On the Localization of Voltage-sensitive Calcium Channels in the Flagella of *Chlamydomonas reinhardtii*

Christina Beck and Rainer Uhl
Max-Planck-Institut für Biochemie, D-82152 Martinsried, Federal Republic of Germany

Abstract. This study was undertaken to prove that voltage-sensitive calcium channels controlling the photophobic stop response of the unicellular green alga *Chlamydomonas reinhardtii* are exclusively found in the flagellar region of the cell and to answer the question as to their exact localization within the flagellar membrane. The strategy used was to amputate flagella to a variable degree without perturbing the electrical properties of the cell and measure flagellar currents shortly after amputation and during the subsequent regeneration process. Under all conditions, a close correlation was found between current size and flagellar length, strongly suggesting that the channels that mediate increases in intraflagellar calcium concentration are confined to and distributed over the total flagellar length. Bald mutants yielded tiny flagellar currents, in agreement with the existence of residual flagellar stubs. In the presence of the protein synthesis inhibitor cycloheximide, flagellar length and flagellar currents also recovered in parallel. Recovery came to an earlier end, however, leveling off at a time when in the absence of cycloheximide only half maximal values were achieved. This suggests the existence of a pool of precursors, which permits the maintenance of a constant ratio between voltage-sensitive calcium channels and other intraflagellar proteins.

Chlamydomonas reinhardtii, a unicellular green freshwater alga, possesses a photosensory system and two flagella, which enable it to translate information about intensity and direction of the ambient light into defined orientational responses (Boscov and Feinleib, 1979). During normal forward swimming the two flagella move in a breast stroke-like fashion 50 times per second. An apparent asymmetry in the beating pattern leads to a rotation around the longitudinal axis with a frequency of 2 Hz. Thereby, one revolution takes between 20 and 25 strokes, i.e., 500 ms. This allows the alga to screen the ambient light and to correct for changes in its direction (Foster and Smyth, 1980; Rüffer and Nultsch, 1985, 1987, 1990). Depending on the brightness of the actinic light, three classes of behavioral responses can be distinguished: (a) in weak light, *Chlamydomonas* swims towards the light (positive phototaxis); (b) in stronger light, it swims away from it (negative phototaxis); and (c) in very strong light, particularly when there are sudden and pronounced changes in intensity, it stops transiently. In the course of this "stop response," *Chlamydomonas* changes from its normal forward swimming to a phase of slower backward swimming, caused by an undulation movement of the flagella. Afterwards it resumes forward swimming in a new direction. Stop responses start within 50 ms of the stimulus and last for about 300 ms (Uhl and Hegemann, 1990).

There is good evidence that the different flagellar beating patterns are all governed by the internal calcium concentration (Schmidt and Eckert, 1976). This has been concluded from *in vitro* experiments with isolated flagella (Hyams and Borisy, 1978) and the flagella of detergent-extracted cell models (Bessen et al., 1980; Kamiya and Witman, 1984), where it was found that all naturally occurring beating patterns can be mimicked simply by changing the free calcium concentration in the medium. In vivo changes in [Ca] can arise from calcium release from internal stores or from a change in the balance between calcium influx through channels in the cell membrane and calcium expulsion through calcium pumps or exchange carriers. While evidence for the former is still lacking, it has been established that rapid light-induced changes in internal calcium can be brought about by two classes of ion channels: one is located in the eyespot region of the cell, where the photoreceptor molecules reside, and the other is confined to the flagellar region. According to the electrical model of Harz and Hegemann (1991) the immediate action of light is to open the channels in the eyespot region, leading to an inward current with concomitant cell depolarization. Current amplitude is graded with photon exposure and when its size exceeds a critical level opens the presumably voltage-sensitive channels in the flagellar region. Under physiological conditions both currents are carried by calcium ions. The threshold for the opening of flagellar channels coincides with the threshold for the stop response, suggesting that the undulation movement of the flagella is caused by a massive local calcium influx (Harz et al. 1992).
So far an exact localization of the voltage-sensitive calcium channels in the flagellar region has not been possible. On the basis of freeze-etch electron microscopic studies it has been suggested that the calcium conductances may reside in the ciliary necklace, with the ciliary necklace particles being the calcium channels (Gilula and Satir, 1972; Fisher et al., 1976). This communication, however, which uses an electrophysiological assay and a gentle procedure for producing healthy cells with flagella that have been amputated to various degrees, comes to a different conclusion. Under all conditions tested the size of the flagellar currents was correlated with the flagellar length, indicating that the voltage-sensitive calcium channels are equally distributed over the total length of both flagella.

