A Temperature-sensitive NUP116 Null Mutant Forms a Nuclear Envelope Seal over the Yeast Nuclear Pore Complex Thereby Blocking Nucleocytoplasmic Traffic

Susan R. Wente and Günter Blobel
Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021

Abstract. NUP116 encodes a 116-kD yeast nuclear pore complex (NPC) protein that is not essential but its deletion (nup116Δ) slows cell growth at 23°C and is lethal at 37°C (Wente, S. R., M. P. Rout, and G. Blobel. 1992. J. Cell Biol. 119:705-723). Electron microscopic analysis of nup116Δ cells shifted to growth at 37°C revealed striking perturbations of the nuclear envelope: a double membrane seal that was continuous with the inner and outer nuclear membranes had formed over the cytoplasmic face of the NPCs. Electron-dense material was observed accumulating between the cytoplasmic face of these NPCs and the membrane seal, resulting in "herniations" of the nuclear envelope around individual NPCs. In situ hybridization with poly(dT) probes showed the accumulation of polyadenylated RNA in the nuclei of arrested nup116Δ cells, sometimes in the form of punctate patches at the nuclear periphery. This is consistent with the electron microscopically observed accumulation of electron-dense material within the nuclear envelope herniations. We propose that nup116Δ NPCs remain competent for export, but that the formation of the membrane seals over the NPCs blocks nucleocytoplasmic traffic.

The nuclear pore is a circular opening of ~90 nm diameter that traverses the double membrane of the nuclear envelope (Franke et al., 1981). This pore is presumably formed by a circumscribed fusion of the outer and inner nuclear membranes. Throughout cellular division and differentiation, the number of nuclear pores per nucleus has been found to not only increase, but also to decrease (reviewed in Maul, 1977). Therefore, membrane fusion may also be required for the elimination of a nuclear pore and restoration of an uninterrupted double membrane structure. However, the mechanism by which either of these fusion events occurs has not been elucidated.

The nuclear pore is occupied by the nuclear pore complex (NPC), a modular structure of an estimated molecular mass of ~10^14 D that mediates the bidirectional transport of macromolecules between the nucleus and the cytoplasm (for review see Forbes, 1992). Based upon this mass (Reichelt et al., 1990), the NPC is estimated to be comprised of a hundred or more distinct polypeptides. Only a few of these proteins, referred to collectively as nucleoporins (Davis and Blobel, 1986), have been molecularly characterized in yeast and other eukaryotic cells (Starr et al., 1990; Davis and Fink, 1990; Nehrbass et al., 1990; Wente et al., 1992; Wimmer et al., 1992; Sukegawa and Blobel, 1993; Loeb et al., 1993; Radu et al., 1993). The sublocalization of these nucleoporins to the distinct structures of an NPC (i.e., rings, spokes, plug, fibers, cages) (Akey, 1992) has not been accomplished. It is also not known how these modular structures are formed and reversibly assembled into a functional NPC. Vesicular and soluble components have both been found to be necessary for the in vitro assembly of transport competent NPCs from fractionated frog egg extracts (Sheehan et al., 1988; Finlay and Forbes, 1990; Dabauvalle et al., 1990; Finlay et al., 1991; Vigers and Lohka, 1991).

The anchorage of the assembled NPC to the nuclear pore is presumably mediated by integral membrane proteins that are specifically localized to the membrane surrounding the NPC. Because of its distinct protein composition, this region of the nuclear envelope is referred to as the pore membrane (Hällberg et al., 1993). Three distinct, integral pore membrane proteins have so far been molecularly characterized: gp210 (Gerace et al., 1982; Wozniak et al., 1989) and POM121 (Hällberg et al., 1993) both of rat, and POM152 of yeast (Wozniak, R., G. Blobel, and M. P. Rout, personal communication). It has not been determined which of the pore membrane proteins serve as anchors for the NPC.

In this paper we report the characterization of a mutant yeast strain with a chromosomal deletion of the gene encoding NUP116, a member of a family of nucleoporins that share an amino terminal domain of repetitive tetrapeptide "GLFG" motifs (Wente et al., 1992). At 23°C, the NUP116 null (nup116Δ) cells grow slower than wild-type cells and the...
only observed ultrastructural changes are the occurrence of invaginations of the inner nuclear membrane that are studded with densities similar in size to NPCs. At 37°C, nup116Δ cells cease growing. Electron microscopic examination reveals that the mutant NPCs still appear to be in place and to be membrane anchored. However, a double membrane seal continuous with the inner and outer nuclear membranes, respectively, had formed over the cytoplasmic face of the NPCs. This “sealing off” of the NPCs prevents nucleocytoplasmic trafficking.

