Homophilic Binding of PTP\(\mu\), a Receptor-Type Protein Tyrosine Phosphatase, Can Mediate Cell–Cell Aggregation

Susann M. Brady-Kalnay, Andrew J. Flint, and Nicholas K. Tonks
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208

Abstract. The receptor-like protein tyrosine phosphatase, PTP\(\mu\), displays structural similarity to cell–cell adhesion molecules of the immunoglobulin superfamily. We have investigated the ability of human PTP\(\mu\) to function in such a capacity. Expression of PTP\(\mu\), with or without the PTPase domains, by recombinant baculovirus infection of Sf9 cells induced their aggregation. However, neither a chimeric form of PTP\(\mu\), containing the extracellular and transmembrane segments of the EGF receptor and the intracellular segment of PTP\(\alpha\), nor the intracellular segment of PTP\(\alpha\) expressed as a soluble protein induced aggregation. PTP\(\mu\) mediates aggregation via a homophilic mechanism, as judged by lack of incorporation of uninfected Sf9 cells into aggregates of PTP\(\mu\)-expressing cells.

Homophilic binding has been demonstrated between PTP\(\mu\)-coated fluorescent beads (Covaspheres) and endogenously expressed PTP\(\mu\) on MvLu cells. Additionally, the PTP\(\mu\)-coated beads specifically bound to a bacterially expressed glutathione-S-transferase fusion protein containing the extracellular segment of PTP\(\mu\) (GST/PTP\(\mu\)) adsorbed to petri dishes. Covaspheres coated with the GST/PTP\(\mu\) fusion protein aggregated in vitro and also bound to PTP\(\mu\) expressed endogenously on MvLu cells. These results suggest that the ligand for this transmembrane PTPase is another PTP\(\mu\) molecule on an adjacent cell. Thus homophilic binding interactions may be an important component of the function of PTP\(\mu\) in vivo.

The reversible phosphorylation of tyrosyl residues in proteins is an essential component of the modulation of signal transduction processes involved in cell growth and differentiation. The dynamic balance of cellular phosphotyrosine levels is achieved by the opposing actions of the protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPases). The PTKs are a structurally diverse group that includes growth factor receptors and a substantial number of oncogene products, including members of the src family. It is now apparent that PTPases rival the PTKs in structural diversity and complexity. PTPases have the potential to oppose the effects of kinases as illustrated by their ability to suppress the transforming potential of oncogenic PTKs (Brown-Shimer et al., 1992; Woodford-Thomas et al., 1992; Zander et al., 1993). However, the PTPases should not be viewed simply as PTK antagonists. Overexpression of PTP\(\alpha\) leads to dephosphorylation and activation of c-src and induces cell transformation (Zheng et al., 1992). In addition, CD45 has been shown to play an essential role in signal transduction through the T cell receptor, also potently exerting its effect through the dephosphorylation and activation of src-family PTKs such as lck and fyn (reviewed in Trowbridge, 1991). Current evidence clearly indicates an essential role for the PTPases in cellular signaling.

PTPases exist in both soluble and transmembrane, receptor-like forms, (Charbonneau and Tonks, 1992). The structural features of some of the enzymes suggest a role for subcellular localization in the regulation of activity. In the case of the receptor PTPases, similar to the receptor PTKs, there is the potential for regulating activity by the binding of ligands to the extracellular segment of the protein. Several of the transmembrane PTPases are members of the immunoglobulin superfamily and display structural motifs in their extracellular segments that are suggestive of a role in cell–cell adhesion (Streuli et al., 1989; Fischer et al., 1991).

Cell–cell adhesion molecules are grouped into two major families on the basis of homology and conditions for binding: the immunoglobulin superfamily (generally calcium-independent) and the cadherin family (calcium-dependent). N-CAM is prototypical of the immunoglobulin superfamily of adhesion molecules. It contains five immunoglobulin domains and two fibronectin type-III repeats in the extracellular segment (reviewed by Edelman and Crossin, 1991). Cadherins are calcium-dependent cell–cell adhesion molecules that associate with the actin cytoskeleton by interactions of their cytoplasmic domains with proteins termed catenins (Ozawa et al., 1989). Both N-CAM and the cadherins bind by a homophilic mechanism (Edelman et al., 1987; Hall et al., 1990; Rao et al., 1992; Takeichi, 1991).

1. Abbreviations used in this paper: GST, glutathione S-transferase; PTK, protein tyrosine kinase; PTPases, protein tyrosine phosphatases.
The receptor-type PTPase, PTPμ, shows homology to N-CAM in that it bears an extracellular segment with an immunoglobulin domain and four fibronectin type III repeats (see Fig. 1) (Gebbink et al., 1991). This arrangement of multiple Ig-domains and fibronectin type-III repeats was first observed in LAR (Streuli et al., 1988) and has also been seen in the extracellular segments of several other transmembrane PTPases (reviewed in Charbonneau and Tonks, 1992). In this manuscript we investigate whether PTPμ can participate in homophilic binding interactions.

