An Integral Membrane Protein of the Pore Membrane Domain of the Nuclear Envelope Contains a Nucleoporin-like Region

Einar Hallberg, Richard W. Wozniak, and Günter Blobel
Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021

Abstract. We have identified an integral membrane protein of 145 kD (estimated by SDS-PAGE) of rat liver nuclear envelopes that binds to WGA. We obtained peptide sequence from purified p145 and cloned and sequenced several cDNA clones and one genomic clone. The relative molecular mass of p145 calculated from its complete, cDNA deduced primary structure is 120.7 kD. Antibodies raised against a synthetic peptide represented in p145 reacted monospecifically with p145. In indirect immunofluorescence these antibodies gave punctate staining of the nuclear envelope. Immunogold EM showed specific decoration of the nuclear pores. Thus p145 is an integral membrane protein located specifically in the “pore membrane” domain of the nuclear envelope. To indicate this specific location, and based on its calculated relative molecular mass, the protein is termed POM 121 (pore membrane protein of 121 kD). The 1,199-residue-long primary structure shows a hydrophobic region (residues 29-72) that is likely to form one (or two adjacent) transmembrane segment(s). The bulk of the protein (residues 73-1199) is predicted to be exposed not on the cisternal side but on the pore side of the pore membrane. It contains 36 consensus sites for various kinases. However, its most striking feature is a repetitive pentapeptide motif XFXFG that has also been shown to occur in several nucleoporins. This nucleoporin-like domain of POM 121 is proposed to function in anchoring components of the nuclear pore complex to the pore membrane.

The nuclear envelope (NE) consists of three morphologically and biochemically distinct domains. The outer nuclear membrane with its attached ribosomes is continuous with the RER. One of the principal functions of this membrane system is to serve as the port of entry for all proteins, soluble and membrane integrated, destined for the membranes and compartments of the exocytotic and endocytotic pathway. The inner nuclear membrane is attached to the nuclear lamina and/or chromatin components and has been proposed to serve in the three-dimensional organization of chromatin (1). At numerous circumscribed points, the outer and inner nuclear membranes are connected with each other forming circular nuclear pores of ~100 nm diameter. These connecting bits of membrane appear to be biochemically and functionally distinct from both the outer and inner nuclear membrane and therefore can be regarded as a distinct third domain of the nuclear envelope referred to as the “pore membrane.” The large nuclear pore complexes (NPCs) (estimated mass of 1.25 × 10^8 Daltons) (27) occupy the nuclear pores. There are as many pore membrane domains in a single nuclear envelope as there are NPCs.

As the pore membrane domain connects the outer and inner nuclear membrane it must allow lateral diffusion of integral membrane proteins from their site of integration in the outer membrane/RER to reach their final destination in the inner membrane (30). At the same time the pore membrane is expected to contain resident integral membrane proteins that perform the specific functions of this membrane domain. One of these functions is to anchor the NPC. Another one is likely to effect circumscribed fusion of the outer and inner nuclear membrane to generate new pores. Although it is not known what happens to the pore membrane during mitotic disassembly of the nuclear envelope, circumscribed fission and fusion events may occur if the pore membrane were to be disassembled as distinct vesicles, separated from the other two NE domains.