Materials and Methods

Yeast Strains and Plasmids

The yeast strains that were used in this study are described in Table I. The W303 strains were provided by Dr. R. Rothstein. To ascertain that our experimental observations are not due to an artifact in the original strain background or to an accumulation of suppressors in the experimental observations are not due to an artifact in the original strain background or to an accumulation of suppressors in the original strain background (SWY118), and finally, a diploid null strain was also constructed and similarly analyzed (SWY59). All of the null strains (SWY27, SWY61, SWY55, SWY59, SWY61, and SWY55) regardless of their genetic background display identical growth phenotypes and the morphological perturbations described in this paper.

Table I. Yeast Strain Genotype and Construction

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>W303a</td>
<td>Mata ade2-1 ural-3 hi3-11,15 trp1-1 leu2-3,112 can1-100</td>
<td>Cross of CG378 and CG379 from Bruschi et al., 1987</td>
</tr>
<tr>
<td>W303s</td>
<td>Mata ade2-1 ural-3 hi3-11,15 trp1-1 leu2-3,112 can1-100</td>
<td>Wente et al., 1992</td>
</tr>
<tr>
<td>CG-D</td>
<td>Mata/Mata ade5/ade5 can1+/+ his7-2/+ leu2-3,112/leu2-3,112</td>
<td>Segregant from tetrad of sorulated SWY26</td>
</tr>
<tr>
<td>SWY26</td>
<td>Mata ade2-1/ade2-1 ura3-1/ura3-1 hi3-11,15 hi3-11,15 trp1-1/trp1-1 leu2-3,112/leu2-3,112 can1-100/can1-100 nup116-5/:HIS3/+</td>
<td>Wente et al., 1992</td>
</tr>
<tr>
<td>SWY27</td>
<td>Mata ade2-1 ura3-1 hi3-11,15 trp1-1 leu2-3,112 can1-100</td>
<td>Wente et al., 1992</td>
</tr>
<tr>
<td>SWY29</td>
<td>Mata ade2-1 ura3-1 hi3-11,15 trp1-1 leu2-3,112 can1-100</td>
<td>Wente et al., 1992</td>
</tr>
<tr>
<td>SWY31</td>
<td>Mata ade2-1 ura3-1 hi3-11,15 trp1-1 leu2-3,112 can1-100 nup116-6::URA3</td>
<td>Wente et al., 1992</td>
</tr>
<tr>
<td>SWY55</td>
<td>Mata ade2-1 ura3-1 hi3-11,15 trp1-1 leu2-3,112 can1-100 nup116-6::URA3 pSW76(LEU2)</td>
<td>Cross of SWY29 and SWY31</td>
</tr>
<tr>
<td>SWY59</td>
<td>Mata ade2-1/ade2-1 ura3-1/ura3-1 hi3-11,15 hi3-11,15 trp1-1/trp1-1 leu2-3,112/leu2-3,112 can1-100/can1-100 nup116-6::URA3/nup116-5::HIS3</td>
<td>Wente et al., 1992</td>
</tr>
<tr>
<td>SWY61</td>
<td>Mata ade2-1 ura3-1 hi3-11,15 trp1-1 leu2-3,112 can1-100 nup116-5::HIS3</td>
<td>Segregant from tetrad of sorulated diploid from a SWY27 X W303a cross</td>
</tr>
<tr>
<td>SWY117</td>
<td>Mata/Mata ade5/ade5 can1+/+ his7-2/+ leu2-3,112/leu2-3,112 trp1-1/trp1-1 ura3-1/ura3-1 nup116-6::URA3/+</td>
<td>Integrative transformation of CG-D with EcoRI fragments of pWS54</td>
</tr>
<tr>
<td>SWY118</td>
<td>Mata ade5 can1 hi3-1 ura3-1 leu2-3,112 trp1-1 ura3-1 trp1-1 nup116-6::URA3</td>
<td>Segregant from tetrad of sorulated SWY117</td>
</tr>
<tr>
<td>SWY138</td>
<td>Mata ade2-1 ura3-1 hi3-11,15 trp1-1 leu2-3,112 can1-100 pSW134(URA3)</td>
<td>Transformation of W303s with pSW134</td>
</tr>
</tbody>
</table>

