myoA of *Aspergillus nidulans* Encodes an Essential Myosin I Required for Secretion and Polarized Growth

Carol A. McGoldrick, Carol Gruver, and Gregory S. May

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030

Abstract. We have identified and cloned a novel essential myosin I in *Aspergillus nidulans* called myoA. The 1,249-amino acid predicted polypeptide encoded by myoA is most similar to the amoeboid myosins I. Using affinity-purified antibodies against the unique myosin I carboxyl terminus, we have determined that MYOA is enriched at growing hyphal tips. Disruption of myoA by homologous recombination resulted in a diploid strain heterozygous for the myoA gene disruption. We can recover haploids with an intact myoA gene from these strains, but never haploids that are myoA disrupted. These data indicated that myoA encodes an essential myosin I, and this has allowed us to use a unique approach to studying myosin I function. We have developed conditionally null myoA strains in which myoA expression is regulated by the *alcA* alcohol dehydrogenase promoter. A conditionally lethal strain germinated on inducing medium grows as wild type, displaying polarized growth by apical extension. However, growth of the same myoA mutant strain on repressing medium results in enlarged cells incapable of hyphal extension, and these cells eventually die. Under repressing conditions, this strain also displays reduced levels of secreted acid phosphatase. The mutant phenotype indicates that myoA plays a critical role in polarized growth and secretion.

Myosins are mechanochemical enzymes that bind to and move along actin filaments. All myosins have similar motor or head domains attached to structurally distinct tail domains and were originally classified into two groups, myosins I and myosins II. The best studied myosin II, or conventional myosin, is skeletal muscle myosin. Skeletal muscle myosins form dimers consisting of two globular heads attached to a coiled-coil tail, and they form thick bipolar filaments by ionic interactions between the tails of individual myosin molecules (Davis, 1988). Another example of a myosin II molecule is the nonmuscle myosin involved in contractile ring formation during cytokinesis (Fujiiwa and Pollard, 1976; Mabuchi and Okuno, 1977; De Lozanne and Spudich, 1987; Knecht and Loomis, 1987). The myosins I, or unconventional myosins, originally included all myosins that were monomeric. However, because of the structural diversity of newly identified myosins, as many as eight myosin classes based on heavy chain structure have been described (Cheney et al., 1993; Goodson and Spudich, 1993). It is predicted that even more classes will emerge from this rapidly growing family of motor proteins.

Myosins I were first described in *Acanthamoeba castellanii* (Pollard and Korn, 1973), and they were discovered a second time as the protein that functions as the radial link between the actin cytoskeleton and the plasma membrane in microvilli of intestinal brush-border cells (Collins and Borysenko, 1984). This microvillar myosin is now referred to as brush-border myosin I (BBMI) (Mooseker and Coleman, 1989). Studies of myosin I function have historically focused on BBMI and amoeboid myosins I in *A. castellanii* and *Dictyostelium discoideum* (Pollard and Korn, 1973; Jung and Hammer, 1989). The structural features of the amoeboid myosins I are very similar. The amino-terminal motor domain is very similar to the globular head of conventional myosin that contains the actin-activated ATPase activity and that supports motility in in vitro assays. The tail domain contains three separate regions or tail homology domains (Horowitz and Hammer, 1990). Adjacent to the motor domain is tail homology domain 1 (TH-1), which has a net basic charge. The TH-I domain of myosins I has been shown to bind to acidic phospholipid-containing vesicles and to plasma membranes treated with sodium hydroxide to strip them of peripheral membrane proteins (Adams and Pollard, 1989). The region responsible for membrane binding activity in *A. castellanii* myosin IC has been mapped between amino acids 701 and 888 (Dobberstein and Pollard, 1992). The tail homology domain 2 (TH-2) of amoeboid myosins I is characterized as a region rich in the amino acids