So far it has not been possible to isolate the pore membrane domain as a separate entity. It is therefore not known how many distinct resident integral membrane proteins it contains. Only one of these proteins, gp210, has so far been identified and molecularly characterized (11, 12, 43). This protein contains a single transmembrane segment. Most of its mass is exposed on the cisternal side of the pore membrane. Only 58 amino acid residues, including its COOH terminus, are exposed on the pore side of the pore membrane. The function of gp210 is unknown. Its small COOH-terminal domain would be topologically poised to interact with the NPC.
In this paper we report the identification and characterization of another resident integral membrane protein of the nuclear pore. This protein binds WGA. From its mobility in SDS-PAGE, this protein was estimated to be 145 kD and is therefore referred to as pl45. Through cDNA cloning and sequencing we were able to deduce its entire primary structure. Its calculated relative molecular mass is 120.7 kD. Using monospecific antibodies against a synthetic peptide representing a portion of pl45 we were able to localize this protein to the nuclear pores. Because of its calculated relative molecular mass and its localization in the pore membrane we suggest the alternative term POM 121 (pore membrane protein of 121 kD). POM 121 is likely to contain one or two transmembrane segments. In contrast to gp210 most of its mass (1,127 out of 1,199 residues) is most likely exposed on the pore side of the pore membrane. This domain contains XFXFG repeats that were also found in several of the nucleoporins (a collective term for all NPC proteins) suggesting that POM 121 may function in anchoring these proteins to the pore membrane.

Materials and Methods

Preparation of Rat Liver Nuclear Envelopes and Microsomes

Rat liver nuclei were isolated from 150–200 g Sprague Dawley rats after 24 h of starvation as described by Blobel and Potter (2). All solutions were buffered with 20 mM triethanolamine (TEA)-HCl, pH 7.5, and contained 0.5 mM PMSF and 1 mM DTT. After homogenization and before ultra centrifugation DTT was added to the homogenate (final concentration, 5 mM).

NEs were isolated as described by Dwyer and Blobel (6) with the following modifications. All solutions contained 0.1 mM PMSF and 1 mM DTT. The DNase concentration was increased to 2 µg/ml, and 250 ng/ml RNase was present at both nuclease digestion steps.

For the isolation of microsomes a rat liver homogenate was centrifuged for 10 min at 800 g. The resulting postnuclear supernatant was then centrifuged for 15 min at 12,000 g and the resulting postmitochondrial supernatant was centrifuged at 105,000 g for 60 min yielding a pellet of “microsomes.”

Isolation of pl45

In a first step, NEs were extracted by urea as follows: 2,500 U of NE (1 U of NE is the amount derived from 1 A260 U of isolated rat liver nuclei (>3 × 10^9) and is equivalent to ~10 µg of protein) were suspended in 30 ml of 7 M urea in 20 mM TEA, pH 7.5, 0.1 mM MgCl2 and 10% sucrose (,,03 x 10^6) and is equivalent to ~0.10 µg of protein) were suspended in 30 ml of 7 M urea in 20 mM TEA, pH 7.5, 0.1 mM MgCl2 and 10% sucrose and incubated for 10 min at room temperature. The suspension was then underlaid with 5 ml of 15% sucrose in the extraction solution and centrifuged for 1 h at 100,000 g to yield a supernatant and a pellet fraction, representing urea extracted NEs.

In a second step, the urea extracted NEs (15,000 U) were solubilized in 4 ml of 4% SDS, 15 mM Tris-Cl, pH 7.5, 0.05 M NaCl, 25 mM DTT, and 0.5 mM PMSF by heating at 55°C for 60 min with occasional sonication in a bath sonicator. The solubilized material was dialyzed to 80 ml with the appropriate reagents to give a final concentration of 0.2% SDS, 1% Triton X-100, 15 mM Tris-Cl, pH 7.5, 0.15 M NaCl, 1.25 mM DTT, and 0.1 mM PMSF. This material was incubated with 2 ml of wheat germ lectin sepharose 6 MB (Pharmacia, Uppsala, Sweden) for 4 h at 4°C and the slurry was then transferred to a column. The column was washed with 25 column volumes of wash buffer (0.2% SDS, 1% Triton X-100, 15 mM Tris-Cl, pH 7.5, 0.15 M NaCl, 1.25 mM DTT, and 0.1 mM PMSF). The wash and flow through fractions were combined and stored for analysis. The WGA column was eluted with 5 ml of 0.5 M N-acetylglucosamine (GlcNAc) in wash buffer and thereafter with 5 ml of 1% SDS in H2O. The 0.5 M GlcNAc eluate from the WGA-sepharose column was concentrated by precipitation with 10% (wt/vol) TCA followed by two washes with 90% ethanol. The precipitate was solubilized in 100 µl of sample buffer (475 mM Tris-Cl, pH 8.8, 4.0% SDS, 0.1 M DTT, and 15% glycerol) and the material was subjected to SDS-PAGE using an 8% acrylamide gel. After electrophoretic separation, the proteins were transferred to nitrocellulose (40) and detected with Ponceau red. A strip of the nitrocellulose filter containing the 145-kD protein was cut out and digested with endoproteinase Lys C (Sigma Immunonochemicals, St. Louis, MO) as described (8). The resulting peptide fragments were separated by reversed phase HPLC. Selected peptides were subjected to automated Edman degradation (see Fig. 2).