Yeast transformations were by the lithium acetate method (Ito et al., 1983) and general genetic manipulations were conducted as described by Sherman et al. (1986).
ously described by Wente et al., (1992) except the samples were embedded in **Lowicryl**. The thin sections from postembedded spheroplasts of **SWY55** were incubated with undiluted tissue culture supernant of the mAb 12CA5 (Berkeley Antibody Co., Richmond, CA), and 10-nm colloidal gold coated with goat anti-mouse antibody (Amersham Corp., Arlington Heights, IL).

For the immunoelectron microscopy localization of nucleoporins in the temperature arrested **napl/16** cells a different protocol was used. A culture of **SWY27** was grown at 23°C to early logarithmic phase and then shifted for 3 h at 37°C. An aliquot of 10⁸ cells was removed and formaldehyde (37% stock; Fluka Chemical Corp.) was immediately added to a final concentration of 4%. After 5 min at room temperature, the fixed cells were washed by a cycle of centrifugation (1,000 g) and resuspension in buffer A. The cells were resuspended in a final volume of 1.5 ml of a 4% formaldehyde, 0.0775% glutaraldehyde (25% stock; BDH, Gallard Schlesinger Chem., Carle Place, NY), 40 mM K₂HPO₄-KH₂PO₄, pH 6.5, 0.5 mM MgCl₂ and incubated on ice for 1 h. The fixed cells were washed into 0.1 M phosphate–citrate buffer (Byers and Goetsch, 1991) by two cycles of centrifugation (1,000 g) and resuspension in this buffer, and then resuspended in 0.5 ml of the 0.1 M phosphate–citrate buffer plus a 1/10 dilution of Glusulase (Dupont NEN), 0.1 mg/ml Zymolyase 20T (Seikagaku Corp., Tokyo, Japan), and 0.1 mg/ml Mutanase (Novo Nordisk Bioindustrials, Inc., Danbury, CT). After incubation for 2 h at 30°C, the pellets were washed, dehydrated, and embedded in Lowicryl. Thin sections were collected and processed for immunolocalization with a 1:1 mixture of the tissue culture supernants for MAb92 and MAb350 as previously described (Wente et al., 1992).

Specimens were visualized with a JEOL 100CX electron microscope (JEOL USA, Inc., Peabody, MA) at 80 kV, and photographs were recorded with Kodak electron microscopy film (Eastman Kodak Co.).

Electron Microscopy for Ultrastructural Morphology

A variety of fixation conditions, embedding media, and staining methods were examined, and the protocols were selected solely on the basis of optimized visualization primarily of proteins, or of membranes, or of proteins and membranes at the nuclear envelope. The cells (**SWY27** and **W303a**) that were grown to early logarithmic phase before shifting to the indicated growth temperatures (for defined times) were immediately fixed by resuspension of the cell pellet in buffer A containing 2% glutaraldehyde, 2% formaldehyde, and incubation for 30 min on ice. The cell wall was then removed in the same manner as described above for immunoelectron microscopy. The visualization primarily of the proteins associated with the nuclear envelope was achieved by using the osmium postfixation and Spurrs embedding procedures of Byers and Goetsch (1991) for vegetatively grown cells (see Figs. 3 and 4 A). Preservation of both protein and membrane structures was obtained by following the above protocol and embedding in Epon instead of Spurrs resin (see Figs. 4, B, D, and E, and 8). Finally, an osmium tetroxide–ferrocyanide postfixation protocol coupled with embedding in Spurrs resin (Wright et al., 1988) was used for the samples that preferentially visualized the nuclear membrane (see Fig. 4 C).

