Mini-Review on the Cellular Mechanisms of Disease

Fibroblasts, Myofibroblasts, and Wound Contraction

Frederick Grinnell
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75235

A clinical case reconstructed by Guido Majno (1975) from the Hippocratic records describes a wrestler who visits the iatreion (out-patient clinic) to be treated for a shoulder dislocation. With less invasive procedures no longer working to tighten the dislocation, the clinic adopts the drastic measure of inducing wound contraction by poking a hot needle through the skin of the arm pit, and "in this way the cavity, into which the humerus is mostly displaced, is best scarred over and cut off." In Greek medicine circa 400 B.C.E., familiarity with wound contraction after burn injury already was commonplace.

Closure of cutaneous wounds involves three processes: epithelization, connective tissue deposition, and contraction. The contribution of each process varies according to the type of wound. In general, epithelization results in resurfacing of the wound; connective tissue deposition results in replacement of damaged dermis; and contraction brings the margins of open wounds together (Peacock, 1984; Clark, 1988; Mast, 1992). In mammals with loose skin (meaning loosely attached to the underlying tissue layer), wound contraction leads to wound closure with little scarring or loss of function. In humans, whose skin is more firmly attached to underlying tissues, the consequences of contraction are less beneficial, ranging from minimal cosmetic scar in some cases to loss of joint motion or major body deformation in others. Consequently, a distinction has been made between contraction as a normal process of wound closure, and contracture as the abnormal result of contraction process. Significant scarring is central to the generation of contracture (Darby et al., 1990). During granulation tissue formation, migrating fibroblasts differentiate into myofibroblasts (Darby et al., 1990; Welch et al., 1990). Judging from the presence of fibronexus junctions, myofibroblasts form very tight adhesions to the surrounding fibronectin-rich granulation tissue (Singer et al., 1984; Tomasek and Haaksm, 1991). The timing of the switch from fibroblast to myofibroblast phenotype appears to depend at least in part on the extent to which the wound resists contraction (Darby et al., 1990; Welch et al., 1990). It now seems likely that migrating fibroblasts at the wound margins generate sufficient force to initiate wound contraction. As contraction proceeds and resistance increases, migrating fibroblasts differentiate into myofibroblasts and the actin cytoskeleton becomes organized along the lines of greatest resistance (Pettrell et al., 1993).

In Vitro Models of Wound Contraction

Several in vitro models of wound contraction have been developed using fibroblasts cultured in collagen or fibrin ma-
Adhesive interactions between cells and collagen required for contraction are mediated by $\alpha_2\beta_1$ integrins (Schiro et al., 1991; Klein et al., 1991). Tensile force was found to depend on an intact actin cytoskeleton (Bell et al., 1979; Bellows et al., 1982; Guidry and Grinnell, 1985) and myosin light chain kinase (MLCK) activity (Ehrlich and Griswold, 1984; Van Bockxmeer et al., 1984; Ehrlich et al., 1991).

Collagen matrix contraction requires serum (Steinberg et al., 1980; Guidry and Grinnell, 1985), which indicates that cell contractility can be regulated by extracellular factors. The activity of serum can be replaced or enhanced by purified growth factors. For instance, transforming growth factor β (TGF-β) stimulates contraction of both floating and anchored collagen matrices (Montesano and Orci, 1988; Finesmith et al., 1990; Fukamizu and Grinnell, 1990). TGF-β also has been reported to promote fibroblast differentiation into myofibroblasts (Ronnov-Jessen and Petersen, 1993; Desmouli et al., 1993). Platelet derived growth factor (PDGF) stimulates matrix contraction (Clark et al., 1989; Gullberg et al., 1990), but by a mechanism independent of TGF-β (Tingstrom et al., 1992). Factors that inhibit matrix contraction include fibroblast growth factor (Finesmith et al., 1990; Dubertret et al., 1991) and interferon γ (Gillery et al., 1992). In general, the downstream signaling mechanisms by which growth factors regulate matrix contraction are unknown, but protein kinase C probably is involved (Danowski and Harris, 1988; Guidry, 1992).

Collagen Matrix Contraction and the Cell Phenotype

The fibroblast phenotype that develops as a consequence of collagen matrix contraction differs dramatically depending on whether the matrices are floating or anchored. Contraction of floating collagen matrices gives rise to a mechanically relaxed tissue whose cells have morphological and proliferative features resembling dermis, whereas anchored matrices develop into a stressed tissue resembling granulation tissue. Strain gauge measurements have shown that the force exerted by fibroblasts in anchored collagen matrices is comparable with that generated in contracting skin wounds or during tooth eruption (Kasugai et al., 1990; Delvoye et al., 1991; Kolodney and Wysolmerski, 1992).