Materials and Methods

Culturing Vegetative and Gametic Cells

Chlamydomonas reinhardtii cells of the cell wall-deficient mutant CW-2 were grown for 10-14 d on high salt acetate medium plates (HSM according to Sueoka et al., 1967, supplemented with 15 mM sodium acetate, 250 mM sorbitol as osmoticum, 0.3 % yeast-extract, and 0.9 % agar IMA, Nürnberg, Germany) in the presence of continuous white light of 2 W m⁻². While vegetative cells and gametes yield photocurrents of similar shape and size, the total length of both flagella.

Electrical Recording from Deflagellated Cells

Photocurrents were recorded using the suction pipette technique (Litvin et al., 1978; Baylor et al., 1979), as previously applied to Chlamydomonas by Harz and Hegemann (1991). To this end a single fraction of the cell into the pipette in a most gentle manner, pipettes with nearly parallel tip walls were used. They were pulled in two steps from borosilicate capillaries (OD 1.6 mM, wall thickness 0.5 mm, Hilgenberg, Malsfeld, Germany). Since the openings were too small after pulling, the tips were broken with the help of a small, heated glass sphere, and subsequently polished such that an opening of 2-4 μm resulted. Pipette resistances of 60-80 MΩ were obtained. Cells were sucked into the pipette under microscopic control, using infrared illumination from an IR-LED (HLF-40; Hitachi Instr., Inc., San Jose, CA), emitting 40 mW of radiation at 780 nm, a 40× Plan-Neofluor objective (Zeiss, Oberkochen, Germany) and an IR-sensitive CCD camera (125; Bordeaux-Cedex, France). Suction was applied until about one third of the cell was in the pipette and the resistance had increased to 100-150 Ω. This was accomplished with the help of a low pressure application after Baylor et al. (1979).

Photostimulation was achieved through the epifluorescence attachment of the inverted microscope, using the objective as condenser system. A xenon-flashlamp (EG&G Electro-Optics, Salem, MA) produced flashes of 40 μs duration, which were filtered through a broadband interference filter transmitting maximally at 530 nm, the absorption maximum of Chlamydomonas rhodopin (Foster et al., 1984; Uhl and Hegemann, 1990; Beckmann and Hegemann, 1991; Harz and Hegemann, 1991).

Electrical signals were recorded with a holding potential of 0 mV, using an EPC-7 patch clamp amplifier (List, Darmstadt, Germany). Signals were passed through a 3-kHz low-pass Bessel filter and fed into the A/D converter of a TL1 DMA computer interface, used in a 486 IBM-compatible computer. Data acquisition and analysis was performed under pClamp 5.5.1 (Axon Instruments, Foster City, CA). Single current traces were filtered with a digital gaussian filter to 500 Hz.

Autolysin Treatment of Bald Mutants

Bald mutants were cultured in the same way as the CW-2, except that their HSM plates contained no sorbitol. Recording electrical currents from these cells, which possess a cell wall, requires its removal. It was achieved using cell wall-degrading enzyme released by mating gametes (Matsuda et al., 1985) (Jaenicke et al., 1987), kindly provided by Dr. Waffenischmidt (University of Cologne, Germany). Samples of lyophilized enzyme were dissolved in distilled water, bringing the concentration of Ca²⁺ and Mg²⁺ to 100 μM and 1 mM, respectively, and mixed with 2 vol of the cell suspension. Cycloheximide at 5 μg/ml (final concentration) was supplemented to inhibit the synthesis of new cell wall proteins. After incubation for 1 h at 18°C, the mixture contained cells that had shed main components of their cell wall (inam and Smell, 1988; Monk, 1988; Waffenischmidt et al., 1988), and could be sucked into the pipette without complications, and yielded seal resistances comparable to those obtained with the CW-2 mutant.