In situ Hybridization for Polyadenylated RNA Localization

Early logarithmic phase cultures of wild-type (W303a) and **napl/16** (**SWY27**) cells were grown at 23°C before shifting to 37°C. Aliquots of 10⁸ cells were removed at time intervals after the temperature shift and formaldehyde was added to a final concentration of 4%. The cells were immediately pelleted, washed, and then resuspended in a fixative of 3.7% formaldehyde, 10% methanol, 0.1 M potassium phosphate, pH 6.5 for 1 h at room temperature. Cell wall removal from the fixed cells was described above for the immunoelectron microscopy samples. After spotting the processed cells on polylysine-coated coverlips, they were dehydrated by incubating the coverslip in ice-cold methanol for 6 min, and then in room temperature acetone for 30 s. The cell-coated coverslips were rinsed with 2x SSC (0.3 M NaCl, 30 mM sodium citrate, pH 7), and the subsequent in situ hybridization and immunolocalization steps were conducted exactly as described by Forrester et al. (1992). The oligonucleotide pol(dT)₃₀ probe was end labeled by terminal transferase (GIBCO BRL, Gaithersburg, MD) with digoxigenin-11-DUTP (Boehringer Mannheim, Mannheim, Germany) (Amanberg et al., 1992). Anti-digoxigenin-fluorescein Fab fragments were obtained from Boehringer Mannheim. Photographs were taken with the 100x objective on a Zeiss Axiophot microscope for the same exposure time with a 100x objective on a Zeiss Axiophot microscope for the same exposure time with the 100x objective on a Zeiss Axiophot microscope for the same exposure time with a 100x objective on a Zeiss Axiophot microscope for the same exposure time with a 100x objective on a Zeiss Axiophot microscope for the same exposure time.

Results

NUP116 Is a Nuclear Pore Complex Protein

We have previously reported the isolation of the gene **NUP116** from *Saccharomyces cerevisiae* that encodes a 116-kD polypeptide with sequence similarities and subcellular fractionation properties common to other yeast nucleoporins (Wente et al., 1992). Localization of NUP116 was achieved by inserting in the gene the sequence encoding a unique nine–amino acid epitope derived from the influenza hemagglutinin antigen (HA), and then expressing this tagged construct in the null strain background (**napl/16**:::HA, SWY55). Indirect immunofluorescence using a mAb (12CA5) directed against the HA epitope revealed punctate, nuclear rim staining consistent with localization to the NPC (Wente et al., 1992). To definitively localize NUP116 to the NPC we have performed immunoelectron microscopy with thin sections from postembedded spheroplasts of the strain expressing the epitope-tagged NUP116. As shown in Fig. 1, NUP116 was found along the nuclear envelope and coincident with protein densities typical of NPCs. Quantitation data for total gold particle localization are shown in Table II and are similar to that previously reported for the HA-tagged NUP49 (Wente et al., 1992). This confirms the identification of NUP116 as a yeast nucleoporin.

nup116 Cells Are Not Viable at 37°C

Our previous studies indicated that NUP116, while not essential, was important for cell growth (Wente et al., 1992).
Table II. Distribution of Antibody Labeling in Immunoelectron Microscopy Experiments

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of gold particles</th>
<th>Density (gold particles/μm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 12CA5 antibody localization of epitope-tagged NUP116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleoplasm</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>NPC/NE</td>
<td>38</td>
<td>5.1</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>17</td>
<td>0.2</td>
</tr>
<tr>
<td>B. MAb192/MAb350 localization in arrested nup116Δ cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleoplasm</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Interior of Herniation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Base of Herniation</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>NPC/NE</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

The number and location of 10-nm gold particles in 12 typical thin sections for the immunoelectron microscopy experiments in Figs. 1 and 5 are shown in A and B, respectively. In B, only cell sections that contained nuclear envelope herniations were used. The density of gold particles in A was calculated using the average area of the nucleoplasm, nuclear envelope (NE), and cytoplasm from representative sections of five cells.

Haploid NUP116 null strains (nup116Δ) are viable although slow growing. In rich media at 23°C, nup116Δ strains have doubling times of nearly 6 h, at least three times longer than wild-type strains. Microscopic examination of wild-type and nup116Δ cells revealed that the mutant cells were somewhat larger (data not shown). As the mutant was generated by the deletion of a nucleoporin, we examined the ultrastructure of the nuclear envelope and NPCs by EM. The only noticeable structural aberrations in nup116Δ cells grown at 23°C are invaginations of the inner nuclear membrane (data not shown, see below in Fig. 4).

