outer mannan chain added to core-N-linked oligosaccharides (Ballou, 1990), while that secreted by gdal mutants was underglycosylated but not completely lacking outer mannan chains. Invertase secreted by the mutants is more heterogeneous than that by wild type and partially lacks the terminal αl, 3 linked mannose units added in the Golgi apparatus. A substantial portion of it showed only core oligosaccharides which are added in the ER. Even though the glycosylation defect observed in invertase is less pronounced than that of CPY and chitinase, four different reasons can explain why a severe decrease in the availability of GDP-mannose in the Golgi lumen of gda 1 mutants may differentially affect individual glycosylation reactions: (a) Different mannosyltransferases have distinct Kms for GDP-mannose (Nakajima and Ballou, 1975). Thus, low concentrations of the nucleotide sugar may affect mannosylations of different substrates to a different extent. (b) Different mannosyltransferases most likely also have different Ki for GDP and thereby selectively affect the synthesis of different glycosylated products. (c) The Golgi apparatus of S. cerevisiae is a subcompartmentalized organelle based on structural (Preuss et al., 1992) and functional evidence (Franzusoff and Schekman, 1989). The various subcompartments most likely have different local substrate concentrations. (d) Invertase has mannose phosphate on the outer chains, the donor of which is also GDP mannose, although the reaction product in this case is GMP, and not GDP. The transfer of mannose phosphate is a luminal reaction and can generate the putative antipporter, GMP, independently of gdalp. GMP present in the Golgi lumen could in turn facilitate the entry of additional cytosolic GDP-mannose, causing the glycosylation defects induced by the gdal mutation to be less severe in those subcompartments where addition of mannose phosphate occurs.

This hypothesis can be tested in a double mutant gdal, mnn6 (defective in phosphomannan formation [Ballou, 1990]) where invertase may only be core glycosylated. In more general terms, we recognize that the antipporter activity required to sustain the level of mannosylation found in the deletion strain may be derived from GMP generated by enzymes other than gdalp or from weak antipporter activity of GDP. Mutations in peripheral Golgi proteins arfl and ypl lead to a glycosylation phenotype of invertase very similar to gdal (Stearns et al., 1990). Although CPY also contains mannose-phosphate, the addition probably occurs at a different subcellular site than for invertase (Stevens et al., 1982). Sec18 showed almost no phosphate radiolabeled invertase while CPY phosphate content was normal. In addition, conversion of pICPY to p2CPY did not result in additional phosphate incorporation (Stevens et al., 1982). The gdal and pmrl mutations, which have quantitatively different effects on N-glycosylation of CPY and invertase, provide another example of disparity between secretory and vacuolar proteins routed through the yeast Golgi.

Sphingolipids are ubiquitous eukaryotic plasma membrane constituents that contain a common hydrophobic portion (ceramide) which is anchored in the membrane, and a variable hydrophilic region which in S. cerevisiae has mannosylinositol phosphate exposed to the cell surface (Patton and Lester, 1992). In higher eukaryotes they may act as mediators of signal transduction and cellular regulation (Hakomori, 1990; Hanum and Bell, 1989). Our results with gda1 strains provide direct evidence that the biosynthesis of the mannosyl-sphingolipids occurs in the lumen of the S. cerevisiae Golgi apparatus, supporting previous studies which suggest that GDP-mannose is the direct mannose donor in the formation of MIPC (Becker and Lester, 1980) and that these reactions probably occur in the Golgi apparatus (Puoti et al., 1991). The severe decrease of the above lipids in the gdal mutant strains opens the possibility of studying their influence on membrane activities in vivo. Studies in vitro have shown that H+ ATPase, a major protein of the S. cerevisiae plasma membrane is stimulated by sphingolipids (Patton and Lester, 1992).

We thank Drs. M. F. Verostek and T. Trimble (N.Y. State Department of Health, Albany, NY) for their invaluable help in the purification and characterization of external invertase, and Karen Welch and Annette Stratton for excellent secretarial assistance.

This work was supported by National Institutes of Health grants GM 45188 to P. W. Robbins and GM 30365 to C. B. Hirschberg.

Received for publication 9 September 1992 and in revised form 30 March 1993.

References
Abeijon et al. S. cerevisiae Golgi GDPase

Abeijon et al. *S. cerevisiae* Golgi GDPase