Introduction of potential adhesion molecules into non-adhesive Drosophila S2 insect cells has been used to demonstrate adhesive functions for fasciclin III, connectin and Dlk molecules directly (Snow et al., 1989; Nose et al., 1992; Pulido et al., 1992). In a similar approach, we demonstrate that the full-length form of PTPμ induced aggregation, via a homophilic binding mechanism, when expressed in nonadhesive S9 insect cells, which are derived from the Fall armyworm Spodoptera frugiperda. Cells expressing mutant forms of the enzyme lacking the natural extracellular segment did not aggregate. In this system, PTase activity and the aggregation response are not mutually dependent. We have also reconstituted the binding reaction in vitro between baculovirus-expressed PTPμ linked to beads and surfaces coated with bacterially-expressed extracellular segment of PTPμ. Finally we show that endogenously expressed PTPμ in lung cells binds homophilically to baculovirus-expressed PTPμ. These data represent the first demonstration of homophilic binding and a potential adhesive function for a member of the PTase family of enzymes.

Materials and Methods

Cell Culture and PTase Activity

S9 cells derived from the ovary of the Fall armyworm Spodoptera frugiperda (American Type Culture Collection (ATCC) number CRM 1711) were maintained at 27°C in Grace’s Insect Medium Supplemented (GIBCO-BRL, Gaithersburg, MD) containing 10% FBS and 10 μg/ml gentamicin (GIBCO-BRL). MvLu and 3T3 cells (ATCC numbers CCL 64 and CCL 92, respectively) were grown at 37°C, 5% CO2 in DME containing penicillin and streptomycin plus 10% FBS (GIBCO-BRL).

PTase assays were performed as described (Fliit et al., 1993). Total cell lysates were prepared in detergent containing buffer (20 mM Tris pH 7.6, 5 mM EDTA, 1% Triton X-100, 5 μg/ml leupeptin, 5 μg/ml aproin, 1 mM benzamide, 1 mM PMSF, and 1 mM DTT). PTase activity was measured in vitro by dephosphorylation of tyrosine-phosphorylated recombinant virus was made using the BaculoGold Transfection System (Invitrogen Corp.). A 2.2-kb fragment encoding the 79 kD extracellular segment of PTPμ (amino acids 21-740) was generated using oligonucleotides and PCR and ligated into the pGEX-KG vector (provided by K. Guan and J. Dixon, University of Michigan, Ann Arbor, MI) to produce a GST fusion protein. This construct was designated GST/PTPμ. The BIRK baculovirus has been described (Villalba et al., 1989). The tropomyosin baculovirus was provided by P. Pittenger and D. Helfman (Cold Spring Harbor Laboratory).

Antibodies

For isolation of the soluble (80 kD) form of PTPμ, S9 cells were infected with Ac-pS recombinant baculovirus for 4 d. Soluble PTPμ was purified from the cytoplasmic fraction of S9 cell lysates by sequential application to fast flow Q Sepharose, Mono Q, and Mono S as described (Brady-Kalnay and Tonks, 1993). The purified protein was used to generate six mAbs. Each of the mAbs was characterized in terms of binding to PTPμ; none recognized any proteins in extracts from uninfected S9 cells (manuscript in preparation). All of the monoclonals recognized the full-length and soluble PTPμ proteins from baculovirus-infected S9 cells and COS cells transiently transfected with PTPμ. One of the mAbs (SBK-15) was used for coupling PTase to Cosmouses and another antibody (SBK-10) was used in immunoblotting. A rabbit polyclonal antipeptide antibody to the amino terminus of PTPμ (residues 42-57, provided by M. Gebbink) was used for detection of PTPμ in immunoblots. The tropomyosin baculovirus was provided by M. Pittenger and D. Helfman (Cold Spring Harbor Laboratory).

Electrophoresis and Immunoblotting

S9 cells were infected with Ac-pS, Ac-pFL, Ac-pEGFR/PTPμ, or Ac-PTPμ-extracentamin baculoviruses to express the various forms of PTPμ. For analysis of expression of the various proteins, cells were harvested 48 h post-infection by centrifugation for 5 min at 3000 g, and lysed in 1 ml of buffer (20 mM Tris pH 7.6, 5 mM EDTA, 1% Triton X-100, 5 μg/ml leupeptin, 5 μg/ml aproin, 1 mM benzamide, 1 mM PMSF, and 1 mM DTT). 4X sample buffer was added to the lysates and they were separated by electrophoresis on 8% SDS polyacrylamide gels (Laemmli, 1976). 4X sample buffer was added to the lysates and they were separated by electrophoresis on 8% SDS polyacrylamide gels (Laemmli, 1976). Proteins were transferred to nitrocellulose (Towbin, 1979), blocked in 5% nonfat dry milk in TBBS, incubated with mAb (SBK-10) or polyclonal antipeptide antibody against PTPμ. A secondary antibody conjugated to HRP was added and the bound antibody was visualized by enhanced chemiluminescence (ECL, Amersham Corp., Arlington Heights, IL).

Cell surface expression of the various forms of PTPμ was verified by examining their protease sensitivity on intact cells. S9 cells were removed from a T25 flask in 2 ml Grace’s medium in the presence or absence of 0.05% trypsin (wt/vol) (Worthington Biochemical Corp., Freehold, NJ) and incubated for 15 min at room temperature. The cells were centrifuged, extracted and immunoblotted as described above except that lina beaun trypsin inhibitor (Worthington Biochemical Corp., Freehold, NJ) was added to the lysis buffer (60 μg/ml). Molecules were compared by reactivity to an anti-phosphotyrosine antibody on immunoblots. Co-infections were performed by simultaneously adding both viruses to S9 cells and incubating for 42 h. The immunoblots were performed as described above.

