Calcineurin-dependent Growth Control in *Saccharomyces cerevisiae* Mutants Lacking *PMCl*, a Homolog of Plasma Membrane Ca\(^{2+}\) ATPases

Kyle W. Cunningham and Gerald R. Fink

Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

Abstract. Ca\(^{2+}\) ATPases deplete the cytosol of Ca\(^{2+}\) ions and are crucial to cellular Ca\(^{2+}\) homeostasis. The *PMCl* gene of *Saccharomyces cerevisiae* encodes a vacuole membrane protein that is 40% identical to the plasma membrane Ca\(^{2+}\) ATPases (PMCas) of mammalian cells. Mutants lacking *PMCl* grow well in standard media, but sequester Ca\(^{2+}\) into the vacuole at 20% of the wild-type levels. *pmcl* null mutants fail to grow in media containing high levels of Ca\(^{2+}\), suggesting a role of *PMCl* in Ca\(^{2+}\) tolerance. The growth inhibitory effect of added Ca\(^{2+}\) requires activation of calcineurin, a Ca\(^{2+}\) and calmodulin-dependent protein phosphatase. Mutations in calcineurin A or B subunits or the inhibitory compounds FK506 and cyclosporin A restore growth of *pmcl* mutants in high Ca\(^{2+}\) media. Also, growth is restored by recessive mutations that inactivate the high-affinity Ca\(^{2+}\)-binding sites in calmodulin. This mutant calmodulin has apparently lost the ability to activate calcineurin in vivo. These results suggest that activation of calcineurin by Ca\(^{2+}\) and calmodulin can negatively affect yeast growth. A second Ca\(^{2+}\) ATPase homolog encoded by the *PMRI* gene acts together with *PMCl* to prevent lethal activation of calcineurin even in standard (low Ca\(^{2+}\)) conditions. We propose that these Ca\(^{2+}\) ATPase homologs are essential in yeast to deplete the cytosol of Ca\(^{2+}\) ions which, at elevated concentrations, inhibits yeast growth through inappropriate activation of calcineurin.

Ca\(^{2+}\) plays a key role in the transduction of external signals through the cytoplasm of eukaryotic cells. Fluctuations in the cytosolic free Ca\(^{2+}\) concentration, [Ca\(^{2+}\)]c, directly elicit a cellular response by altering the function of Ca\(^{2+}\)-binding proteins and their targets. Resting cells maintain [Ca\(^{2+}\)]c at very low levels against large gradients of compartmentalized and extracellular Ca\(^{2+}\). A variety of stimuli can trigger the opening of Ca\(^{2+}\)-specific channels in plasma membrane or endoplasmic reticulum causing massive Ca\(^{2+}\) influx and accumulation in the cytosol. After stimulation, the basal [Ca\(^{2+}\)]c levels are restored by Ca\(^{2+}\) ATPases and antiporters that transport Ca\(^{2+}\) from the cytoplasm through the plasma membrane and several internal membranes. To regulate [Ca\(^{2+}\)]c and effect the appropriate responses to Ca\(^{2+}\) signals, cells utilize a wide array of ion transporters and sensory factors.

Ca\(^{2+}\) signaling plays an important role in the activation of T cells (Gardner, 1989). Binding of antigens to specific receptors at the surface of quiescent T cells triggers the opening of Ca\(^{2+}\) channels in the endoplasmic reticulum and plasma membrane, leading to rapid elevation in [Ca\(^{2+}\)]c.

The rise in [Ca\(^{2+}\)]c is necessary for induction of many genes including IL-2 which produces an autocrine factor required for T cell proliferation. Ca\(^{2+}\) dependent transcription is blocked by the immunosuppressive drugs cyclosporin A and FK506 that act together with their respective binding proteins, cyclophilin and FKBP-12, as potent inhibitors of calcineurin (Liu et al., 1991a). A direct role for calcineurin in IL-2 expression is supported by the observation that overproduction of calcineurin partially bypasses the requirement for elevated [Ca\(^{2+}\)]c and decreases the effectiveness of FK506 and cyclosporin A (Clipstone and Crabtree, 1992; O'Keefe et al., 1992). These findings strongly suggest that Ca\(^{2+}\)-dependent activation of calcineurin is a crucial step in the activation of T cells.

Recent reports have extended the range of cell types and species that respond to these drugs, suggesting that calcineurin may be a widespread component of Ca\(^{2+}\)-signaling mechanisms. Studies in the budding yeast *Saccharomyces cerevisiae* indicate that calcineurin is involved in the response to mating pheromone. Yeast cells respond to mating pheromones by arresting cell cycle progression transiently in G1 phase and inducing expression of many genes involved in conjugation. Cells that have not mated after prolonged pheromone exposure can recover and proliferate as long as sufficient Ca\(^{2+}\) is supplied in the medium (Iida et al., 1990). Recovery is inefficient in mutants lacking calcineurin activity (Cyert et al., 1991; Cyert and Thorner, 1992). The recovery defect of calcineurin mutants can be mimicked in...
wild-type strains by addition of cyclosporin A or FK506 (Foor et al., 1992). Although calcineurin is required for recovery from pheromone arrest, it is not essential for vegetative growth under standard conditions (Cyert et al., 1991; Liu et al., 1991b; Kuno et al., 1991; Cyert and Thorner, 1992).

Yeast calmodulin is essential for viability (Davis et al., 1986), but its ability to bind Ca2+ with high affinity is not necessary for vegetative growth (Geiser et al., 1991). These findings can be explained by proposing that any positive functions of Ca2+/calmodulin and its targets such as calcineurin are redundant with those of other cellular factors during standard growth conditions. Alternatively, the vegetative functions of Ca2+/calmodulin and calcineurin could have gone undetected because the mutants were analyzed under conditions where [Ca2+]c is low, \(\sim 0.1-0.3\ \mu M\) (Halachmi and Eilam, 1989; Ohya et al., 1991).