Because we found both morphological and growth differences in the nup116Δ cells as compared to wild type when grown at 23°C, we tested the nup116Δ cells for their ability to grow at a range of temperatures above and below 23°C (permissive temperature). The nup116Δ cells do not appear to be cold sensitive as they are viable when grown at 17°C, and there is no measurable change in the ratio of mutant to wild-type growth rates as compared to 23°C. However, whereas the nup116Δ mutant strains grow at 23°C (Fig. 2 A, upper panel), they do not grow at 37°C (nonpermissive temperature, Fig. 2 A, lower panel). Cell doubling ceases after at most one cellular division, and mutant cells shifted to 37°C become progressively inviable with time; such that after 8 h <15% are viable cells when returned to the permissi

Figure 2. The temperature sensitive growth phenotype of NUP116 deletion. (A) Deletion of NUP116 results in a temperature sensitive lethal strain at 37°C. Cells isolated from each single tetrad of a sporulated diploid heterozygous for the nup116Δ allele (SWY26) were streaked on YPD plates. The upper plate was incubated for 5 d at 23°C, the lower at 37°C for 3 d. The nup116Δ strains (designated Δ), SWY27 and SWY29, were shown by Southern analysis and immunoblotting to lack the NUP116 gene and protein, respectively. The strains designated w were wild type by the same criteria. (B) Viability of nup116Δ cells after growth at nonpermissive temperature (37°C) decreases sharply. At time zero, an early logarithmic phase culture of SWY27 (from 23°C growth in rich media) was shifted to 37°C and aliquots were removed at the indicated time points, plated on YPD plates, incubated at 23°C, and the number of viable colonies scored. (C) Morphology of nup116Δ cells is distinct from wild-type cells. The photographs are representative fields of cells from logarithmic phase cultures of wild-type or nup116Δ haploid strains (W303Δ and SWY27, respectively) that were grown at 23°C in rich media, shifted to 37°C for 3 h, fixed, and processed as described in Materials and Methods. C 3 shows the coincident DAPI staining for the respective field of nup116Δ cells in C 2. All photographs were taken with a 40× objective (with Nomarski optics for C, 1 and 2). Bar, 20 μm.
Thin-section electron micrographs of wild-type and nup116Δ cells grown at 37°C. The wild-type (W303α) and nup116Δ (SWY27) cells were grown to early logarithmic phase at 23°C in rich media before shifting to growth at 37°C for 3 h, and then processing for optimal visualization of protein structures (see Materials and Methods). The arrowheads in both micrographs point to representative nuclear pore complexes embedded in the nuclear envelope. The striking difference between the wild-type and mutant cells is the presence of nuclear envelope associated, electron dense material (i.e., at arrow). The large electron-dense structures are not present when the nup116Δ cells are grown at the permissive temperature (Fig. 2 B). The nup116Δ cells grown at the permissive or nonpermissive temperature exhibit no measurable change in the relative amounts of any of the other GLFG nucleoporins as compared with wild-type cells (as judged by immunoblots of whole cell extracts, data not shown). The temperature-sensitive phenotype can be complemented by transformation of the nup116Δ strain with plasmids bearing wild-type or epitope-tagged NUP116 (data not shown).

Besides the terminal lethal phenotype, the gross cellular morphology of nup116Δ cells grown at the nonpermissive temperature is distinct from that of wild-type cells. nup116Δ cells grown for 3 h at 37°C are significantly larger (Fig. 2 C, 2) than similarly grown wild-type cells (Fig. 2 C, 1). Under these conditions, the mutant cells are still 75% viable when shifted back to the permissive temperature (see Fig. 2 B). Growth at 37°C also markedly increases the proportion of large budded cells to at least 85% of the mutant cell population (Fig. 2 C, 2). Furthermore, the panel in Fig. 2 C, 3 shows that in most of the arrested cells the nucleus is extended into the bud.

Herniations of Nuclear Envelope Over Nuclear Pore Complexes

Electron microscopy of wild-type yeast cells at 37°C shows the presence of typical NPCs embedded in the nuclear envelope (Fig. 3, left panel, arrowhead). However, in nup116Δ cells grown for 3 h at 37°C, large electron-dense structures are observed at the perimeter of the nucleus (Fig. 3, right panel, arrow). A more detailed electron microscopic analysis is shown in Fig. 4. nup116Δ cells were grown either for 3 h (Fig. 4, A-D) or for 9 h (E) at 37°C. The cells were processed under a variety of conditions (see Materials and Methods) for either optimized visualization of protein (Fig. 4, A), membranes (C), or protein as well as membranes (B, D, and E). The electron-dense material at the nuclear perimeter (Fig. 4, A, B, D, and E) appears to be enclosed by herniations of the inner and outer nuclear membranes (B, C, D, and E). At the nucleoplasmic base of these herniations, electron dense structures resembling NPCs (Fig. 4, A, B, D, and E) are present and seem to be anchored to the membrane (for example see panel D at 1 o'clock).