Cell Aggregation Assays

S9 adhesion assays were similar to those performed in Snow et al. (1989).

The Journal of Cell Biology, Volume 122, 1993 962

Downloaded from jcb.rupress.org on November 19, 2017
The quantitation of the extent of aggregation followed the procedure of Brackenbury et al. (1977). SF9 cells were harvested 2 or 3 d post-infection. 1 x 10^6 cells were added to 2 ml Grace's medium containing 150 μg/ml DNase I in a glass scintillation vial (Fisher Scientific, Pittsburgh, PA) and incubated at 25°C at 90-100 rpm in a gyratory shaker. Aliquots were diluted 50-fold and the number of particles was determined using a Coulter Counter. The Coulter Counter settings were: lower threshold-50, upper threshold-99.9, current-500 mA, full scale-1, polarity-auto, attenuation-16, and preset gain-1. The percent aggregation was calculated by subtracting the particle number after the 30 rain or 1 h time point (N0) from the initial particle number (N0) and dividing by the initial number [(N0 - N0)/N0 × 100]. Aggregates were visualized with a phase contrast microscope using the 10× objective.

Fluorescent labeling of cells using Di I was performed according to the protocol supplied by Molecular Probes Inc. (Eugene, Oregon). SF9 cells were incubated with 20 μM Di I for 15 min at room temperature, then washed two times in Grace's medium. Di I labeled, uninfected SF9 cells were mixed with an equal number of cells expressing full-length PTPα and aggregation assays were performed as described above. Aliquots were spotted onto microscope slides and Di I labeled cells were observed with a Zeiss Axioptil microscope equipped for epifluorescence using a 20× lens.

In a subset of assays, a chelating resin, iminodiacetic acid cross-linked to polystyrene (Sigma Chemical Co., St. Louis, MO), was used to remove divalent cations from the insect cell medium. One ml swollen resin was used to deplete 3 ml media by mixing for 1 h at room temperature. The effect of this procedure was assessed in aggregation assays as described above.

Preparation of Covaspheres
MX Covaspheres (0.9 μm) were purchased from Duke Scientific (Palo Alto, CA). After brief sonication 100 μl of Covaspheres were added to 100 μg of mAb-SBK15. The protein and the Covaspheres were incubated for 75 min at room temperature then centrifuged at 10000 g for 2 min. Any unbound sites were blocked by incubation for 15 min in 20 mM Tris pH 7.5 containing 1% BSA. The beads were washed with PBS and briefly sonicated before use in immunoprecipitation of full length PTPα or the EGFR/PTPα chimera. A triton soluble lysate from full length PTPα or EGFR/PTPα chimera-expressing SF9 cells was added to the SBK15-Covaspheres, incubated at 4°C for 1 h, washed with lysis buffer three times, resuspended in PBS and used in binding assays. Successful immunoprecipitation by the antibody-linked Covaspheres was verified by depletion of the PTPα reactivity upon immunoblotting. This antibody has been used to purify full-length PTPα from SF9 cells (Brady-Kalnay and Tonks, 1993).

The in vitro binding assays also utilized a purified fusion protein, comprising glutathione S-transferase linked to the NH2-terminus of the extracellular segment of PTPα (GST/PTPα). The GST/PTPα fusion protein was expressed in E.coli and purified according to Guan and Dixon (1991). The GST protein alone (27 KD) was used as a negative control. These GST proteins were coupled directly to Covaspheres by adding 3.9 μg protein per μl of Covaspheres as described above.

Covasphere Binding Assays
The binding assay was performed as described in Mauro et al. (1992). Briefly, 10 μg of purified GST proteins were adsorbed to 35-mm petri dishes for 30 min, then remaining unbound sites were blocked with 2% BSA in PBS. PTPα-linked Covaspheres (50 μl) were added to the dishes in a final volume of 1 ml PBS. Bound Covaspheres were visualized with a Zeiss Axioptil microscope equipped for epifluorescence using a 20× lens.

The ability of GST/PTPα-linked Covaspheres to self-aggregate was assessed by adding 30 μl of the Covasphere preparation to 2 ml of PBS followed by rotation for 30 min under low shear conditions. Controls utilizing Covaspheres coated with GST alone were performed in parallel. Aggregates were visualized with a Zeiss Axioptil microscope as above.

Various protein-coated Covaspheres described above were also used in assays to assess binding to the surface of MvLu mink lung cells or 3T3 cells. Covaspheres (50 μl) were added in DME plus 10% FBS to confluent 35-mm plates of MvLu cells, then incubated with the cells for 30 min at room temperature with rocking. The plates were washed 3 times with DME and visualized as described above. All antibody competition experiments were performed using the anti-peptide antibody to the amino-terminus of the extracellular segment of PTPα. In experiments in which binding was blocked with Fab fragments the Covaspheres were preincubated for 30 min at room temperature in 0.6 mg pre-immune or immune Fab per 50 μl Covaspheres in a final volume of 500 μl. The Fab/Covasphere solution was added to the cells and incubated for 30 min. Alternatively, the MvLu cells were incubated for 30 min with pre-immune or immune serum to PTPα, diluted 1:50 in culture media, before the addition of 50 μl of full-length PTPα-linked Covaspheres.