Isolation of mRNA, RNA Blot Analysis and Synthesis of cDNA

Total cell RNA was isolated from rat hepatoma NIS1 cells (American Type Culture Collection, Rockville, MD) grown in suspension culture in DME supplemented with 10% FCS, 0.1 mM MEM-nonessential amino acids and 5 mM l-glutamine (GIBCO-BRL, Gaithersburg, MD). RNA was prepared from 2 g of pelleted cells (~800 × 10^6 cells) harvested in mid log phase by the procedure of Chirgwin and coworkers (3) with modifications (9). Poly A+ containing RNA was isolated by oligo-dT cellulose (Boehringer Mannheim Biochemicals, Indianapolis, IN) chromatography (28).

The poly A+ RNA was electrophoresed in a denaturing agarose gel (20), transferred to nitrocellulose (36) and probed with a random primer labeled probe corresponding to nucleotides 723–2,186 (see Fig. 5 and below). cDNA was synthesized from 5 µg poly A+ selected RNA using random hexamer primers and Moloney Murine Leukemia Virus reverse transcriptase (GIBCO BRL) (28).

Isolation of cDNA and Genomic Clones

On the basis of the amino acid sequence of one proteolytic fragment of pl45 (see Fig. 5), partially degenerate sense (amino acids 489–494) and antisense (amino acids 506–511) primers were synthesized. Sall and XbaI restriction sites plus two extra nucleotides were inserted at the 5' ends of the sense and antisense oligonucleotides, respectively. The oligonucleotides were purified on 15% acrylamide gels and used as primers for PCR. 4 ng of cDNA and 4 µg each of the sense and antisense primers were used in a 100 µl PCR reaction containing 10 mM Tris-Cl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.001% gelatin, 0.2 mM each of dATP, dCTP, dGTP, and dTTP, and 2.5 U of Taq polymerase (Perkin-Elmer Corp., Norwalk, CT). Reaction conditions were 25 consecutive cycles of denaturation (95°C for 1.5 min), annealing (42°C for 2.5 min) and polymerization (72°C for 3 min). One major amplification product of 84 bp was formed. The amplification product was purified on a 4% low melting agarose gel (NuSieve GTG: FMC BioProducts, Rockland, ME) and subcloned into pBluescript SK II (Stratagene, La Jolla, CA) and sequenced. The nucleotide sequence contained an open reading frame encoding an amino acid sequence matching the data derived from the proteolytic fragment of pl45.

On the basis of the DNA sequence of this amplification product, a 34-mer antisense oligonucleotide was synthesized. The oligonucleotide was labeled at the 5'-end using 32P-ATP (DuPont Co., Boston, MA) and T4 poly nucleotide kinase (New England Biolabs Inc., Beverly, MA) and used to screen a ZAP eDNA library derived from N1S1 cell mRNA (43). Six positive plaques were isolated and their inserts (<1.5 kb) sequenced. One of the clones isolated from the ZAP library, corresponding to nucleotides 723–2,186 (see Fig. 5), was random primer labeled with 32P-dCTP (7). This probe was used for screening of an unamplified agt10 cDNA library derived from Buffalo rat liver cell mRNA using an oligo-dT-primer (35). 1,000,000 plus were screened. Eight unique cDNA clones in the size range 4.8–5.5 kb were isolated, subcloned into pBluescript SK II and sequenced.