The functions of calmodulin and calcineurin could be better analyzed if [Ca2+]c was experimentally elevated above the basal levels. A way to accomplish this is by genetically manipulating the ion transporters involved in Ca2+ homeostasis. The PMR1 gene product, a member of the sarco/endoplasmic reticulum (SERCA) family of Ca2+ ATPases (Serrano, 1991), is thought to directly transport Ca2+ into the Golgi complex to support a variety of secretory functions (Rudolph et al., 1989; Antebi and Fink, 1992). The ability of pmr1 mutants to tolerate variations in external Ca2+ suggests that additional Ca2+ transporters might be more important for controlling [Ca2+]c. The PMR2 gene product identified previously (Rudolph et al., 1989) is not related to known Ca2+ ATPases any more than H+ or Na+/K+ ATPases (Serrano, 1991) and is required for Na+ tolerance (Haro et al., 1991) but not Ca2+ tolerance (K. W. Cunningham, unpublished data). However, a low-affinity H+/Ca2+ antiport activity is present in isolated vacuole membranes (Ohsumi and Anraku, 1983). Most eukaryotic cells also express a plasma membrane Ca2+ ATPase (PMCA) that is primarily responsible for maintaining [Ca2+]c submicromolar levels (Carafoli, 1992).

This study reports the identification of the PMCI gene, which encodes a homolog of mammalian PMCA's. Genetic analysis suggests that the product of PMCI (Pmc1p) transports Ca2+ into the vacuole and participates in the control of [Ca2+]c together with Pmr1p. High external Ca2+ inhibits the growth of pmci mutants because calcineurin becomes activated by Ca2+/calmodulin. Thus, Ca2+/calmodulin and calcineurin perform at least one function that prevents cell proliferation under these conditions. Genetic manipulation of PMCI provides a valuable new approach to resolve the nature and functions of Ca2+ signals.

Materials and Methods

Recombinant DNA

All procedures with recombinant DNA were performed using *Escherichia coli* strain DH5\textsubscript{x} grown in Luria Broth medium with appropriate antibiotics (Maniatis et al., 1982). Protocols used for polymerase chain reaction (Boehringer-Mannheim, Mannheim, Germany) and sequencing (United States Biochemicals, Cleveland, OH) were performed according to manufacturer's directions. Plasmid vectors were obtained from P. Hieter (Sikorski and Hieter, 1989).

The PMCI gene was identified by PCR amplification of genomic DNA from the pmr1::LEU2 pmr2::URA3 strain L4420 using degenerate oligonucleotides corresponding to the most highly conserved regions of known P-type ATPases (Fig. 1). 30 cycles of amplification (94, 45, and 72°C, each for 1 min) using the primer families A1 (CGGGATCCAGTTGAGGAYAARACNGGNAC) and B1 (CGGAATTCGSRTCRTTNRYNCCR-TCNCCNG) produced a novel 1.2-kb product distinct from the 0.8-kb product from PMA1 and PMA2 (Serrano et al., 1986; Schlesser et al., 1988). This product was cloned into the EcoRV site of pRS303 (HIS3) forming plasmid pKC38. Partial sequencing of this fragment revealed an open reading frame homologous to Ca2+ ATPases but not identical to any previously reported yeast gene. This fragment was used to map the PMCI locus near the PMA1 locus on chromosome VII (see Fig. 1) by hybridization to an ordered library of genomic DNA (Riles et al., 1995). The entire PMCI locus was subcloned from plasmid BI157 containing PMA1 (Serrano et al., 1986) as a 4.9-kb HindIII fragment into pRS315 (CEN LEU2) forming pKC44 and pKC45 (both orientations). A series of nested deletions in these plasmids were generated by limited ExoIII/ExoVII nuclease digestion according to manufacturer's specifications (GIBCO-BRL, Gaithersburg, MD).

The integrating plasmid pKC55, used to create a chromosomal PMCI::HA epitope-tagged allele, was constructed by transferring a 1.7-kb fragment of pKC45 (containing the 5' end of PMCI) into pRS306 (URA3) and subsequently inserting a 96-bp fragment (Fig. 1 Cur) encoding three tandem repeats of the HA epitope YPYDVPDYA recognized by 12CA5 monoclonal antibody into the Xbal site at codon +2. The construction was verified by

![Figure 1. Chromosomal location and DNA sequence of the PMCI gene. (A) A schematic representation of the genomic PMCI locus showing the PMCI- and PMA1-coding regions (boxes) and partial restriction map. B, BglII; H, HindIII; Xh, Xbal; Xh, Xhol; S, sites used for constructing pmcl::LEU2 and pmcJ::TRP1 mutants. Approximately 2 kb of unsequenced DNA between PMA1 and PMCI is indicated by a dashed line (Serrano et al., 1986). (B) DNA sequence of the 4.881-kb HindIII fragment containing PMCI and predicted amino acid sequence of Pmc1p. Initiation and termination codons are predicted at nucleotides 579 and 4,098. A potential TATA box (TATATA) occurs at nucleotide 481. (C) DNA and deduced protein sequence of the PMCI::HA open reading frame which contains a 96-bp insertion in the Xbal site at codon +2. The sequence data are available from EMBL/GenBank/DDBJ under accession number U03060.](https://jcb.rupress.org/content/124/2/352.full)

The Journal of Cell Biology, Volume 124, 1994 352
DNA sequencing, linearized by digestion with ClaI, and integrated into the chromosomal PMCI locus leaving full-length PMCI::HA adjacent to a truncated pmcl::URA3 allele. Plasmid pKC60 contains the complete epitope-tagged PMCI::HA gene (from HindIII to BglIII at position 4,630) in the high copy vector B2205 which is a derivative of pRS306 containing a 2 µm origin of replication. Both single copy and high copy PMCI::HA alleles produced immunoreactive polypeptides and functionally complemented pmcl mutations for growth in high Ca2+ media. The plasmid pKC11 contains the PMRI locus (4.4-kb PvuII to SpeI fragment) from pL149 (Rudolph et al., 1989) inserted into B2205 (2 µm URA3) digested with Smal plus XbaI.

The plasmids pKC52 and pKC59 used to replace the chromosomal PMCI gene with pmcl::LEU2 and pmcl::TRP1, respectively, were constructed by three part ligations of the 0.58-kb HindIII/XbaI fragment and 0.88-kb XhoI/HindIII fragment of pKC45 into pRS305 and pRS304 digested with XbaI and XhoI. The plasmids were linearized before yeast transformation using HindIII (pKC52) or using StuI plus BgllI (pKC59). pKC52 was linearized with NruI to form the pmcl::HI S3 disruption.