Results
PTPα Is Expressed at the Cell Surface
Human PTPα was expressed in SF9 insect cells by infection with recombinant baculoviruses. Three forms of human PTPα were expressed: (a) a full-length form (200 kD); (b) a soluble form, comprising only the extracellular segment

<table>
<thead>
<tr>
<th>DESCRIPTION OF MUTANTS</th>
<th>ACTIVITY (units/mg total cellular protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR/PTPα chimera</td>
<td>0.36</td>
</tr>
<tr>
<td>full length PTPα</td>
<td>0.45</td>
</tr>
<tr>
<td>soluble PTPα</td>
<td>12.9</td>
</tr>
<tr>
<td>PTPα - extra</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. Structure and PTPase activity of the various baculovirus-expressed recombinant forms of PTPα. The solid black boxes represent PTPase domains. The hatched boxes are fibronectin type-III repeats and the loop represents the immunoglobulin-like domain. The stippled box represents the extracellular domain of the EGF receptor. The PTPase activity is expressed as units per mg of total cellular protein above the PTPase activity of lysates from uninfected SF9 cells which was 0.09 U/mg.
Figure 2. Expression of PTPμ and the EGFR/PTPμ chimera at the cell surface. This figure is an immunoblot of whole cell lysates using mAb SBK-10 generated against the intracellular segment of PTPμ. Lane 1 is from cells expressing full-length PTPμ, Lane 2 is from PTPμ-expressing cells that were subjected to limited trypsin treatment. Extracts from EGFR/PTPμ chimera-infected cells without or with trypsin treatment are shown in lanes 3 and 4, respectively. Each lane contains 5 μg total protein.

Figure 3. Aggregation of baculovirus-infected SF9 cells. This figure shows phase contrast micrographs of uninfected or infected SF9 cells allowed to aggregate under low shear conditions for 1 h. a shows uninfected cells which did not aggregate while the full-length PTPμ infected cells (b), formed large aggregates. Cells infected with recombinant baculoviruses expressing soluble PTPμ (c) or EGFR/PTPμ chimera (d) did not aggregate.
soluble form of PTPµ confirmed that it is present at much higher levels than the transmembrane forms. To verify that PTPµ and the EGFR/PTPµ chimera were expressed at the cell surface, trypsin sensitivity assays were performed (Brady-Kalnay et al., 1993). This assay involves incubation of intact cells with a 0.05% (wt/vol) trypsin solution which allows the protease to act only on the portion of molecules expressed at the cell surface. Full-length forms are converted into smaller fragments still associated with the cell, i.e., possessing their transmembrane and cytoplasmic segments. The viability and integrity of the trypsinized cells was confirmed by trypan blue dye exclusion. Lysates of treated cells were immunoblotted with monoclonal antibody SBK-10 directed against the carboxy-terminal domain of PTPµ, which thus reacts with both full-length PTPµ and the EGFR/PTPµ chimera. Fig. 2 shows ~90% of full-length PTPµ (lane 2) and the EGFR/PTPµ chimera (lane 4) were degraded after trypsinization, thus suggesting that these proteins are expressed predominantly on the cell surface.

Adhesion molecules are classified by their dependence on divalent cations, primarily calcium (Takeichi, 1977). The aggregation assay described above was routinely performed in Grace's insect cell medium which contains 7 mM calcium chloride. To test whether divalent cations were important for aggregation, we used a chelating resin to remove them from the medium prior to performing the assay. The full-length PTPµ expressing cells aggregated equally well with or without divalent cations (data not shown) suggesting that, like...
baculovirus expressing BIRK, a soluble protein comprising photyrosine were analyzed. St9 cells contain very low levels of distinct recombinant baculoviruses (Kaplan et al., 1990; Parker et al., 1991; Kato et al., 1993). In light of these reports, we co-infected two batches of St9 cells. One batch was co-infected with baculoviruses expressing BIRK and a nonphosphatase control (tropomyosin) and the other batch with BIRK and full-length PTP\(_{\mu}\). Cell lysates were then analyzed for changes in phosphotyrosine levels. Fig. 6 is an immunoblot, using anti-phosphotyrosine antibodies, of extracts from cells infected with BIRK (Fig. 6 a, lane 1) or co-infected with BIRK and tropomyosin (a, lane 2). The co-infection with the non-phosphatase control did not alter the BIRK-induced increase in phosphotyrosine levels. The presence of tropomyosin protein was confirmed by immunoblotting (data not shown). Fig. 6 b shows that while high levels of phosphotyrosine containing proteins were seen in BIRK-infected cells (lane 1) co-infection with BIRK and full-length PTP\(_{\mu}\) (lane 2) resulted in a dramatic decrease in phosphotyrosine levels, presumably due to high basal activity of the PTPase. Immunoblotting verified that full-length PTP\(_{\mu}\) was expressed at similar levels in the single or co-infected St9 cell lysates. The overall levels and pattern of anti-phosphotyrosine immunoreactive proteins were unchanged by aggregation. BIRK/full-length PTP\(_{\mu}\) expressing cells before (lane 2) and after (lane 3) aggregation are shown in Fig. 6 b. Co-infection of BIRK and the soluble PTP\(_{\mu}\) which is expressed at \(~25\) fold higher levels than the transmembrane forms, as determined by activity assays, contained even lower levels of anti-phosphotyrosine reactivity, suggesting that the immunoreactive bands were indeed tyrosine phosphorylated proteins. In addition to this in vivo assay, total cell lysates of full-length PTP\(_{\mu}\)-infected cells were assayed for PTPase activity with RCY lysozyme as a substrate, before and after aggregation. The activity was essentially unchanged after aggregation.