A λ DASH II rat genomic library (Stratagene) was screened using a random primer labeled (7) 719-bp restriction fragment (nucleotides –510 to 714) from the 5' end of the Apgc gene cl1. Three clones were isolated and restriction fragments hybridizing to the probe were identified by DNA blotting (32) and subcloned into pBluescript SK II. The genomic DNA fragment of the clone g301 contained a sequence upstream of the 5' end of the cDNA clones and ending in the Not I site at nucleotide 161 (see Fig. 5).

Hybridization Conditions

Replica lifts from the plated libraries and treatment of the nitrocellulose filters were carried out according to standard methods (28). Nitrocellulose filters, as well as the Southern and Northern blots, were prehybridized at 65°C for 4 h in hybridization solution (50% formamide, 5× Denhardt's solution, 0.2% SDS, 50 mM sodium phosphate, pH 7.7, 900 mM NaCl, 5 mM EDTA and 0.1 mg/ml denatured herring sperm DNA). Hybridization with random prime labeled probes was performed at 42°C for 2 h using ~1 × 10^6 cpm of labeled DNA per filter.
10^6 dpm/ml of hybridization solution. Filters were washed once at room temperature and then five times at 42°C in a solution of 0.2 x SSC and 0.1% SDS. Hybridization with the end-labeled oligonucleotide probe was performed at 37°C for 24 h using ~1 x 10^6 dpm/ml of hybridization solution containing 35% formamide. Filters were washed five times at 42°C in a solution of 2 x SSC and 0.1% SDS and positive plaques detected by autoradiography.

DNA Sequencing, DNA, and Protein Sequence Analysis

Sequencing of double stranded DNA was performed according to the dideoxy method (29) using 7-mer oligonucleotide primers (34, 37). DNA Sequencing, DNA, and Protein Sequence Analysis

Production of Anti-Peptide Antibody

A 13-mer synthetic peptide (residues 485-496, see Fig. 5) was synthesized with an additional cysteine at the NH2-terminus. The peptide was coupled to keyhole limpet hemocyanin (Calbiochem Corp., LaJolla, CA) using m-maleimidobenzoyl-N-hydroxysuccinimide ester (Pierce, Rockford, IL) and injected into rabbits as described (15). The antiserum was affinity purified on a column consisting of the synthetic peptide (2 mg) coupled to sulfolink (1 ml) according to the manufacturer's manual (Pierce). The antiserum was diluted fourfold in PBS and cycled through the column overnight at 4°C. The column was then washed with 50 ml of PBS and eluted with 0.1 M glycine-HCl, pH 2.8. Fractions containing antibody were pooled and the pH adjusted to 7.4.

Western Blot Analysis

Proteins were separated on 8% SDS-PAGE and then electrotransferred to nitrocellulose (40). For probing with WGA the nitrocellulose sheets were blocked in TBS-T (20 mM Tris-Cl, pH 7.5, 150 mM NaCl, 0.1% Tween 20) supplemented with 0.1% gelatin and then incubated with biotinylated WGA (Vector Laboratories, Inc., Burlingame, CA) at a 1:500-fold dilution in TBS-T for 3 h at room temperature. After washing four times in TBS-T the sheets were incubated with streptavidine coupled to HRP (Vector Laboratories, Inc., Burlingame, CA) at a 1:500-fold dilution in TBS-T for 30 min at room temperature. After three washes in TBS-T and two washes in TBS the filters were developed for 5-20 min at room temperature in a mixture consisting of 40 ml TBS, 8 ml methanol containing 3 mg/ml 4-chloro-l-napthol and 20 μl H2O2.