The plasmid pKC73 is a derivative of pRS316-Gal (CEN/ARS/URA3) containing the GAL1 promoter region fused to the truncated CNA1::lacZ allele which was amplified by PCR from W303-1A genomic DNA (from nucleotide -10 to nucleotide +1,350 relative to the initiation codon), terminating after codon 450 just before the putative calmodulin binding and autoinhibitory domains (amino acid residues 454-553) (Cyr et al., 1991; Liu et al., 1991b). The natural COOH-terminal domain was restored in pKC74 by replacing the 3' segment from Sall to HindIII in the polyclinker with a fragment from pCNA1-201 (Cyr et al., 1991) from SalI to HindIII in the 3' noncoding region. Both pKC73 and pKC74 complemented cna1 cna2 double mutants in media containing galactose but not glucose (see Fig. 8).

Yeast Strains, Media, and Growth Conditions

Yeast strains were grown in standard YPD medium (2% Difco yeast extract, 1% bacto-peptone, 2% dextrose) or YPD, pH 5.5, containing 5 mM CaCl2 or 10 µM free calcium, respectively. The derived YPD supplemented with 0.18 mM CaCl2, filtered rapidly onto 24 mm Whatman GFF filters using a multiple vacuum filtration unit (model HV224, Hoefer Sci. Instrs., San Francisco, CA), washed three times with ice cold buffer A, dried in vacuo, and analyzed.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype*</th>
<th>Source†</th>
</tr>
</thead>
<tbody>
<tr>
<td>W303-1A</td>
<td>MATa</td>
<td>Wallis et al., 1989</td>
</tr>
<tr>
<td>W303-1B</td>
<td>MATa</td>
<td>Wallis et al., 1989</td>
</tr>
<tr>
<td>JGY41</td>
<td>MATa cmdl-3</td>
<td>Geiser et al., 1991</td>
</tr>
<tr>
<td>JGY148</td>
<td>MATa cmdl-6</td>
<td>Geiser et al., 1991</td>
</tr>
<tr>
<td>K444</td>
<td>MATa pmcl::HIS3</td>
<td>W303-1A</td>
</tr>
<tr>
<td>K445</td>
<td>MATa cmdl-6 pmcl::HIS3</td>
<td>JGY148</td>
</tr>
<tr>
<td>K470</td>
<td>MATa PMC1::HA (pmcl::URA3)</td>
<td>W303-1A</td>
</tr>
<tr>
<td>K473</td>
<td>MATa pmcl::LEU2</td>
<td>W303-1A</td>
</tr>
<tr>
<td>K473-a7</td>
<td>MATa pmcl::LEU2 cnbl-1</td>
<td>K473</td>
</tr>
<tr>
<td>K482</td>
<td>MATa pmcl::TRP1</td>
<td>W303-1B</td>
</tr>
<tr>
<td>K484</td>
<td>MATa pmcl::LEU2 fprl::URA3</td>
<td>K473</td>
</tr>
<tr>
<td>K510</td>
<td>MATa pmcl::LEU2 cmdl-3</td>
<td></td>
</tr>
<tr>
<td>K541</td>
<td>MATa pmcl::LEU2 cnal::HIS3</td>
<td></td>
</tr>
<tr>
<td>K547</td>
<td>MATa pmcl::LEU2 cnal::hisG</td>
<td></td>
</tr>
<tr>
<td>K559</td>
<td>MATa pmcl::LEU2 cnal::hisG cnal::HIS3</td>
<td></td>
</tr>
<tr>
<td>K603</td>
<td>MATa cnbl::LEU2</td>
<td></td>
</tr>
<tr>
<td>K605</td>
<td>MATa pmcl::TRP1</td>
<td></td>
</tr>
<tr>
<td>K607</td>
<td>MATa pmcl::TRP1 cnbl::LEU2</td>
<td></td>
</tr>
<tr>
<td>K610</td>
<td>MATa pmcl::HIS3</td>
<td></td>
</tr>
<tr>
<td>K612</td>
<td>MATa pmcl::HIS3 cnbl::LEU2</td>
<td></td>
</tr>
<tr>
<td>K614</td>
<td>MATa pmcl::HIS3 pmcl::TRP1</td>
<td></td>
</tr>
<tr>
<td>K616</td>
<td>MATa pmcl::HIS3 pmcl::TRP1 cnbl::LEU2</td>
<td></td>
</tr>
</tbody>
</table>

* All strains harbor the following additional mutations: ade2-1 canl-100 his3-11.15 leu3-3.112 trpl-1 ura3-1.

† Strains K444 through K484 were constructed by transformation of the source strain. Strains K510 through K616 were produced by crossing derivatives of W303-1A, W303-1B, and JGY41 which contained mutations in cnal, cnal2, or cnbl that were introduced by transformation.

Measurement of Exchangeable and Nonexchangeable Ca2+

Yeast cultures growing exponentially in YPD medium containing 0.18 mM CaCl2 (Ohyà et al., 1984) were shifted to fresh YPD medium supplemented with 4Ca2+ (41 cpm/pmol) and grown at 30°C for 6.5 h to a final OD600 of 1.5 (7.5 × 107 cells/ml). The total cell-associated Ca2+ was calculated by measuring the radioactivity recovered from 0.1-ml culture aliquots which were diluted into 5 ml ice-cold buffer A (5 mM Na-Hepes, pH 6.5, 10 mM CaCl2), filtered rapidly onto 24 mm Whatman GFF filters using a multiple vacuum filtration unit (model HV224, Hoefer Sci. Instrs., San Francisco, CA), washed three times with ice cold buffer A, dried in vacuo, and analyzed.

Cunningham and Fink Ca2+ Transport and Signaling in Yeast 353
processed for liquid scintillation counting. The nonexchangeable Ca^{2+} pools were determined by the same procedure except that each culture was first diluted 10-fold into prewarmed YPD medium supplemented with 20 mM CaCl2 (a 1,000-fold isotopic dilution) and incubated an additional 20 min before filtration. The radioactivity released from the cells by this equilibration procedure represents the exchangeable Ca^{2+} pool, which was calculated as the difference between the total cell-associated Ca^{2+} and the nonexchangeable Ca^{2+}. All measurements were performed in duplicate and averaged.