Phosphatase Activity Is not Required for Aggregation

To test whether phosphatase activity is required for the adhesive function, we generated a mutant form of PTP\(_{\mu}\) containing the entire extracellular domain, transmembrane domain and 54 amino acids of the intracellular domain, which we termed PTP\(_{\mu}\)-extra. This protein lacks both phosphatase domains. As expected, in lysates of cells expressing PTP\(_{\mu}\)-extra, no PTPase activity above that found in uninfected cells was detected. An immunoblot using an antipeptide antibody directed against the NH\(_2\)-terminal extracellular segment of PTP\(_{\mu}\) (Fig. 5 a) illustrates that PTP\(_{\mu}\)-extra (lane 1) is expressed at similar levels to the full-length protein (lane 2). The ability of PTP\(_{\mu}\)-extra expressing cells to aggregate is shown in Fig. 5 b. Quantitative analysis of the assays indicated a percent aggregation of the PTP\(_{\mu}\)-extra infected cells of 30.3\% \(\pm\) 4.3 (mean \(\pm\) SEM, \(n = 8\)), compared to 38.2\% \(\pm\) 1.9 (mean \(\pm\) SEM, \(n = 6\)) for full-length PTP\(_{\mu}\)-infected cells. Thus, the adhesive function of PTP\(_{\mu}\) and its capacity to dephosphorylate proteins are not mutually dependent.

A common feature of receptor-like molecules is that the enzymatic activity of their intracellular domains is regulated by binding of ligands to their extracellular segments. We thus sought to examine whether aggregation might affect the activity of PTP\(_{\mu}\). To this end, the levels of total cellular phosphotyrosine were analyzed. St9 cells contain very low levels of phosphotyrosine-containing proteins. To increase the amount of cellular phosphotyrosine and the variety of potential substrates, we infected the cells with a recombinant baculovirus expressing BIRK, a soluble protein comprising the catalytic domain of the mammalian insulin receptor tyrosine kinase (Villalba et al., 1989). There are many examples of direct protein:protein and enzyme:substrate interactions that have been investigated by co-infection of St9 cells with distinct recombinant baculoviruses (Kaplan et al., 1990; Parker et al., 1991; Kato et al., 1993). In light of these reports, we co-infected two batches of St9 cells. One batch

PTP\(_{\mu}\) Mediates Homophilic Aggregation

We have tested whether the aggregation of St9 cells expressing PTP\(_{\mu}\) is mediated via a homophilic mechanism in which molecules of PTP\(_{\mu}\) on different cells interact with one another or by a heterophilic mechanism in which the insect cells express a molecule that binds to human PTP\(_{\mu}\). Uninfected nonadhesive St9 cells were labeled with the fluorescent lipophilic dye, Di I (Snow et al., 1989) and mixed with unlabeled full-length PTP\(_{\mu}\)-infected cells. After aggregation the cells were visualized using an epifluorescence microscope. The Di I labeled cells did not aggregate and did not contribute to the aggregates formed by the full-length PTP\(_{\mu}\)-infected cells. Fig. 7 is a representative example of 32 aggregates examined in three independent experiments; no Di I-positive cells were seen in any of the aggregates. These results strongly suggest that PTP\(_{\mu}\) binds in a homophilic fashion.

Reconstitution of PTP\(_{\mu}\)-mediated Homophilic Binding In Vitro

We have examined the ability of baculovirus-expressed PTP\(_{\mu}\) to bind to surfaces coated with bacterially-expressed extracellular segment of PTP\(_{\mu}\) in vitro. A mAb to the intracellular domain of PTP\(_{\mu}\) was covalently linked to Covaspheres (fluorescent beads). These antibody-linked Covaspheres were used to immunoprecipitate either the full length PTP\(_{\mu}\) or the EGFR/PTPp chimera from lysates of infected cells. The entire extracellular domain of PTP\(_{\mu}\) was expressed as a glutathione S-transferase (GST) fusion protein.
and purified from E. coli using a glutathione Sepharose affinity column. This purified protein was adsorbed onto petri dishes and the binding of PTP\(\mu\) or EGFR/PTP\(\mu\) chimera-coated Covaspheres was visualized using an epifluorescence microscope after washing the dishes to remove nonadherent Covaspheres. There was no significant binding of the full-length PTP\(\mu\) Covaspheres to GST alone [29 ± 0.6 Covaspheres per field (mean ± SEM: n = 6) shown in Fig. 8 a]. Similarly, Fig. 8 b shows that there was no significant binding of EGFR/PTP\(\mu\) chimera-coated Covaspheres to the GST/PTP\(\mu\) extracellular segment (28 ± 3.9 Covaspheres per field: n = 8). However, Fig. 8 c demonstrates that the full-length PTP\(\mu\)-coated Covaspheres bound specifically to the GST/PTP\(\mu\) extracellular segment fusion protein (764 ± 41 Covaspheres per field: n = 5). These data establish that the homophilic binding in vitro, which was performed in PBS, was independent of any added divalent cations. Also because the GST/PTP\(\mu\) protein was isolated from bacteria, glycosylation of the extracellular domain is unlikely to contribute to the binding reaction. Similar observations were made for Nr-CAM (Mauro et al., 1992).