Blots to be probed with antibodies against a synthetic peptide of p45 (see above) or SSRα (21) were blocked in TBS-T supplemented with 2% dry milk. The sheets were washed and incubated with affinity purified anti-peptide antibodies in blocking buffer for 1 h at room temperature. The filters were washed four times and incubated with HRP coupled to donkey anti-rabbit IgG (Amersham, UK) at a 1:5000-fold dilution in blocking buffer for 30 min. Detection of immunoreactivity was performed as described in "ECL" detection system manual (Amersham, UK).

Preparation of BRL Cell Lysates

A 100 mm tissue culture dish containing a confluent monolayer of Buffalo rat liver (BRL) cells was washed three times with PBS. 1 ml of SDS-PAGE sample buffer was added and the plates were scraped to recover a whole cell lysate fraction. This material was then sonicated and heated at 95°C for 10 min in preparation for electrophoresis.

Immunofluorescence

Immunofluorescence was carried out on a subconfluent monolayer of BRL cells grown on coverslips. The cells were washed twice in PBS (20 mM sodium phosphate, 0.9% sodium chloride, pH 7.5) at room temperature, fixed in 3% formaldehyde in PBS for 20 min on ice and permeabilized with 0.5% Triton X-100 in PBS for 2 min on ice. The fixed and permeabilized cells were blocked in wash buffer (PBS, 0.1% Tween 20, 2% dry milk) for 20 min at room temperature. Cells were probed with affinity purified anti-peptide (p45) antibodies for 1 h at room temperature followed by 4 x 2-min washes in wash buffer. After a 40 min incubation with FITC-labeled donkey anti-rabbit IgG (1:100 dilution in wash buffer) the coverslips were washed 4 x 2 min in PBS and then mounted in a solution of 1 mg/ml p-phenylene diamine in 90% glycerol, pH 8.0. The samples were examined with a Zeiss Axiopt microscope (Carl Zeiss, Inc., Thornwood, NY) and the images were recorded on Kodak T-MAX 400 ASA film (Eastman Kodak Co., Rochester, NY).

Immunoelectron Microscopy

BRL cells were pelleted and fixed in PBS containing 2% paraformaldehyde and 0.05% glutaraldehyde. The material was then infused with 2.3 M sucrose in PBS for 30 min at room temperature and then frozen in liquid nitrogen. Ultrathin frozen sections were prepared as described (39). The sections were incubated with affinity purified rabbit anti-peptide (p45) antibodies for 2 h at room temperature, followed by goat anti-rabbit IgG bound to 10-nm gold particles. The grids were washed and stained as described (13).

Results

The Nuclear Envelope Contains an Integral Membrane Protein (p45) That Reacts with WGA

The proteins of isolated NEs and microsomes (ER) from rat liver were separated by SDS-PAGE, transferred to nitrocellulose and probed with WGA (Fig. 1 A) or antibodies against SSRα, a marker for an integral membrane protein of the ER (41) (Fig. 1 B). As expected, SSRα was found both in the ER and NE fractions (Fig. 1 B) and, as it is an integral membrane protein, it was not extracted from NEs by 7.0 M urea (Fig. 1, compare lanes sup and pellet). Probing with WGA yielded no reactive peptides in the ER fraction (Fig. 1 A) and showed several WGA-reactive polypeptides in the NE fraction (Fig. 1 A). Only one of these polypeptides (indicated by an arrow in Fig. 1 A) was not extracted by 7.0 M urea (compare lanes sup and pellet), suggesting that it is an integral membrane protein. Because of its 145,000 M, estimated from its mobility on SDS-PAGE, this integral membrane protein is referred to as p45. As p45 can be enzymatically labeled with UDP-galactose (data not shown) the most likely cause for its strong interaction with WGA is that it is a nucleoporin.
modified by single GlcNAc residues. Since p145 is not detected in the ER fraction, it is likely that it is also absent from the outer nuclear membrane domain of the NE and is instead located either in the inner membrane or the pore membrane domain of the NE.