Miscellaneous Procedures and Reagents

DAPI and immunofluorescent stainings were performed as described (Pringle et al., 1991) on early log phase cultures growing in SC-ura medium at 30°C. SDS gel electrophoresis (Laemmli, 1970) and Western blots (Johnston et al., 1984) were performed on total cell lysates (Reid and Schatz, 1982) prepared from equivalent numbers of log phase cells grown in SC-ura medium. CaCl2 (C-7902; Sigma Immunochemicals, St. Louis, MO) and ^45CaCl2 (Amersham Corp., Arlington Heights, IL) were used to supplement growth medium. FK506 was a generous gift from Vertex Pharmaceuticals, Inc. (Cambridge, MA). Cyclosporin A was provided by H. Lodish (Whitehead Institute, Cambridge, MA). All other reagents were commercially available.

Results

Cloning and Expression of a Yeast Homolog of PMCA

Our strategy to control calcium signaling in yeast was to identify and manipulate the genes encoding the Ca^{2+}-transporters. Ca^{2+} ATPases are members of a highly conserved family of P-type ion pumps, all of which contain highly conserved phosphorylation and ATP-binding domains (Fig. 2). At least five different yeast genes contain both these sequence motifs, as suggested by PCR analysis (see Materials and Methods). Four of these PCR products encode portions of the previously identified PMA1, PMA2, PMR1, and PMR2 genes. A novel 1.2-kbp PCR product that comigrates with the PMR2 product was cloned after amplification of genomic DNA from a pmr1 pmr2 deletion strain. This clone contained an open reading frame highly homologous to a segment of mammalian PMCA. The DNA segment was mapped by hybridization to chromosome VII very close to the PMA1 gene (Fig. 1A), and defined a new gene termed PMCI based on its homology to PMCA.

The entire PMCI gene was subcloned from plasmid B157 (see Fig. 1A), which had been isolated previously in this laboratory during the cloning of PMA1, the major H^{+} ATPase in the plasma membrane (Serrano et al., 1986). A long open reading frame of 1,173 codons encompassing the PCR product (Fig. 1B) predicts a 131-kD polypeptide showing 41% identity with rat PMCAa (Shull and Greeb, 1988), about 40% identity with other PMCA isoforms, and less than 24% identity with SERCA and other known P-type ion pumps. Alignment of the predicted protein sequence Pmclp with rat PMCAa (Fig. 2) shows similarity through all 10 putative transmembrane domains (M1–M10) and most hydrophilic regions except for the NH_{2}- and COOH-terminal domains as well as several apparent insertions and deletions. The major structural differences occur in regulatory regions that are not well conserved among the known PMCA isoforms (Carafoli, 1992). The large insertion and deletion in PMCI between M2 and M3 occur in a phospholipid binding regulatory region that is subject to alternative splicing in various PMCA isoforms. Interestingly, a COOH-terminal domain that is present in most PMCA isoforms and is involved in calmodulin binding and autoinhibition is absent in Pmclp and replaced by a much smaller COOH-terminal domain lacking significant similarity to other proteins in current databases. Despite these structural differences, PMCI appears to retain all conserved features of P-type ATPases and is the first reported fungal homolog of PMCA.

The product of PMCI is expressed during exponential growth as judged by immunoblotting (Fig. 3) and immunofluorescence microscopy (Fig. 4). For these experi-
Immunofluorescence localization of Pmc1p to vacuole membranes. W303-1A strains transformed with the high copy plasmid pKC60 (top), the integrating plasmid pKC55 (center), or the control plasmid B2205 (bottom) were grown to early log phase, fixed, and processed for immunofluorescence microscopy using the 12CA5 monoclonal antibody. The PMCI::HA product is visible at the vacuole periphery in overexpressing strain (top) and the single copy strain (center), but only nonspecific background staining is visible in similar exposures of the strain lacking the epitope. Nomarski microscopy and DAPI staining identify the vacuoles and nucleus, respectively.

Figure 4. Immunofluorescence localization of Pmc1p to vacuole membranes. W303-1A strains transformed with the high copy plasmid pKC60 (top), the integrating plasmid pKC55 (center), or the control plasmid B2205 (bottom) were grown to early log phase, fixed, and processed for immunofluorescence microscopy using the 12CA5 monoclonal antibody. The PMCI::HA product is visible at the vacuole periphery in overexpressing strain (top) and the single copy strain (center), but only nonspecific background staining is visible in similar exposures of the strain lacking the epitope. Nomarski microscopy and DAPI staining identify the vacuoles and nucleus, respectively.

ments, the PMCI::HA gene product was visualized using the 12CA5 monoclonal antibody, which recognizes a 34-amino acid insertion at codon +2 in the PMCI open reading frame (Fig. 1 C). This epitope-tagged version of PMCI is functional in vivo when integrated into its chromosomal locus or when expressed from high copy plasmids (see below). Immunoblotting of total cell lysates revealed a major immunoreactive polypeptide at ~130 kD, in good agreement with the predicted molecular mass of 131 kD (Fig. 3, lane 2). Only minor cross-reacting species were observed in
lysates prepared from strains lacking the epitope (Fig. 3, lane 1).

Analysis by immunofluorescence microscopy revealed that the epitope-tagged PMCI::HA gene product is localized predominantly to vacuole membranes in log-phase cells (Fig. 4). Cells producing the PMCI::HA product from its chromosomal locus displayed staining of one to three large vesicular structures corresponding to vacuoles by Nomarski optics. Expression of PMCI::HA from a multi-copy plasmid greatly increased the staining of the vacuole periphery. No staining of the nucleus, endoplasmic reticulum, mitochondria, or plasma membrane was detected in these experiments. These results suggest that the PMCI product might function to transport Ca^{2+} ions into the vacuole from the cytosol. High affinity Ca^{2+} ATPase or Ca^{2+} transport activities have not yet been detected in vacuole membrane vesicles (Ohsumi and Anraku, 1983).