Baculovirus Expressed PTP\(\mu\) Binds by a Homophilic Mechanism to PTP\(\mu\) that Is Normally Expressed in MvLu Cells

We have examined the ability of PTP\(\mu\) to bind homophilically when expressed at physiological levels. At this time, the only cell line we have found that expresses PTP\(\mu\) is MvLu mink lung cells. This cell line expressed low but detectable levels of the enzyme as determined by immunoblotting with intracellular segment-directed monoclonal anti-PTP\(\mu\) antibodies (data not shown). The ability of PTP\(\mu\)-coated Covaspheres to bind to these cells was tested. As shown in Fig. 9, a and b, only low levels of the EGFR/PTP\(\mu\) chimera-coated Covaspheres bound nonspecifically to the cells while high levels of binding of PTP\(\mu\)-coated Covaspheres were observed (c and d). This binding was inhibited by pre-incubating the MvLu cells with antibodies to the extracellular domain of PTP\(\mu\) (e and f). Pre-immune IgG did not affect the binding of PTP\(\mu\)-coated Covaspheres (Table I). This "sided" experiment selectively blocks PTP\(\mu\) on the MvLu cells, thus illustrating that binding occurs through a homophilic interaction. In a separate experiment, Fab' fragments of antibodies to PTP\(\mu\) were pre-incubated with the PTP\(\mu\)-coated Covaspheres, which also prevented binding. Incubation with Fab' fragments derived from pre-immune serum did not affect the binding. A quantitative summary of the results of Covasphere binding are presented in Table I. These data demonstrate that purified PTP\(\mu\) was capable of binding homophilically to PTP\(\mu\) expressed on the surface of MvLu cells.

GST/PTP\(\mu\)-coated Covaspheres Aggregate In Vitro and Bind to MvLu Cells

In light of the preceding data, one might anticipate that Covaspheres coated with PTP\(\mu\) would self-aggregate. To test this possibility the GST/PTP\(\mu\) fusion protein was covalently coupled directly to Covaspheres to ensure a high protein:bead ratio. The Covaspheres were then rotated under low shear conditions to allow any aggregation to occur. As shown in Fig. 10, the Covaspheres coated with GST alone did not aggregate (a) whereas the GST/PTP\(\mu\)-coated Covaspheres formed aggregates (b). These Covaspheres were also examined for their ability to bind to the surface of MvLu cells (Table II). While there was no significant binding of control GST Covaspheres, GST/PTP\(\mu\) Covaspheres bound at high levels to MvLu cells. Furthermore, the GST/PTP\(\mu\) Covaspheres did not bind to 3T3 cells which do not express detectable amounts of immunoreactive PTP\(\mu\).

Discussion

The cloning of receptor-type PTPases has led to the convergence of the fields of cell adhesion and protein tyrosine dephosphorylation. The structural similarity of some of the receptor-type PTPases to the immunoglobulin superfamily of cell adhesion molecules suggests that these phosphatases may participate in homophilic binding interactions, i.e., the "ligand" for one of these PTPases may be a molecule of the same enzyme expressed on an adjacent cell.
In this manuscript we report experiments which demonstrate homophilic binding between molecules of PTPμ by several criteria: (a) Expression of full-length PTPμ, or mutant forms with an intact extracellular segment, in the presence or absence of the PTPase domains, caused Sf9 cells to aggregate. Neither a chimeric phosphatase bearing the extracellular segment of the EGF-receptor and the intracellular segment of PTPμ nor the PTPase domains of PTPμ expressed as a soluble protein induced aggregation. When uninfected, fluorescently labeled Sf9 cells were mixed with unlabeled PTPμ-expressing cells, the labeled cells were excluded from the aggregates. Furthermore, no immunoreactive species were detected after immunoblot analysis of lysates of uninfected Sf9 cells using a variety of mAbs to PTPμ. These data indicate that the counter-receptor for PTPμ was only found on the surfaces of other PTPμ-expressing cells. (b) The binding reaction has been reconstituted in vitro. First, fluorescent Covaspheres linked to baculovirus expressed PTPμ will bind to petri dishes coated with a GST fusion protein (GST/PTPμ) containing the extracellular segment of PTPμ. a shows that there were only low levels of nonspecific binding of full-length PTPμ-coated Covaspheres to petri dishes coated with GST protein alone. Similarly, only low levels of nonspecific binding were seen when the EGFR/PTPμ chimera-coated Covaspheres were added to GST/PTPμ fusion protein-coated dishes (b). However, numerous full length PTPμ-coated Covaspheres bound to the GST/PTPμ fusion protein-coated dishes (c).
Figure 9. Homophilic binding of baculovirus-expressed PTPμ-coated Covaspheres to endogenous PTPμ in MvLu cells. Phase contrast micrographs of MvLu cells (a, c, and e) and micrographs of fluorescent Covasphere binding (b, d, and f) are shown. a and b show the low level of nonspecific binding when EGFR/PTPα chimera-coated Covaspheres are applied to the cells. c and d, show full-length PTPμ-coated Covaspheres bound to the cells. In e and f, the MvLu cells were preincubated with an anti-peptide antibody to the amino-terminus of PTPμ before addition of the PTPμ-bound Covaspheres.
Table I. Quantitation of the Binding of PTPµ-coated Covaspheres to MvLu Cells