Purification of p145

To purify p145 for partial protein sequencing, NEs were first extracted with 7.0 M urea and then solubilized by SDS. After the addition of Triton X-100, the solubilized proteins were subjected to affinity chromatography on WGA sepharose. The proteins of the various column fractions (as well as the load) were analyzed by SDS-PAGE and stained with Coomassie blue (Fig. 2A). Most of the integral membrane proteins of the NE did not bind to WGA sepharose and were found in the flow through fraction (Fig. 2A). Only two proteins, one 145 kD and the other 210 kD were found in the fraction eluted with 0.5 M GlcNAc (Fig. 2A). When the SDS-PAGE separated polypeptides of the eluate fraction were transferred to nitrocellulose and probed with WGA (B). Relative molecular mass standards are indicated on the left. Arrow indicates position of p145.

The overlapping cDNA clones establish a 5,508-bp contiguous sequence (Fig. 3, and see Fig. 5). This is consistent with the size of the p145 mRNA (5.5 kb) determined by Northern blots of poly A+ RNA from the rat hepatoma cell line N1S1 (43) yielded only partial clones (<1.5 kb). We therefore screened an unamplified oligo-dT primed Agt10 cDNA library derived from Buffalo rat liver cells (35). We isolated and sequenced eight individual cDNA clones from this library in the range of 4.8–5.5 kb (Fig. 3).

The overlapping cDNA clones establish a 5,508-bp contiguous sequence (Fig. 3, and see Fig. 5). This is consistent with the size of the p145 mRNA (5.5 kb) determined by Northern blots of poly A+ RNA from N1S1 cells (Fig. 4). The cDNA clone extending furthest in the 5' direction, c11, contains an initiation ATG and five upstream nucleotides, CCGCG, that conform with the proposed consensus sequence for a translation initiation site (18). However, we could not be sure that this site is the actual translation initiation site. If translation were to begin at this site, the open reading frame would extend for 3,597 nucleotides and encode a protein of only 120,711 Daltons, i.e., significantly below the 145 kD estimated from its mobility on SDS-polyacrylamide gels. Our attempts to isolate other cDNA clones that would extend further 5' of cDNA clone c11 failed. We

Molecular Cloning and Nucleotide Sequence

On the basis of peptide sequence derived from the endoproteolytic fragment of p145 (amino acids 489–511, see Fig. 5) a corresponding PCR product was synthesized and its DNA sequence was used to construct a p145 specific oligo-nucleotide probe. Screening of a cDNA library constructed from oligo-dT and randomly primed mRNA from the rat hepatoma cell line N1S1 (43) yielded only partial clones (<1.5 kb). We therefore screened an unamplified oligo-dT primed Agt10 cDNA library derived from Buffalo rat liver cells (35). We isolated and sequenced eight individual cDNA clones from this library in the range of 4.8–5.5 kb (Fig. 3).
Figure 6. Distribution of hydrophobic and charged amino acids in p45. (A) Hydropathic values of individual amino acids residues were averaged within a 19-amino acid sliding window as described (19). Mean values were assigned to the middle amino acid residue and plotted against its position. (B) Positions of the acidic (top) and basic (bottom) residues are indicated, respectively, as aspartic acid (intermediate bar), plus glutamic acid (full bar) and histidine (small bar), plus lysine (intermediate bar), plus arginine (full bar).

Figure 5. Complete nucleotide sequence and deduced amino acid sequence of cDNA and genomic DNA clones encoding p45. Nucleotides are numbered on the right margin with the +1 coordinate assigned to the first nucleotide of the open reading frame. The deduced amino acid sequence of p45 is printed in single letter code under the first base of the nucleotide triplets. Amino acid sequences obtained by automated Edman degradation matched the cDNA sequence 5' to this site. An in frame stop codon 66 downstream of the 5' end of c11 and extending downstream to a NotI site within the cDNA clones (Fig. 3). The DNA sequence of g301 reveals an in frame TAG stop codon 66 nucleotides upstream of the first ATG of c11 strongly implicating this TAG as the initiation codon (see Fig. 5). Moreover, there were no consensus sequences for splice junction boundaries (23) between the TAG (−66) and the ATG (+1). Thus, it appears unlikely that there is an intron between these two codons that could potentially extend the open reading frame of p45 beyond the sequence contained in g301. However, there is a putative splice junction acceptor consensus sequence at position −306, suggesting that g301's nucleotide sequence 5' to this site may be that of an intron.