Results and Discussion

Experimental Strategy

There are two fast, light-dependent calcium currents in Chlamydomonas: a primary calcium inward current in the eyespot region, termed photoreceptor current (P), and a secondary calcium inward current in the flagellar region, termed flagellar current (F). (P) follows the stimulus with virtually no delay, while F follows P with a variable delay of 5–100 ms (data not shown). Both currents are transient. They can be recorded as negative currents when the respective source regions are inside the pipette and as positive currents when the source regions are outside, a configuration which is much more frequently encountered (Fig. 1 a). Mixed constellations, i.e., flagella inside and eyespot outside the pipette (Fig. 1 b) or eyespot inside and flagella outside the pipette (Fig. 1 c), yield current traces with a positive and a negative component. The fact that the time course of both
Figure 1. Light-induced photoreceptor (P) and flagellar (F) currents recorded from single cells of *Chlamydomonas* under different recording configurations (arrows, flash of $\tau/2 = 40 \mu s$, 500 nm, 1.5×10^{10} photons m$^{-2}$). (a) Eyespot and flagella outside the pipette. (b) Eyespot outside and flagella inside the pipette. (c) Eyespot inside and flagella outside the pipette.

P and F is independent of the recording configuration has suggested that the positive currents are capacitative displacement currents, reflecting the release of positive charge from the membrane capacitance as a consequence of the light-induced cell depolarization. Photoreceptor current amplitudes are graded with photon exposure, saturating around 10^{10} photons m$^{-2}$. Flagellar currents, on the other hand, are all-or-none responses which remain unchanged in shape and amplitude, provided the total charge influx through the photoreceptor channels has exceeded a threshold value. Their latency depends on photon exposure and hence the amplification currents, reflecting the release of positive charge from the membrane capacitance as a consequence of the light-induced cell depolarization. The observation that the amplitude of P at saturating light exposure showed only short time fluctuations (less than 20%) around a given mean value, and that the latency of F, which depends on the total amount of charge entering the cell during P, was not altered, indicates that no systematical changes in driving force had occurred in the course of our experiments.

Correlation between Regeneration of Flagella and Recovery of the Flagellar Current

No flagellar currents were recorded immediately after removal of flagella, i.e., within 7 min of amputation. Occasionally observed tiny signals with variable delay were likely to reflect individual channel opening events. From 10–120 min there was a gradual increase in current amplitude (Fig. 2), closely matching flagellar regeneration which occurred in parallel for both flagella. Fig. 3 shows this correlation by comparing the increase in the amplitude of flagellar currents from single cells with the average flagellar length of an identically treated cell population. Flagellar regeneration began without delay at an initial rate of 0.13 μm min$^{-1}$. It gradually declined, accelerated again at \sim60 min, and subsequently leveled off as the flagella approached their original length. The overall rate of this process was similar to what
Figure 2. Recovery of the flagellar current after deflagellation. Single current traces are shown without averaging (arrows, see Fig. 1 legend). (a) "Eyespot- and flagella-out" configuration. (b) "Eyespot-out and flagella-in" configuration. Note that the recording sequence in b, which was measured in the presence of cycloheximide, is much shorter than in a, reflecting the shorter time the cell survived in the pipette.

...others have found when investigating gametes, but significantly slower than observed for vegetative cells (Lefebvre et al., 1978). The transient increase in regeneration rate at ~60 min was observed in both measurements of flagellar length in a population and of current amplitudes from single cells. It suggests that de novo protein synthesis was delayed. We suppose that it is a genuine phenomenon reflecting transient changes in intracellular calcium levels during deflagellation which are known to affect the timing and extent of flagellar regrowth (Chesire and Keller, 1991).