<table>
<thead>
<tr>
<th></th>
<th>Number bound/field*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPµ-Covaspheres</td>
<td>539 (± 94)</td>
</tr>
<tr>
<td>EGFR/PTPµ chimera-Covaspheres</td>
<td>9 (± 2)</td>
</tr>
<tr>
<td>PTPµ-Covaspheres pretreated with preimmune Fab'</td>
<td>475 (± 39)</td>
</tr>
<tr>
<td>PTPµ-Covaspheres pretreated with anti-PTPµ Fab'</td>
<td>15 (± 3)</td>
</tr>
<tr>
<td>PTPµ-Covaspheres added to MvLu cells pretreated with pre-immune antibody</td>
<td>401 (± 10)</td>
</tr>
<tr>
<td>PTPµ-Covaspheres added to MvLu cells pretreated with anti-PTPµ antibody</td>
<td>19 (± 3)</td>
</tr>
</tbody>
</table>

* The number of Covaspheres bound is represented as the mean of at least three fields. The field is 0.09 mm². The number in parentheses indicates SEM. Some of these results are illustrated in Fig. 9.

Table II. Quantitation of Covasphere Binding to Cell Surfaces

<table>
<thead>
<tr>
<th></th>
<th>Number bound/field*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-Covaspheres added to MvLu cells</td>
<td>12 (± 2)</td>
</tr>
<tr>
<td>GST/PTPµ-Covaspheres added to MvLu cells</td>
<td>1,006 (± 78)</td>
</tr>
<tr>
<td>GST/PTPµ-Covaspheres added to 3T3 cells</td>
<td>9 (± 2)</td>
</tr>
</tbody>
</table>

* The number of Covaspheres bound is represented as the mean of at least six fields. The field is 0.09 mm² and contained approximately equal numbers of MvLu and 3T3 cells. The number in parentheses indicates SEM.

Also if the PTPµ Covaspheres are pretreated with Fab' fragments from the anti-PTPµ antibody, binding to MvLu cells is blocked whereas control Fab's are without effect. Collectively, these data establish homophilic binding between PTPµ molecules in a heterologous expression system, in in vitro binding assays and in cells in which the molecule is normally expressed.

For immunoglobulin superfamily-type adhesion molecules, such as N-CAM, aggregation is highly dependent upon the concentration of the molecule at the cell surface (Hoffman and Edelman, 1983). Therefore, to assess the aggregation potential of PTPµ a model system had to be used that could generate high level expression of the protein at the cell surface. Introduction of potential adhesion molecules into nonadhesive cells has been used to demonstrate directly their adhesive functions. Transfection for determination of an adhesive function was first described by Takeichi and colleagues for E-cadherin (Nagafuchi et al., 1987). Goodman
and co-workers introduced fasciclin III and connectin molecules into nonadhesive *Drosophila S2* cells to demonstrate that these molecules mediated homophilic adhesion (Snow et al., 1989; Nose et al., 1992). Similarly, Pulido et al. (1992) have used *Drosophila S2* cells to demonstrate that the receptor tyrosine kinase, *Dtrk*, may function as an adhesion molecule. We chose to use SF9 insect cells and the baculovirus expression system (Matsuura et al., 1987; Summers and Smith, 1987) to express PTP#. This system has been previously used to express high levels of glycosylated, biologically active haemagglutinin (Kuroda et al., 1986) and tissue plasminogen activator (Jarvis and Summers, 1989). An additional requirement for use in adhesion studies is a baculovirus-susceptible cell line with low levels of endogenous aggregation. SF9 cells fulfill this condition in that they do not aggregate well in an in vitro assay.

The SF9 cells infected with full length PTPµ showed high levels of aggregation (39%) compared to uninfected cells (11.9%), and the even lower levels of aggregation of cells infected with soluble PTPµ (4.6%) or the EGFR/PTPµ chimera (−4.1%). The level of aggregation induced by PTPµ was similar to that induced by other known adhesion molecules in various model systems. For example, transfection of mouse L-cells with N-CAM resulted in a difference in aggregation of 30% (Edelman et al., 1987) whereas N-CAM expression increased aggregation of an RSV-transformed neuronal cell line from 20 to 40% (Brady-Kalnay et al., 1993). Expression of Nr-CAM in L-cells increased aggregation to 14% (Mauro et al., 1992) while Nose et al. (1989) detected a 50% difference in aggregation of fasciclin III-transfected versus untransfected S2 cells. Therefore, PTPµ promotes similar levels of aggregation to those detected in response to well established cell–cell adhesion molecules. These data suggest that the SF9 cell/baculovirus expression system may represent a useful tool for revealing potential adhesive functions for other molecules.