Several individual herniations of the inner membrane may be enclosed by a single large outer membrane herniation (Fig. 4, B and E). The size of the individual herniations can be small (for example see panel B at 2 o'clock), or appear of a "standard" size (Fig. 4, A-C), but not much beyond that even after 9 h at 37°C (E). The appearance of the membrane herniations both individually and in clusters along the entire circumference of the nuclear envelope except at points where the nuclear envelope abuts a vacuole (B) parallels the reported distribution for nuclear pore complexes in wild-type cells (Severs et al., 1976). We have examined cells from time

Figure 3. Thin-section electron micrographs of wild-type and nup116Δ cells grown at 37°C. The wild-type (W303α) and nup116Δ (SWY27) cells were grown to early logarithmic phase at 23°C in rich media before shifting to growth at 37°C for 3 h, and then processing for optimal visualization of protein structures (see Materials and Methods). The arrowheads in both micrographs point to representative nuclear pore complexes embedded in the nuclear envelope. The striking difference between the wild-type and mutant cells is the presence of nuclear envelope associated, electron dense material (i.e., at arrow). The large electron-dense structures are not present when the nup116Δ cells are grown at the permissive temperature (data not shown). n, nucleolus; n, nucleus; c, cytoplasm; v, vacuole; Bar, 0.5 μm.
Figure 4. Electron microscopic analysis of the nuclear envelope after growth of nup16Δ cells at 37°C. The nup16Δ cells (SWY27) were grown to early logarithmic phase at 23°C and then shifted to 37°C for 3 h (A–D) or 9 h (E) before fixation, embedding, and staining for optimal protein (A), membrane (C), or protein and membrane (B, D, and E) visualization (see Materials and Methods). The micrographs show examples of the nuclear membrane herniations, with the electron-dense material inside and the NPC-like structure at their nucleoplasmic base. The arrowheads in A and C point to examples of apparently unperturbed NPCs and pore membranes, respectively. Note the electron-dense intranuclear material that is of similar density as the material inside the nuclear membrane herniations and was observed only at 37°C (D). Inner membrane invaginations as in D (arrow) and in E (at 2 to 4 o'clock) were observed at both the permissive and nonpermissive growth temperatures. n, nucleus; c, cytoplasm; v, vacuole; Bar, 0.5 μm.
points as early as 30 min after the shift to 37°C and we find that the herniations with electron-dense filling are already present (data not shown). Frequently, material of similar electron density can be found intranuclearly (Fig. 4 D). To test whether the accumulation of electron dense material in the membrane herniations is dependent upon protein synthesis, nup116Δ cells were shifted to 37°C in either the presence or absence of cycloheximide. We found that cycloheximide has no detectable effect on the nuclear envelope specific phenotype of the nup116Δ cells as the membrane herniations with electron dense filling are still present and structurally identical to those of untreated cells (data not shown). Thus, newly synthesized proteins are not required for formation of the nuclear envelope herniations shown in Figs. 3 and 4.

Fig. 4, D (arrow) and E (from 2 to 4 o'clock) also show invaginations of the inner nuclear membrane that appear to be studded with densities similar in size to NPCs. Similar invaginations are the only observed ultrastructural perturbations when the nup116Δ cells were grown at 23°C (data not shown). Note that unlike the case of nuclear envelope NPCs, there are no apparent herniations at the NPC-like structures of these inner nuclear membrane invaginations, even after growth at 37°C for 9 h (Fig. 4 E). All of the above described ultrastructural changes are found in the haploid nup116Δ cells regardless of strain background, as well as in a diploid null strain (SWY59).

Nucleoporins Are Localized at the Base of the Nuclear Envelope Herniations

To determine whether the structures seen at the base of the nuclear membrane herniations (Fig. 4) are NPCs, we used a mixture of the polyspecific MAb192 and MAb350. The specificity of these mAbs for yeast NPCs has been previously established by immunoelectron microscopy (Wente et al., 1992; Rout, M. P., and G. Blobel, personal communication). When nup116Δ cells were shifted for 3 h to 37°C and examined by indirect immunofluorescence microscopy, there was no apparent change in relative intensity and no apparent redistribution in the fluorescence signal. As in wild-type cells, the staining was punctate and limited to the nuclear periphery (data not shown). By immunoelectron microscopy (Fig. 5), gold particles were found at the nucleoplasmic base of the herniations suggesting that the structures found there (Fig. 4) are NPCs that contain at least a subset of nucleoporins. Virtually no gold particles were found inside the compartment formed by the membrane herniation, or on the outer faces of the protrusion (see Table II). Thus, neither site appears to contain MAb192 or MAb350 reactive nucleoporins. Because the morphological preservation in these immunoelectron microscopy samples did not distinguish the inner membrane invaginations, we could not determine whether the densities studding the invaginations contain nucleoporins.