Pmclp Sequesters Ca^{2+} In Vivo

The effects of mutating the chromosomal PMCI gene were examined to infer its function in yeast. The PMCI gene is not essential for viability since deleting 97 % of the PMCI open reading frame (Fig. 1 A) had no significant effect on growth rate in rich or synthetic media at a variety of temperatures. Additionally, disruption of PMCI does not noticeably affect mating, sporulation, starvation, or a variety of other responses. These observations show that the function of PMCI is not required for the execution of many processes under standard conditions.

The effect of deleting PMCI on steady state Ca^{2+} pools suggests that Pmclp functions in Ca^{2+} sequestration in vivo. The yeast vacuole accumulates over 95 % of the total cell-associated calcium (Eilam et al., 1985), the majority of which is nonexchangeable in pulse/chase experiments (Eilam, 1982a,b). Accordingly, the exchangeable and nonexchangeable Ca^{2+} pools were measured in exponentially growing PMCI and pmcl cells. The exchangeable Ca^{2+} pool was increased only slightly (12 %) in pmcl cells relative to wild-type cells. However, the nonexchangeable Ca^{2+} pool in pmcl cells was over fivefold lower than that of isogenic wild-type cells (Fig. 5). This difference reflects a large reduction in the vacuole Ca^{2+} pool in pmcl mutants, and suggests that Pmclp is necessary for efficient Ca^{2+} sequestration in vivo.

Figure 5. Ca^{2+} compartmentalization in wild-type, pmcl, and pmcl cnbl strains. The exchangeable (black) and nonexchangeable (striped) pools of cells associated Ca^{2+} were measured in strains W303-1A (WT), K605 (pmcl), and K607 (pmcl cnbl) using cells uniformly labeled with "Ca^{2+}" (41 cpm/pmol) as described in Materials and Methods. The values shown are the average of duplicate experiments. (SEM less than 5 % of the total for each determination).

Figure 6. Growth and morphology of pmcl mutants in high Ca^{2+} media. Cultures of W303-1A (WT), K603 (cnbl), K605 (pmcl), and K607 (pmcl cnbl) growing exponentially in YPD, pH 5.5, medium were collected by centrifugation and suspended in YPD, pH 5.5, medium supplemented with 200 mM CaCl_{2} and shaken at 30°C. (A) The relative optical density at 600 nm (normalized to the initial level) was determined for each culture at the indicated time intervals. To maintain low cell densities, serial dilutions into fresh prewarmed media were made as necessary and factored into the calculation of relative optical density. (B) Nomarski micrographs of pmcl mutants growing for 24 h in YPD medium (top) and in YPD+200 mM Ca^{2+} (center) and of W303-1A growing for 24 h in YPD+200 mM Ca^{2+} (bottom).
PMC1 Is Required for Ca\(^{2+}\) Tolerance

As pmc1 mutants have decreased ability to sequester Ca\(^{2+}\) in the vacuole, we tested their ability to tolerate very high or very low Ca\(^{2+}\) concentrations in the growth medium. Wild-type and pmc1 null mutants are indistinguishable during growth in synthetic media containing <1 \(\mu\)M Ca\(^{2+}\) (Rudolph et al., 1989) or in complex YPD media containing varying amounts of EGTA (not shown). However, pmc1 null mutants grow very poorly in YPD medium, pH 5.5, supplemented with 200 mM CaCl\(_2\) (Figs. 6 and 7). The growth defect of pmc1 mutants was not observed in YPD, pH 5.5, supplemented with 200 mM MgCl\(_2\) (Fig. 7). Additionally Ca\(^{2+}\) sensitivity was not observed in strains expressing only the epitope-tagged PMCI::HA hybrid from its chromosomal locus or from high copy plasmids (not shown). These observations demonstrate that PMC1 is necessary for tolerance to high Ca\(^{2+}\) and confirm the importance of the vacuole in yeast Ca\(^{2+}\) homeostasis (Klionsky et al., 1990; Anraku et al., 1991).

In liquid growth medium supplemented with 200 mM Ca\(^{2+}\), wild-type strains grew exponentially after a brief lag (Fig. 6 A). In contrast, pmc1 mutants shifted to high Ca\(^{2+}\) media increased culture density at a slow linear rate that continued over at least 32 h. After 24 h of incubation, the optical density of the pmc1 culture increased 10-fold and the number of viable cells increased approximately 5-fold, as determined by colony forming units on agar YPD, pH 5.5, medium supplemented with 200 mM MgCl\(_2\). Though the morphology of pmc1 cells changed somewhat during incubation in high Ca\(^{2+}\) (Fig. 6 B), they did not accumulate with a uniform morphology. Thus, the growth inhibition of pmc1 mutants by high Ca\(^{2+}\) is reversible and apparently not a consequence of a specific block in the cell division cycle.

Calcineurin Mediates Growth Inhibition of pmc1 Mutants in High Ca\(^{2+}\) Medium

The mechanism by which external Ca\(^{2+}\) inhibits the growth of pmc1 mutants was investigated by characterizing spontaneous revertants carrying secondary mutations that restore the ability of pmc1 null mutants to proliferate in high Ca\(^{2+}\) media (see Materials and Methods). Recessive mutations in three complementation groups were found to reverse the Ca\(^{2+}\) sensitivity of pmc1 mutants. The first group of revertants (termed crm/ for Ca\(^{2+}\) resistant mutation) was found to define the CNB1 gene which encodes the Ca\(^{2+}\) binding regulatory subunit of calcineurin (Kuno et al., 1991; Cyert and Thorner, 1992). The crm/ alleles displayed a defect in recovery from pheromone arrest similar to cnb1 null mutants (Cyert and Thorner, 1992), were genetically linked to the CNB1 locus (44:0:0, parental ditype/non-parental ditype/tetrapotype), and were complemented by plasmids carrying the wild-type CNB1 gene. Additionally, disruption of CNB1 by gene replacement restores growth of pmc1 mutants (Fig. 7). Growth of pmc1 mutants is also restored by simultaneous deletion of both genes encoding the catalytic subunit of calcineurin, CNA1 and CNA2 (Fig. 7). Deletion of either CNA1 alone or CNA2 alone is not sufficient to suppress the Ca\(^{2+}\) sensitivity of pmc1. By this assay, the CNA1 and CNA2 genes are functionally redundant, which explains why no spontaneous cna1 or cna2 mutants were recovered in the initial

![Figure 7. Growth inhibition of pmc1 by high Ca\(^{2+}\) is prevented by mutations in calmodulin and calcineurin. Yeast strains were spread onto the surface of YPD agar medium, pH 5.5, supplemented with either 200 mM CaCl\(_2\) (A) or 200 mM MgCl\(_2\) (B) and incubated at 30°C for 3 d. Strains clockwise from top: W303-1A, K473, K473-a7, K607, K541, K557, K559, and K510 with relevant genotypes (C).](image-url)
revertant screen. Loss of calcineurin function did not affect growth of pmcl mutants in standard media or in media supplemented with 200 mM MgCl₂. Thus, growth inhibition of pmcl mutants by high Ca²⁺ requires the function of both the catalytic and regulatory subunits of calcineurin.