Flagellar Currents from Partially Amputated Cells

The clear correlation between flagellar regeneration and recovery of flagellar current would seem to indicate that the channels are evenly distributed along the length of the flagella. An alternative explanation for the observed results could be, however, that stress-induced regulation processes suppress channel activity (Olesen et al., 1988; Morris and Sigurdson, 1989; Watson, 1990) and that this suppression vanishes in parallel with flagellar regrowth. The following experiment makes this assumption very unlikely.

When cells were exposed to weaker shearing forces than previously used, flagella broke off at various positions (Fig. 4), leading to an inhomogeneous population in which some cells had retained both flagella (a), some had lost one half of each flagellum (b), some had lost only half a flagellum (c), some had lost one but kept the other (d), and some had lost both flagella (see Fig. 3 d). We recorded flagellar currents from the above cell types briefly after amputation treatment and followed their recovery until full regeneration of flagellar length was achieved. Again there was a strong correlation between flagellar length (i.e., the sum of the length of both flagella) and flagellar current amplitude. The ratio between initial current amplitude and final amplitude after complete flagellar regeneration is always the same as the ratio between initial and finally reached flagellar length.

Under conditions where only one flagellum was removed (Fig. 4 d), a peculiar behavior was observed which had been first described by Rosenbaum et al. (1969). Initially the amputated flagellum grew at the expense of the intact one, leading to a concomitant shortening of the formerly long flagellum. When they had reached the same intermediate length, both flagella elongated in parallel to their original length. During the first 25 min the flagellar current remained con-
Figure 4. Relative flagellar current size after partial amputation. The plot shows the ratio between current amplitudes measured immediately after amputation and current amplitudes produced by the same cell after complete regeneration. Initial flagellar length is illustrated in the top.

Figure 5. (a) Time course of the recovery of the flagellar current after amputation of a single flagellum. The plot shows the average taken from two experiments (filled squares) which were finished after 60 min when both flagella had regained their original length and the data points from a third experiment (open circles) which was started when both flagella had reached half of their original length.

(b) Combined flagellar length was calculated from Fig. 5 b. (b) Flagellar shortening and re-elongation after amputation of one of the two flagella in a single Chlamydomonas analyzed from a video film. Closed symbols represent the remaining, open symbols the newly growing flagellum.

Figure 6. (a) Time course of the recovery of the flagellar current after deflagellation and during regeneration in the presence of cycloheximide (5 μg/ml). Flagellar current amplitudes were determined every minute. Data from two separate experiments of different duration are plotted together (• = 35 min; ○ = 110 min). Arrows indicate the end of each experiment and the resulting flagellar length. (b) Effect of cycloheximide (5 μg/ml) on flagellar regeneration in a CW-2 population after the amputation of both flagella. Each data point represents the average taken from 10-15 cells. Error bars denote standard deviation.

stant, reflecting the fact that total flagellar length, i.e., the sum of the length of both flagella, was not altered. The increase in total flagellar length after 25 min was then accompanied by a parallel increase in flagellar current amplitude. It reached its maximum simultaneously with the length of both flagella at ~60 min (Fig. 5). When both flagella were removed in the presence of cycloheximide, an inhibitor of protein-synthesis, flagellar regeneration stopped when each flagellum had reached half of its normal length. Flagellar currents again recovered simultaneously with regeneration, stopping at the same time as flagell-
Figure 7. Light-induced photoreceptor (P) and flagellar (F) currents recorded from a bald-4 and a bald-5 mutant. While the eyespot was outside the pipette in both cases, the location of the flagella could not be determined visually. It was presumably outside in bald-4 and inside in bald-5. Arrow: flash of \(\tau/2 = 40 \mu s, 500 \text{ nm, } 1.2 \times 10^{21} \text{ photons m}^{-2}. \)