cDNA Deduced Primary Structure

The 3,597-nucleotide-long open reading frame of the cloned cDNA encodes for a protein of 1,199 residues with a calculated relative molecular mass of 120,711 Daltons. The amino acid sequence of the five proteolytic fragments of p45 that were determined by Edman degradation matched the cDNA deduced amino acid sequence (Fig. 5).

The deduced primary structure of p45 is unusually rich in serines (16%), threonines (11%), and prolines (13%), which together make up 40% of the total amino acids. Serines and threonines located less than three residues from a glycine (16%), glutamic acid (15%), and alanine (11%) residues. The predicted hydrophobic segment containing a potential transmembrane domain is boxed. Three polyadenylation signals (positions 4821, 4857, 5487) in the 3' untranslated region are underlined. An in frame stop codon (position −66) in the 5' untranslated region and the termination codon of the open reading frame are underlined in bold. These sequence data are available from EMBL/GenBank/DDBJ databases under accession numbers z21513 and z21514.
These data are in good agreement with those of Fig. 1. Cellular fractions were analyzed and the antigen was exclusively localized to nuclear envelopes with 7 M urea (Fig. 8A). The antibodies recognized a single protein of 145 kD on a nitrocellulose blot of SDS-PAGE separated proteins of the lung tissue (see ref. 4). These data show homology to nucleoporins. After affinity purification, antibodies were used in indirect immunofluorescence microscopy of fixed and permeabilized Buffalo rat liver cells. As shown in Fig. 9A, the antibodies gave rise to a punctate staining in a focal plane tangential to the upper surface of the cell nucleus. When a focal plane through the equator of the nucleus was chosen, a punctate nuclear rim staining pattern was seen (Fig. 9B). Double immunofluorescence with mAb 414, which recognizes proteins of the NPC (4), yielded exactly superimposable staining (not shown) suggesting that p145 is located at or close to the NPC.

The affinity purified anti-peptide antibodies were also used to localize p145 in cryosections of BRL cells. As shown in Fig. 9A, the antibodies gave rise to a punctate staining in a focal plane tangential to the upper surface of the cell nucleus. When a focal plane through the equator of the nucleus was chosen, a punctate nuclear rim staining pattern was seen (Fig. 9B). Double immunofluorescence with mAb 414, which recognizes proteins of the NPC (4), yielded exactly superimposable staining (not shown) suggesting that p145 is located at or close to the NPC.

The affinity purified anti-peptide antibodies were also used to localize p145 in cryosections of BRL cells. As shown in Fig. 9A, the antibodies gave rise to a punctate staining in a focal plane tangential to the upper surface of the cell nucleus. When a focal plane through the equator of the nucleus was chosen, a punctate nuclear rim staining pattern was seen (Fig. 9B). Double immunofluorescence with mAb 414, which recognizes proteins of the NPC (4), yielded exactly superimposable staining (not shown) suggesting that p145 is located at or close to the NPC.

The affinity purified anti-peptide antibodies were used in indirect immunofluorescence microscopy of fixed and permeabilized Buffalo rat liver cells. As shown in Fig. 9A, the antibodies gave rise to a punctate staining in a focal plane tangential to the upper surface of the cell nucleus. When a focal plane through the equator of the nucleus was chosen, a punctate nuclear rim staining pattern was seen (Fig. 9B). Double immunofluorescence with mAb 414, which recognizes proteins of the NPC (4), yielded exactly superimposable staining (not shown) suggesting that p145 is located at or close to the NPC.
Figure 10. Localization of p145 by immunoelectron microscopy. Buffalo rat liver cells were cryosectioned as described in Materials and Methods. The ultra-thin sections were first incubated with affinity purified anti-peptide antibodies (see Fig. 8) and then with anti-rabbit IgG conjugated to 10-nm gold particles. In A four nuclear pores are labeled with one or two gold particles each (arrows). In B the outer and inner membrane and the connecting pore membrane are well preserved and three gold particles decorate a single nuclear pore (arrows). Bars, 100 nm.