Polyadenylated RNA Accumulates at the Nuclear Periphery

Because NPCs were found at the base of the herniation, and as the accumulation of electron-dense material in the herniation was independent of protein synthesis, it seemed possible that these mutant NPCs may have remained transport competent but that the apparent membrane seal would prevent cytoplasmic localization of export substrates. The localization of polyadenylated RNA, an export substrate, was monitored by in situ hybridization with a digoxigenin labeled, oligonucleotide poly(dT)15 probe after the shift of nup116Δ cells to growth at 37°C. The signal in nup116Δ cells before the temperature shift is diffuse and cytoplasmic (Fig. 6, upper left panel). However, after growth at 37°C for 1 h, the fluorescence signal is predominantly nuclear (Fig. 6, middle left panel). This nuclear accumulation is already visible in some nup116Δ cells within 15 min after shifting to 37°C (data not shown). This closely mirrors the time course for the appearance of the nuclear membrane herniations by EM. Interestingly, the staining for polyadenylated RNA was sometimes enhanced in the periphery of the nucleus and was distinctly punctate (see single nucleus in lower third of middle panel of Fig. 6 and the higher magnification view of a single nucleus from a different field in bottom panel of Fig. 6). The peripheral nuclear and distinctly punctate staining was found in at least 20% of the nup116Δ cells grown for 1 h at 37°C. This discrete nuclear localization may reflect not only the inability of polyadenylated RNA to reach the cytoplasm, but also specific accumulation of export substrates within the membrane herniations.

Overexpression of NUP116 Inhibits Cell Growth

Because the absence of NUP116 had such dramatic effects on cellular growth and nuclear envelope structures, we investigated the effects of overexpressing NUP116. The NUP116
Figure 6. Nuclear accumulation of polyadenylated RNA in nup116Δ cells upon the shift to the nonpermissive temperature. nup116Δ cells (SWY27) were grown to early logarithmic phase at 23°C in rich media and then shifted to growth at 37°C. Aliquots were removed at the designated time point after the temperature shift, fixed, and processed for in situ hybridization with a digoxigenin-labeled oligonucleotide poly(dT) as described in Materials and Methods. The left panel of photographs shows the fluorescence signal from typical fields of cells that were probed after hybridization with an FITC-conjugated anti-digoxigenin antibody. The right panel is the coincident DAPI staining for the respective field of cells to the left. The bottom panel is at a higher magnification. By examining the middle panel at various focal planes we found that at least three of the eight staining cells displayed a peripheral nuclear and distinctly punctate pattern similar to the nucleus in the bottom panel (from a different field). All the photographs were taken and printed for the same exposure times. Bar, 6 μm.

Figure 7. Overexpression of NUP116. (A) Immunoblot analysis with MAb192. Yeast strain W303Δ transformed with pSW134 (SWY-138) was tested for protein expression levels by splitting an early logarithmic phase culture into synthetic defined media lacking uracil (SM-URA) with either 2% glucose or 2% galactose and continuing growth for 8 h at 30°C. Proteins of whole cell extracts from the glucose (lane 1) and the galactose (lane 2) cultures were separated by electrophoresis on a 7% SDS polyacrylamide gel, transferred to nitrocellulose, and probed with MAb192 as described in Materials and Methods. The arrow at the left denotes the position of NUP116. Molecular mass markers are indicated at right in kilodaltons. (B) Cell growth is severely inhibited upon overexpression of NUP116. Cells from a single colony growing on SM-URA with glucose were streaked onto SM-URA glucose (left) and SM-URA galactose (right) plates and incubated at 30°C for 48 h. v, vector along (pLGSD5); and 116, GAL10::NUP116 vector (pSW134) transformed into the W303Δ haploid strain.