In high Ca²⁺ liquid media (Fig. 6 A), cnbl and pmcl cnbl strains grow at faster rates (1.6 h doubling time) than an isogenic wild-type strain (2.5 h doubling time). This result suggests that calcineurin activity limits the rate of yeast growth in high Ca²⁺ conditions, and is consistent with earlier observations that the CNA1, CNA2, and CNB1 genes are not required for vegetative growth in standard media (Cyert et al., 1991; Liu et al., 1991b; Cyert and Thorner, 1992). Interestingly, pmcl cnbl mutants have a larger pool of nonexchangeable Ca²⁺ than pmcl mutants (Fig. 5). If Ca²⁺ sequestration into the vacuole is improved by inactivation of calcineurin, this might explain the enhanced growth rate of pmcl cnbl (and cnbl) strains in high Ca²⁺ media.

Activation of Calcineurin by Ca²⁺/Calmodulin Is Necessary for Inhibition of pmcl Mutants

The protein phosphatase activity of mammalian calcineurin in vitro is greatly stimulated by binding of Ca²⁺ and calmodulin (Stewart et al., 1982). Similarly, calmodulin binds to the CNA1 and CNA2 gene products only in the presence of Ca²⁺ (Cyert et al., 1991; Liu et al., 1991b). Mutant forms of calmodulin that are unable to bind Ca²⁺ fail to activate target enzymes in vitro (Hurwitz et al., 1988), but still provide functions necessary for yeast viability (Geiser et al., 1991). Using cmdl-3 strains, which express a calmodulin mutant containing two amino acid substitutions in each of the

Figure 8. Expression of COOH-terminal truncated CNA1 (CNA1ΔC) bypasses cmdl-3 in pmcl mutants. Strains K473 (lines 1 and 2), K510 (lines 3 and 4), K559 (lines 5 and 6), and K607 (lines 7 and 8) were transformed with a low copy plasmids containing derivatives of CNA1 (pKC74, lines 1, 3, 5, and 7) or CNA1ΔC (pKC73, lines 2, 4, 6, and 8) under control of the galactose-inducible promoter of GALI. Strain K510 (lines 9 and 10) was also transformed with a control plasmid pUN50, or pTD59 containing the CMD1 gene (Geiser et al., 1991). Strain K473 was also transformed with the high copy control plasmids B2205 or pKC11 containing the PMRI gene. Serial fivefold dilutions of saturated cultures were spotted onto complete medium lacking uracil (to maintain selection for the plasmids) supplemented with the 2% glucose or galactose and 400 mM CaCl₂ as indicated. The plates were photographed after 3 d incubation at 30°C. High Ca²⁺ inhibits growth of pmcl cmdl-3 and pmcl cnal cna2 but not pmcl cnbl mutants expressing CNA1ΔC. High Ca²⁺ does not inhibit growth of pmcl cmdl-3 or pmcl cnbl mutants expressing CNA1.
the three high affinity Ca2+-binding domains, it is possible to test whether Ca2+ binding to calmodulin is necessary for growth inhibition of pmcl mutants by high Ca2+.

In contrast to pmcl mutants, a pmcl cmdl-3 double mutant grows well on high Ca2+ media (Fig. 7). Introduction of a low copy plasmid carrying the wild-type CMDI gene into the pmcl cmdl-3 strain restored Ca2+ sensitivity (Fig. 8, lines 9 and 10), indicating that the mutant calmodulin has not gained a function (dominant over wild type), but rather has specifically lost a function required for Ca2+-induced growth inhibition. Identical results were obtained with a pmcl::HIS3 cmdl-6 strain (K445), which contains only three point mutations in the CMDI gene (data not shown). Thus, a mutant with amino acid substitutions in the high affinity Ca2+ binding sites of calmodulin has the same phenotype as a mutant that has lost calcineurin function.

Ca2+/calmodulin activates calcineurin in vitro by binding to a COOH-terminal domain of the catalytic subunit and relieving autoinhibition by this domain (Stewart et al., 1982; Hashimoto et al., 1990). Proteolytic removal of the autoinhibitory domain causes calmodulin-independent stimulation of protein phosphatase activity (Manalan and Klee, 1983). These biochemical data predict that a CNAI truncation mutant lacking the autoinhibitory domain would become activated independent of Ca2+/calmodulin and would prevent growth of pmcl cmdl-3 strains in high Ca2+ media. As predicted, a pmcl cmdl-3 strain expressing the truncated CNAIΔC allele from an inducible promoter (GAL) fails to grow in high Ca2+ medium (Fig. 8, line 4). In contrast, expression of wild-type CNAI from this promoter does not inhibit growth of the pmcl cmdl-3 strain in high Ca2+ medium (Fig. 8, line 3). The GAL-induced expression of CNAI and CNAIΔC does not inhibit growth of yeast strains in the absence of added Ca2+ (not shown). Furthermore, expression of either CNAI or CNAIΔC inhibits growth of a pmcl cna1 cna2 strain (Fig. 8, lines 5 and 6) but not a pmcl cnal strain (lines 7 and 8) in high Ca2+ medium. Thus, removing the COOH-terminal autoinhibitory domain of calcineurin A specifically bypasses the requirement for Ca2+/calmodulin to promote growth arrest, though calcineurin B and Ca2+ are still required for this arrest. These data suggest that the major role of Ca2+/calmodulin in growth inhibition by Ca2+ is to activate calcineurin via its COOH-terminal region. The cmdl-3 mutant calmodulin is unable to perform this function.