Whether or not PTPµ has the ability to perform this adhesive function in its normal environment remains to be determined. Nevertheless, we have shown that PTPµ expressed endogenously on the surface of MvLu cells retains the capacity for homophilic binding. However, MvLu cells do not aggregate in an aggregation assay. The low levels of the PTPase expressed in these cells may preclude the successful application of this assay. We have observed PTPµ protein to be expressed abundantly in lung, however at present we have not found a cell line that reflects that high level of expression. Thus, the ultimate resolution of the issue of whether, as suggested by the data presented in this manuscript, PTPµ can function as an adhesion molecule in vivo may require the use of primary cell systems.

High local concentrations in a specific area of the membrane could allow PTPµ to bind homophilically and function in an adhesive role even though it may be expressed at low overall levels in a particular cell. One novel feature of PTPµ that may be interesting in this regard is that its intracellular juxtamembrane segment is 70 amino acids longer than the equivalent segment in other receptor PTPases. Using the ALIGN program, we have shown that this portion of PTPµ displays sequence similarity to the intracellular segment of members of the cadherin family (Tonks et al., 1992). This homology is interesting because no other receptor type PTPases have such similarity to the cadherins, nor do any other members of the immunoglobulin superfamily. The intracellular domain of the cadherins is the most highly conserved segment (~90% identity) among members of this family (reviewed by Takeichi, 1991) and interacts indirectly with the actin cytoskeleton (Ozawa et al., 1989). The cadherins are found at areas of cell contact, for example adherens-type cell junctions (Tsukita et al., 1991). Such cell junctions are areas of rapid phosphotyrosine turnover and locations at which tyrosine kinases including src and pp125^{Abi} are concentrated in normal and transformed cells (Volberg et al., 1991; Guan and Shalaway, 1992). In fact, changes in tyrosine phosphorylation may be involved in controlling the structural integrity of these junctions (Volberg et al., 1992). In light of this homology to the cadherins it is possible that PTPµ may also associate with the cytoskeleton through an interaction with accessory molecules at points of cytoskeletal-membrane association such as intercellular junctions. PTPµ displays phosphatase activity after expression in SF9 cells. To address the possibility that phosphatase activity was a requirement for cell–cell aggregation, we made a mutant form of PTPµ, PTPµ-extra, that lacked both phosphatase domains. This form of PTPµ induced aggregation with similar efficiency to the full-length form indicating that phosphatase activity and the aggregation response were not mutually dependent. Furthermore, the fact that the bacterially-expressed fusion protein GST/PTPµ containing only the extracellular segment of the PTPase was able to induce binding in vitro also suggested that aggregation was mediated solely by the extracellular domain. Aggregation did not result in dramatic changes in cellular phosphotyrosine levels as determined by anti-phosphotyrosine immunoblots. These data raise the possibility that, unlike the growth factor receptor PTKs where binding of the ligand to the extracellular segment triggers the kinase activity of the intracellular domain, PTPµ activity may not be strictly dependent upon ligand binding. However, this should be considered in light of the caveat that it is unlikely that SF9 insect cells contain the normal substrates for human PTPµ. Changes in activity or affinity for a particular substrate may be seen when two molecules of PTPµ contact one another in their normal environment. Nevertheless, one could also propose a tethering role for homophilic binding interactions among PTPµ extracellular segments. Thus, the spatial distribution of the enzyme on the cell surface may be restricted, for example to intercellular junctions, with concomitant restriction of the spectrum of substrates or regulatory proteins with which it can interact.

PTPµ offers a unique, potentially direct link between cell adhesion phenomena and the triggering of signal transduction pathways. It remains possible that PTPµ itself may not directly promote cell–cell adhesion in vivo. However, in the context of adhesion driven by PTPµ-independent binding mechanisms, homophilic interactions between apposing PTPµ molecules may alter their phosphatase activity. Thus the homology of PTPµ to the cadherins, N-CAM-like molecules and PTPases predicts an interesting role in cell–cell communication and continuing studies of PTPµ should yield important new insights into the control of signal transduction processes.

We would like to thank Dr. Robert Brackenbury for helpful discussions and Peter Guida for technical assistance. A special thanks to Carmelita Bautista and Margaret Falkowski in the monoclonal antibody facility at Cold Spring Harbor Laboratory for help in generating antibodies to the intracellular seg.
ment of PTPα. We are grateful to M. Gebbink, R. Beijersbergen, and W. Moolenaar of the Netherlands Cancer Institute for providing some of the reagents used in this study and their help in generating the recombinant baculoviruses.

This research was supported by a grant (to N. K. Tonks) from ICOS corporation. N. K. Tonks is a Pew Scholar in the Biomedical Sciences. S. Brady-Kalnay is a recipient of a National Institutes of Health Training Grant Postdoctoral Fellowship. A. J. Flint is a recipient of a Cancer Research Institute/F. M. Kirby Foundation fellowship.

Received for publication 15 April 1993 and in revised form 7 June 1993.

References

Gebbink, M., I. van Etten, G. Hateboer, R. Suijkerbuijk, R. Beijersbergen, A. Moolenaar of the Netherlands Cancer Institute for providing some of the reagents used in this study and their help in generating the recombinant baculoviruses.

Grant Postdoctoral Fellowship. A. J. Flint is a recipient of a Cancer Research Institute/F. M. Kirby Foundation fellowship.