In floating collagen matrices, fibroblasts develop stellate morphology with long processes and a cytoskeletal meshwork (Bell et al., 1979; Bellows et al., 1981). In marked contrast, cells in anchored matrices become bipolar and orient along lines of tension (Stopak and Harris, 1982; Bellows et al., 1982). Cells develop prominent stress fibers and fibronexus junctions and resemble myofibroblasts (Farsi and Aubin, 1984; Mochitate et al., 1991; Tomasek et al., 1992). Therefore, fibroblasts can contract a tissue matrix in vitro without differentiating into myofibroblasts, and the appearance of myofibroblasts correlates with development of stress in the matrix.

Fibroblasts in floating vs. anchored collagen matrices show profound differences in cell proliferation. After contraction of floating collagen matrices, there is a marked decline in cellular DNA synthesis (Sarber et al., 1981; Nishiyama et al., 1989; Nakagawa et al., 1989a). The cells become arrested in G, (Kono et al., 1990), and cell regression begins (Nakagawa et al., 1989b). Cells in anchored matrices, on the other hand, continue to synthesize DNA and increase in cell number (Nishiyama et al., 1989; Nakagawa et al., 1989a,b).
Also, subjecting fibroblasts in floating collagen matrices to external stress results in increased cell growth (Jain et al., 1990).

The low proliferative capacity of fibroblasts in floating collagen matrices appears to reflect decreased responsiveness of the cells to growth factors (Nakagawa et al., 1989a; Nishiyama et al., 1990, 1991). Recent studies have shown that PDGF receptors on fibroblasts in floating collagen matrices lose their capacity to autophosphorylate in response to PDGF (Lin and Grinnell, 1993).

In addition to changes in cell proliferation, fibroblasts in floating collagen matrices also show decreased collagen biosynthesis and increased release of collagenase compared with cells in anchored matrices (Nusgens et al., 1984; Unemori and Werb, 1986; Paye et al., 1987; Fukamizu and Grinnell, 1990). Changes in collagen and collagenase biosynthesis by fibroblasts in floating matrices depend on transcriptional as well as posttranscriptional mechanisms (Mauch et al., 1988; Lambert et al., 1992; Eckes et al., 1993). These findings suggest that mechanical organization of the tissue can regulate extracellular matrix biosynthesis and remodeling as well as cell proliferation.

Stress Relaxation

If floating collagen matrices resemble dermis and anchored matrices resemble granulation tissue, then stress relaxation represents the transition from granulation tissue to dermis (or scar), albeit on a time scale that is markedly sped up. Unlike the slow (hours to days) contraction of floating or anchored collagen matrices, contraction of stressed collagen matrices occurs in minutes. The fibroblasts themselves contract as indicated by the retraction of cell pseudopodia and collapse of actin filament bundles (Mochitate et al., 1991; Tomasek et al., 1992). In this case, the mechanism appears to involve a smooth muscle-like contraction rather than tractional remodeling. Intact stress fibers are required and the process is regulated by serum factors (Tomasek et al., 1992). Recently, thrombin has been found to substitute for serum and shown to stimulate myosin light chain phosphorylation (Kolodny and Elson, 1993) through a G-protein regulated pathway (Pilcher, B. K., and J. T. Tomasek. 1993. Mol. Biol. Cell. 4:300a).

Accompanying stress relaxation, fibroblasts show transient ectocytosis of annexin-containing vesicles (Lee et al., 1993), release of cell surface fibronectin (Mochitate et al., 1991), and inactivation of PDGF receptors (Lin and Grinnell, 1993). Cell proliferation and collagen synthesis decline rapidly as the cells switch from an activated to a resting phenotype (Iwgit et al., 1981; Mochitate et al., 1991). The signaling mechanisms controlling these different events have yet to be determined, but one of the earliest fibroblast responses to stress relaxation (5-10 min) is activation of a cyclic AMP/protein kinase A signaling pathway (He, J., and F. Grinnell. 1993. Mol. Biol. Cell. 4:364a).

Changes in cell proliferation and biosynthetic activity after stress relaxation provide insight into the possible mechanism of myofibroblast disappearance at the end of wound healing. As long as the tissue is under mechanical stress, cell proliferation and biosynthetic activity will persist. Once mechanical stress is relieved, usually by a combination of wound contraction and biosynthetic activity, cells will switch to a non-proliferative phenotype and begin to regress even in the continued presence of growth factors. This view is consistent with commonplace surgical experience that increased skin tension contributes to increased scarring (Arem et al., 1976; Burgess et al., 1990). Moreover, it helps explain the role of external pressure in reducing wound contracture (Larson et al., 1971; Rockwell et al., 1989).

Dr. William Snell and Richard Anderson made helpful comments and suggestions regarding this manuscript.

The author’s research has been supported by National Institutes of Health grant GM31321.

Received for publication 30 August 1993 and in revised form 11 November 1993.

References