FK506 and Cyclosporin A Inhibit Yeast Calcineurin In Vivo

The immunosuppressant drug FK506 binds tightly to a complex of proteins present in wild-type yeast strains and absent in extracts made from strains lacking calcineurin A, calcineurin B, or the yeast homolog of FKBP-12 encoded by FPR1 (Foor et al., 1992). A similar complex formed in mammalian cells results in the complete inhibition of calcineurin activity towards phosphopeptide substrates (Liu et al., 1991a). These considerations prompted us to test whether FK506 would restore growth of pmcl mutants in high Ca2+ media by inhibiting yeast calcineurin.

Addition of FK506 dramatically restores growth of pmcl mutants in high Ca2+ medium, but has no effect on pmcl fprl strains lacking FKBP-12 (Fig. 9 A). In this assay, the 50% effective dosage (ED\textsubscript{50}) of FK506 was estimated at 25 ng/ml which is over 1,000 times lower than the 50% lethal dosage (LD\textsubscript{50}) of ~50 μg/ml (Heitman et al., 1991). There is also a direct correlation between the effectiveness of the drug and the dosage of calcineurin A genes. pmcl cna1 and pmcl cna2 double mutants each required approximately half as much FK506 (12 ng/ml) when compared to the pmcl strain. These results fully support the hypothesis that a direct target of FK506/FKBP-12 in yeast is activated calcineurin.

Cyclosporin A, a structurally distinct inhibitor of calcineurin acting through its own binding protein (Liu et al., 1991a), also restores growth of pmcl mutants in high Ca2+ media (Fig. 9 B). The ED\textsubscript{50} of cyclosporin A in this assay (1-2 μg/ml) is much lower than its LD\textsubscript{50} (~200 μg/ml), is directly proportional to CNA gene dosage, and is independent of FKBP-12. The effectiveness of both drugs can be explained by a model where a growth inhibitory complex of Ca2+/calmodulin/calcineurin forms in pmcl mutants during growth of the pmcl strain. These results fully support the hypothesis that a direct target of FK506/FKBP-12 in yeast is activated calcineurin.
growth in high Ca\(^{2+}\) media, and that this complex is inhibited by the stoichiometric binding of FK506/FKBP-12 or cyclosporin A/cyclophilin (Foor et al., 1992). This model implies that [Ca\(^{2+}\)]c is elevated in \textit{pmcl} mutants during incubation in high Ca\(^{2+}\) media, in agreement with the genetic data suggesting that Ca\(^{2+}/\)calmodulin but not apo-calmodulin (as produced by \textit{cmdl-3}) is required for the inhibitory effect of calcineurin.

The Inviability of a \textit{pmr1 pmcl} Double Mutant Is Suppressed by Inactivation of Calcineurin

The role of \textit{PMCl} in Ca\(^{2+}\) tolerance may be shared by \textit{PMRI} (Rudolph et al., 1989; Antebi and Fink, 1992), a putative Ca\(^{2+}\) ATPase in the Golgi complex related to Ca\(^{2+}\) ATPases of the mammalian SERCA. This possibility was verified by the observation that overexpression of \textit{PMRI} in

Figure 10. The synthetic lethality of \textit{pmcl pmr1} double mutants is reversed by a \textit{cnbl} mutation or by addition of FK506. Strains \textit{K610 (pmr1)}, \textit{K612 (pmr1 cnbl)}, \textit{K614 (pmr1 pmcl)}, and \textit{K616 (pmr1 pmcl cnbl)} were streaked onto YPD agar medium supplemented with FK506 (0.4 \(\mu\)g/ml) and/or CaCl\(_2\) (20 mM) as indicated. The strains were initially recovered by germinating ascospores produced from a triply heterozygous diploid on YPD+FK506+CaCl\(_2\) medium where all genotypes are viable. The colonies were photographed after 4 d of incubation at 30\(^{\circ}\)C. The \textit{pmr1 pmcl} double mutants did not form visible colonies on YPD or YPD plus 20 mM CaCl\(_2\).
PMR1 Encodes a Vacuolar Ca^{2+} ATPase Involved in Ca^{2+} Sequestration and Regulation of [Ca^{2+}]c

Several lines of evidence indicate that Pmclp transports Ca^{2+} from the cytoplasm into the vacuole. First, the predicted product of PMCI contains all the conserved features of P-type ion pumps and is highly homologous to mammalian PMCAs (41% identical through 81% of its sequence). Second, the phenotypes of pmcl mutants are consistent with a direct role for Pmclp in Ca^{2+} transport. Although pmcl null mutants show no obvious growth or morphological phenotypes on standard media, they accumulate significantly less Ca^{2+} in the vacuole and are intolerant of high Ca^{2+} in the growth medium. Third, the behavior of pmcl mutants is dramatically affected by modifications of a Ca^{2+}-sensitive regulatory pathway consisting of calmodulin and calcineurin. Finally, PMCI shares an essential function with PMRI, a member of SERCA-type Ca^{2+} pumps (Serrano, 1991). All these properties are consistent with a general model of Ca^{2+} transport and signaling thought to exist in most eukaryotic cells (Fig. 11). However, the study of Ca^{2+} metabolism in yeast has revealed some noteworthy distinctions.

Ca^{2+} uptake into the yeast vacuole in vitro is predominantly due to low affinity H^{+}/Ca^{2+} antiport activity (Ohsumi and Anraku, 1983). However, during growth in 0.18 mM Ca^{2+} YPD medium (Ohya et al., 1984), the majority of Ca^{2+} sequestered in the vacuole requires Pmclp (Fig. 5). Thermodynamic considerations also argue that Ca^{2+} ATPases are necessary to account for the high levels of Ca^{2+} sequestered in fungal vacuoles (Miller et al., 1990). In the absence of Pmclp, the residual Ca^{2+} sequestration can be attributed to the vacuolar antiporter and/or Pmrlp in the Golgi complex. PMRI is required for viability of pmcl mutants and overexpression of PMRI restores Ca^{2+} tolerance to pmcl mutants. The simplest interpretation of these findings is that Pmclp and Pmrlp both transport Ca^{2+} from the cytoplasm into internal compartments and therefore function redundantly in controlling cytoplasmic Ca^{2+} levels. This effect is not unlike the roles of PMCA and SERCA in returning [Ca^{2+}]c to submicromolar levels after Ca^{2+} influx is induced by external stimuli (Carafoli, 1987). The major distinction is that yeast utilize Pmclp for Ca^{2+} sequestration into the vacuole whereas mammalian cells utilize PMCA for Ca^{2+} influx through the plasma membrane.