Flagellar Currents from Bald-Mutants

Further proof for the localization of calcium channels in the flagellar membrane comes from experiments with bald-mutants. Bald-4 and bald-5 lack flagella as judged from their appearance under the light microscope. Basal bodies and transition sites, however, are intact. In these mutants, treated with autolysin in order to facilitate electrical recordings with the suction pipette, photoreceptor currents of regular size but only very small flagellar currents were observed (Fig. 7). They resembled flagellar currents from deflagellated cells 10 min after amputation, when flagellar growth had produced stubs of 1–2 \(\mu m \). This seems to indicate the existence of small flagellar stubs in bald-mutants, a notion which is further corroborated by electron micrographs showing that all bald-mutants, with the exception of bald-2, actually possess small flagellar stubs of 1–2-\(\mu m \) length (Goodenough, U., personal communication). Possible artifacts, i.e., diminution of flagellar current amplitudes due to the presence of autolysin, were ruled out in control experiments with CW-2, where flagellar currents of normal appearance could be recorded.

Flagellar Currents of Split Polarity

The conclusion of this communication—the voltage-sensitive calcium channels are evenly distributed over the total length of both flagella—is best exemplified in Fig. 8, where a current trace is shown from a very rare electrical configuration: with one flagellum inside and one flagellum outside the pipette the flagellar current splits into two components of equal size but opposite polarity. Both are all-or-none responses with their latency varying inversely with photon exposure. Therefore, they are typical flagellar currents. The fact that the two current components do not occur simultaneously, in which case they would cancel, could be a consequence of the asymmetric measuring configuration. It could also be a real effect, however, exemplifying the evolutionary and functional difference between the two flagella (Kamiya and Hasegawa, 1987).

Concluding Remarks

So far an unequivocal localization of voltage-sensitive calcium channels in ciliary membranes has only been possible for Ctenophores. In Pleurobrachia they are distributed over most of the length for the comb plate cilia (Moss and Tamm, 1987), while in the macrocilia of Beroe they reside exclusively in the basal portion of the ciliary membrane (Tamm, 1988). In Paramecium calcium channels are also exclusively in the ciliary membrane (Dunlap, 1977; Machemer and Ogura, 1979), their exact localization, however, remains to be determined. Our findings are therefore the first demonstration of an even channel distribution in flagella of submicrometer dimensions. The physiological relevance of this channel distribution appears to be clear. Due to the tiny cross section of the unobstructed intraflagellar aqueous space and due to the presumed presence of cytoplasmic calcium buffers, which would prevent rapid spatial spread of calcium transients, the short delay between light stimulus and the onset of the stop response (\(\sim 20 \text{ ms} \)) (Schmidt and Eckert, 1976), which involves an undulation movement of the whole flagellum, could not be accounted for by calcium diffusion from the basal region to the tip of the flagella. In a system of comparable dimensions, the saccular hair cells, it has been demonstrated that a mobile cytoplasmic calcium buffer present in millimolar concentrations can intercept a significant fraction of calcium ions en route to their targets within a few microseconds (Roberts, 1993).

The observed distribution of calcium channels in the flagella could have another physiological implication: it has been suggested that the regulation of flagellar growth depends on intracellular calcium levels (Johnson and Rosenbaum, 1993). A number of calcium channels evenly distributed in and strictly proportional to the length of the flagella could be involved in the signaling network of the cell controlling flagellar length. However, since growth regulation occurs both in the light and in the dark, one needs to postulate that spontaneous as opposed to light-induced channel opening events play a role in this process. Such spontaneous events have actually been observed, and experiments aimed at testing their significance for flagellar length control are currently under way in our laboratory.
The authors wish to express their gratitude to H. Harz for critically reading the manuscript and for many helpful discussions, to C. Nonnengässer and P. Hegemann for support and encouragement, and to S. Waffenschmidt for preparing the autolysin.

This work was supported by a grant of the Deutsche Forschungsgemeinschaft (UH-30/10-1) to R. Uhl, a stipend of the Cusanuswerk to C. Beck, and a Hermann & Lilly Schilling fellowship to R. Uhl.

Received for publication 18 November 1993 and in revised form 4 March 1994.

References