gene was placed under the inducible control of the GAL10 promoter on a 2 μm plasmid (pSW134) and transformed into a wild-type haploid strain. In Fig. 7 A, the relative expression level is compared by immunoblot analysis of whole cell extracts from induced and uninduced cultures. Upon induction with galactose (Fig. 7 A, lane 2), a considerable overproduction of NUP116 is achieved. The growth in galactose media also dramatically inhibits cell growth (Fig. 7 B), such that colony formation is prevented on galactose plates. Microscopic examination of general cellular morphology revealed that cells arrested from overexpression of NUP116 are the same relative size as cells with the vector alone, and that the overexpressing cells do not arrest synchronously in the cell cycle (data not shown). We also examined the ultrastructure of cells that are overexpressing NUP116. In general there
Figure 8. Schematic model for the temperature-induced formation of the nup116Δ nuclear envelope herniations. The nuclear envelope associated nup116Δ NPCs appear ultrastructurally intact at 23°C (top panel). However, when shifted to growth at 37°C a variety of structural perturbations may have occurred. For example, the nup116Δ NPCs may undergo a perturbation that weakens the interaction with integral membrane proteins of the pore membrane (A). This could then lead to a protrusion of the surrounding membranes and promote nuclear membrane fusion via the hypothetical intermediate (A). Membrane fusion across the cytoplasmic face of the NPC effectively seals it and blocks nuclear import (B). The continued export of macromolecules through the mutant NPC base structure results in their accumulation in the sealed compartment and the apparent growth of the membrane herniation (C). The accompanying panel of typical electron micrographs were selected from nup116Δ cells (SWY27) grown at 23°C or at 37°C for 3 h (B and C) and processed for membrane and protein visualization (see Materials and Methods). All micrographs are at the same magnification and are oriented such that the nucleoplasm at the bottom and the cytoplasm at the top are separated by the nuclear envelope. IM, inner nuclear membrane; OM, outer nuclear membrane; c, cytoplasm; n, nucleus; arrows indicate directionality of transport; closed triangles and circles represent "export substrates." Bar, 0.1 μm.
ceed (Fig. 8 B). However, export through the nup116Δ NPC might continue to proceed, at least for a while. Accumulation of export substrates on the cytoplasmic side of the sealed NPC could then lead to the observed herniations of the nuclear membrane (Fig. 8 C). In addition to export substrates, the herniations may also contain entrapped cytoplasmic components, and/or nucleoporins if the sealed NPCs partially disassemble. However, immunoelectron microscopy analysis with MAhi2 and MAhi30 showed that at least the nucleoporins recognized by these antibodies are not present within the herniations.

We have shown by in situ hybridization that polyadenylated RNA can be found in discrete punctate patches at the nuclear periphery of nup116Δ arrested cells. This is consistent with it being located in the electron-dense material filling the membrane herniation. Definitive localization of the accumulated polyadenylated RNA has to await the development of in situ hybridization methods for yeast cells at the EM level. The intranuclear material of an electron density similar to that found within the nuclear membrane herniations could represent export substrates that accumulate at their sites of transcription or on their way to the NPC. In situ hybridization with oligonucleotide poly(dT) probes has been used to characterize temperature sensitive RNA export mutants (Amberg et al., 1992; Kadowaki et al., 1992). Although mutant alleles of nucleoporins have not yet been reported, our data show that NUP116 mutants would be isolated by genetic screens of temperature sensitive mutants. However, as proposed here, the defect in the nup116Δ cells is not so much a defect in the nuclear export pathway as it is an indirect consequence of membrane sealing over the NPC.

The observed nuclear envelope seal over the cytoplasmic face of the yeast NPC has so far not been reported. It remains to be seen whether this phenomenon represents a general response to defective NPCs, and therefore could occur with a number of nucleoporin mutants, or whether it is limited to mutations in the nucleoporins of the GLFG family or specifically in NUP116.

We would like to thank Elena Spicas for her expert assistance with the EM studies. We acknowledge the shared advice and reagents of Drs. Philip Bernstein, Charles Cole, Howard Field, and John Hesser. We are also grateful to Drs. Danny Schnell, Susan Smith, Chris Hardy, Mary Moore, and Mike Rout for their helpful discussions and critical reading of the manuscript.

S. R. Wente was supported by a National Research Service Award fellowship (1F32GM14268) for part of this work.

Received 28 May 1993 and in revised form 9 July 1993.

References