Calcineurin Activation by Ca^{2+}/Calmodulin Is Growth Inhibitory in pmcl Mutants

Our results show that the inviability of pmcl strains in high Ca^{2+} media requires calcineurin activation by Ca^{2+}/calmodulin. The growth defects of pmcl strains in high Ca^{2+} media are completely reversed in strains lacking either the catalytic or regulatory subunits of calcineurin or in strains containing mutant forms of calmodulin with defective Ca^{2+} binding sites. Expression of a truncated calcineurin A lacking the autoinhibitory domain bypasses the requirement for Ca^{2+}/calmodulin, preventing growth of pmcl cmdl-3 double mutants in high Ca^{2+} medium. These in vivo data are consistent with the mechanism of calcineurin activation in vitro where maximal stimulation of phosphopeptide phosphatase activity requires binding of Ca^{2+}/calmodulin to relieve autoinhibition by the COOH-terminal domain of the catalytic A subunit.

The clear effect of inactivating calcineurin in pmcl mutants was exploited here in a bioassay for potential antagonists of yeast calcineurin. The immunosuppressant drugs FK506 and cyclosporin A, together with their respective immunophilin binding proteins, form inactive complexes with yeast and
mammalian calcineurin (Liu et al., 1994; Foor et al., 1992). As demonstrated here, both of these compounds mimic the effect of calcineurin mutations, restoring growth to pmcl mutants in high Ca\(^{2+}\) media. Moreover, the effective dosages of these drugs decreased about twofold when the gene dosage of calcineurin A was reduced by half. These findings provide strong evidence that calcineurin is the direct target of FK506 and cyclosporin A in yeast cells. Based on these results, we propose that calcineurin activation occurs during incubation of pmcl mutants in high Ca\(^{2+}\) media.

Calcineurin activation also occurs in standard media in pmcl pmrl double mutants, and therefore is not restricted to conditions of high external Ca\(^{2+}\). Calcineurin-dependent growth inhibition can be observed in pmcl pmrl strains in media containing 0.18 - 200 mM Ca\(^{2+}\). Because Pmclp and Pmr1p function in Ca\(^{2+}\) sequestration, their shared essential function (in >0.18 mM Ca\(^{2+}\)) is most likely to maintain sufficiently low [Ca\(^{2+}\)]\(_{c}\) to prevent activation of calcineurin. Though growth inhibition by calcineurin activation was most evident in pmcl pmrl and pmcl strains, it is possible that calcineurin inhibits growth of wild-type strains in response to high Ca\(^{2+}\) environments (Fig. 6) or in response to natural Ca\(^{2+}\) signals. Transient Ca\(^{2+}\) signals might be generated during some situations by the physiological modulation of Pmclp and Pmr1p activities or other Ca\(^{2+}\) transporters.

Calcineurin-dependent Signaling Pathways

The results reported here suggest that calcineurin activation can have a net negative effect on growth, which itself might obscure other positive effects. A positive (growth enhancing) role for calcineurin in yeast has been observed in response to prolonged cell cycle arrest by mating pheromones (Cytet et al., 1991; Cytet and Thorner, 1992). The process of recovery from pheromone arrest is inefficient in calcineurin mutants and in strains treated with FK506 or cyclosporin A (Foor et al., 1992). Thus, calcineurin activation can affect yeast proliferation in a positive or negative way depending on the circumstances. The net effect of activated calcineurin may be a consequence of differences in the activity or availability of phosphoprotein substrates, in the nature of the cytosolic Ca\(^{2+}\) signal, or possibly the input of additional regulatory signals.

Calcineurin-dependent signaling in human cells can also have a net positive or negative effect depending upon the cell status. Cyclosporin A and FK506 can prevent activation and proliferation of mature T cells, whereas these compounds block the induced suicide of immature T cells (Bierer et al., 1991). The calcineurin-dependent inhibition of yeast growth reported here is reversible, occurs at many stages of the cell cycle, and is therefore distinct from the type of cell death observed in immature T cells. A more complete understanding of the different responses will require the identification of distinguishing calcineurin targets.

Our results show that in pmcl mutants, calcineurin function decreases tolerance to external Ca\(^{2+}\) (Fig. 6) and decreases sequestration of Ca\(^{2+}\) into the nonexchangeable (vacuolar) pool (Fig. 5). It is unlikely that the latter effect is due to increased influx or decreased efflux of Ca\(^{2+}\) since both these models would predict decreased tolerance to external Ca\(^{2+}\). An alternative explanation is that another enzyme involved in Ca\(^{2+}\) transport into the vacuole, such as the H\(^{+}\)/Ca\(^{2+}\) antiporter (Ohsumi and Anraku, 1983), is negatively regulated by calcineurin. This explanation would also account for the calcineurin-dependent growth inhibition of pmcl mutants in high Ca\(^{2+}\) conditions.

Given the remarkable interspecies conservation of the mechanism by which calcineurin is activated and inhibited, it is plausible that the physiological roles of calcineurin are similar in human and yeast cells. The bioassays reported here will be useful to identify the downstream targets and functions of yeast calcineurin as a framework for understanding Ca\(^{2+}\)-signaling mechanisms and responses in human cells.

We would like to acknowledge all members of the lab for excellent advice and discussions, especially Adam Antebi, Hans Rudolph, Steven Kron, and Amy Chang. We thank Per Ljungdahl, David Pellman, and Judy Bender for critically reading the manuscript. We are grateful to Trisha Davis, Martha Cytet, and Joe Heitman for generously providing plasmids and/or yeast strains that were important to this study and to Harvey Lodish and Vertex Pharmaceuticals, Inc., for supplying samples of cyclosporin A and FK506, respectively.

K. W. Cunningham was supported by grant PF-3472 from the American Cancer Society. G. R. Fink is American Cancer Society Professor of Genetics. This work was supported by National Institutes of Health grant GM-40266.

Received for publication 23 September 1993 and in revised form 8 November 1993.

References