1. Abbreviations used in this paper: BBMI, brush border myosin I; SH3, src homology 3; TH-I, 2, and 3, tail homology domain 1, 2, and 3, respectively.
glycine, proline, and alanine or glutamine (GPA or GPQ domains). Tail homology domain 3 (TH-3) includes an SH3 (src homology 3) domain. This motif was originally described as a conserved, noncatalytic region in cytoplasmic tyrosine kinases such as p60^{src}, and it is found in many proteins involved with signal transduction including phospholipase C and the Grb2 adapter protein (Mayer et al., 1993; Lowenstein et al., 1992). This domain is also found in proteins associated with membranes and actin cytoskeleton, and it includes the yeast actin-binding protein ABP1 and spectrin (Drubin et al., 1990; Wasenius et al., 1988). A chymotryptic fragment of <i>A. castellani</i> myosin IA containing the GPA and SH3 domains has been shown to bind tightly to F-actin in an ATP-insensitive manner (Lynch et al., 1986).

However, more recent analysis with glutathione-S-transferase fusion proteins containing the TH-2 and TH-3 domains of <i>D. discoideum</i> myosin IB and IC has shown that the TH-2 domain alone is sufficient for F-actin binding in a nucleotide-insensitive fashion (Rosenfeld and Rener, 1994; Jung and Hammer, 1994). This actin-binding site together with the nucleotide-sensitive site in the head enables myosin I to cross-link actin filaments (Fujisaki et al., 1985). Other myosins I that are lower in molecular weight than the originally reported myosins I have the basic membrane-binding domain, but they lack the GPA and SH3 domains. Examples of this class are the <i>myoA</i> and <i>myoE</i> gene products of <i>D. discoideum</i> and BBM1 (Titus et al., 1989; Urrutia et al., 1993; Garcia et al., 1989). Thus, the differences in tail structure suggest distinct roles in cell behavior.

The molecular genetics available in <i>D. discoideum</i> has been used to generate null mutants by gene disruption and to determine the cellular function of myosins (Jung and Hammer, 1990; Titus et al., 1993; Jung et al., 1993). Disruption of myosin I genes by homologous recombination has resulted in cells with normal morphology and terminal development, but these cells display subtle defects in motility. MyoA⁻ and MyoB⁻ mutants of <i>D. discoideum</i> display a reduced average instantaneous velocity compared to wild-type cells. An increase in the formation of lateral pseudopodia and turning is seen, but the size of the lateral pseudopod is diminished. A reduced efficiency of chemotactic aggregation is evident by delayed cytoplasmic streaming, and they have a decreased rate of phagocytosis (Titus et al., 1993; Urrutia et al., 1993; Hammer, 1990). Preparation of genomic DNA for Southern analysis indicates that myosin IC plays an essential role in contractile vacuole function in vivo (Dobrstein et al., 1993).

In this report, we described a new member of the unconventional myosin I family, the <i>myoA</i> gene of <i>Aspergillus nidulans</i>. The <i>myoA</i> gene product has sequence homology to other myosins I, particularly the amoeboid myosins I, but is most similar to <i>Myo3</i> of <i>S. cerevisiae</i>. We show by gene disruption that <i>myoA</i> is essential for cellular viability. In addition, we have constructed conditionally null <i>myoA</i> strains to assay the specific role played by this essential gene. By repressing <i>myoA</i> expression in these strains, we demonstrate that <i>myoA</i> is required for polarized growth and secretion. This is the first report using a genetic approach to study myosin I function that has led to the description of an essential myosin I isoform.

Materials and Methods

Aspergillus Strains, Culture Conditions, and Transformation

<i>A. nidulans</i> strains used in this study were GR5: pyrG89; wA3; pyrM4 and R153:wA3: pyrM4. Strains were grown on complete medium supplemented with 5 mM uridine and 10 mM uracil (Käfer, 1977; Pontecorvo, 1953). For some experiments, the fungus was grown on 0.5% yeast extract, 1% glucose. Transformation of <i>A. nidulans</i> was performed as described previously (May, 1989).