domain remains to be determined. Fig. 11 shows two models, one with a single transmembrane segment and the NH$_2$ terminus exposed on the cisternal side, and the other one with two transmembrane segments and the NH$_2$ terminus exposed on the pore side of the pore membrane domain. In both models the bulk of POM 121 (1127 of 1199 amino acids) including the COOH terminus, the putative consensus sites for various kinases (see above) and GlcNAc addition, and the XFXFG repeats (see above) are exposed on the pore side of the pore membrane domain.
the pore side of the pore membrane (for details see Fig. 5 and Discussion).

Discussion

Our data here shows that POM 121 is a novel integral membrane protein that resides in the pore membrane domain of the rat liver nuclear envelope. The most interesting feature of the cDNA deduced primary structure of POM 121 is the presence of a repetitive pentapeptide motif XFXFG that is also present in several mammalian (33, 35) and yeast (5, 24) nucleoporins (nups). Thus, POM 121 possesses a nup-like domain but unlike nups, it contains in addition one (or perhaps two) transmembrane segment(s). This suggests that POM 121's nup-like domain is part of the NPC and that POM 121 therefore may function as a membrane anchor for components of the NPC. Another feature that POM 121 shares with those nups that have so far been molecularly characterized is an abundance of various consensus sites for phosphorylation (26, 35). In mitosis the NPC is reversibly disassembled and detached from the pore membrane (4). It is likely that numerous phosphorylation/dephosphorylation events coordinate disassembly/reassembly and detachment/reattachment. Moreover, like several nups, POM 121 is most likely modified by single GlcNAc residues at serine/threonine and therefore strongly interacts with WGA.

We have not yet obtained data on the topology of POM 121 in the pore membrane. However, the presence of a hydrophobic region between residues 29 and 72 of the 1,199-residue-long protein indicate that the membrane anchor (with one or two adjacent transmembrane segments, see Fig. 11) is at the NH₂-terminal region. The bulk of POM 121 (residues 73–1199) containing the repetitive XFXFG motifs as well as all consensus sequences for phosphorylation is likely to face the pore side rather than the cisternal side of the pore membrane. This suggests a highly asymmetric distribution of the mass of POM 121 on the two sides of the pore membrane. The other pore membrane protein that has so far been molecularly characterized, gp210, also exhibits a highly asymmetric distribution of its mass. In this case, however, most of the mass is located on the cisternal side of the pore membrane domain. Targeting studies with gp210 showed that its transmembrane segment (but not its pore side-exposed COOH-terminal tail) is the dominant topogenic signal for sorting gp210 to the pore membrane domain (42). Specific interactions with the transmembrane segment of another pore membrane protein has been suggested (42). Perhaps POM 121's transmembrane segment interacts with that of gp210 and the dimer would then be retained in the pore membrane domain via interaction of POM 121's large nup-like domain with the NPC.

It is likely that POM 121 is identical to the pl45 identified by Snow et al., (31). We thank Helen Shio and Eleana Sphicas for preparation of the immunoelectron microscopy specimens and members of the Rockefeller University/Howard Hughes Medical Institute Biopolymer facility for protein sequencing. The Agt10 cDNA was a kind gift of Jun Sukegawa. The anti-SSR was kindly provided by Giovanni Miguillicio and Christopher Nicchita. We also thank Hiroshi Murakami and Jun Sukegawa for valuable advice.

Received for publication 23 February 1993 and in revised form 7 May 1993.

References