Manipulation and Cloning of DNA

A 698-bp fragment of a presumptive <i>A. nidulans</i> myosin I gene was generated by PCR from an <i>A. nidulans</i> cDNA library. Two degenerate oligonucleotides were designed for use in PCR: (a) GAGAGAATTCGA(TC)AT(CT)-TACGG(TC)TTCGA, which encodes the sequence DIYGFEI and contains an engineered EcoRI restriction site at its 5' end; and (b) GAGAGATC-CACGTT(CT)TC(GA)AG(GA)AG(GA)CC, which encodes the complementary strand for the sequence GLLENV and contains a BamHI site at its 5' end. The sequences targeted by these primers are underlined on the <i>myoA</i> sequence and correspond to amino acids 423-429 for primer a and 644-649 for primer b (see Fig. 2). The restriction endonuclease sites were included to facilitate cloning of the PCR product. The amplified band was digested with EcoRI and BamHI, and it was subcloned into the plasmid Bluescript. Several independent clones were sequenced and found to contain identical nucleotide sequences. The deduced amino acid sequence was that which was expected for a myosin I protein.

The PCR-derived DNA fragment was subsequently used to screen an <i>A. nidulans</i> cDNA library in Agt0 (Osmani et al., 1988). Five positive plaques were identified and purified. The inserts from each of these clones were subcloned into the plasmid Bluescript. Sequencing and restriction mapping of the clones provide that they were all derived from the same gene. The largest clone was fully sequenced and used to obtain DNA fragments used for gene disruption and antibody production (Fig. 1). The plasmid <i>A. nidulans</i> containing the Nhel to Kpnl internal fragment of <i>myoA</i> was constructed in the plasmid pBG3, and it was used to disrupt <i>myoA</i> (Waring et al., 1989). Using the EcoRV fragment of the <i>myoA</i> cDNA head sequence as a probe, a complete genomic <i>myoA</i> clone was obtained by screening a <i>A. nidulans</i> genomic library (Holt and May, 1993). A Smnl genomic clone fragment of <i>myoA</i> spanning 21 basepairs of 5' noncoding sequence and the first 363 amino acids of <i>myoA</i> protein sequence was cloned downstream of the alcA alcohol dehydrogenase promoter into the vector pAL3 (Waring et al., 1989). This plasmid was used to transform GR5 to uridine prototrophy.

Production and Purification of Antibodies

A Pnu1 to Xba1 fragment from the cDNA that encodes a portion of the car-
Cell Fractionation Assay

R153 was grown at 1×10^7 spores/ml in 50 ml of YG media for 16 h at 37°C. The mycelia were harvested by filtration through Miracloth, pressed dry, and weighed. The mycelia were then used directly or were protoplasted before homogenization (Yelton et al., 1984). 250 mg of mycelia was homogenized in 1 ml of extraction buffer, 25 mM Tris-HCl, pH 7.5, 0.5 M sucrose, and 0.1 M EDTA with protease inhibitors. The whole-cell extract was spun at 1,000 g for 5 min. The supernatant, S1, was spun at 14,000 g for 15 min. The supernatant from this fraction, S2, was spun at 100,000 g for 1 h. The P2 and P3 pellets were resuspended in 100 µl of sample buffer. The 100,000 g supernatant, S3, was precipitated by the addition of trichloroacetic acid to 10%; the precipitate was pelleted and resuspended in 100 µl sample buffer. 75 µl of each sample was loaded on a 7.5% PAGE gel and processed as described above for immunodetection.

Growth Studies and Microscopy

Colony growth for the radial growth assay was initiated by plating conidiospores at a density of approximately five colony-forming units per plate onto triplicate plates. This ensures that each colony is formed by one or a few spores. Each point represents the average diameter of all colonies, except for strain CL3. The point on glucose medium represents a single colony that displayed growth at 96 h (see Fig. 8 a). This colony was abnormal and probably arose from a genomic rearrangement that restored myoA function.

Microscopic analysis was done by germinating R153 and CL3 conidia (2 x 10^6/ml) at 37°C in YM media for the indicated times. The conidia settled onto coverslips present in the culture dishes. After the coverslips were rinsed in distilled water, the germings were fixed in 3% glutaraldehyde in 10 mM potassium phosphate, pH 6.8, viewed by phase microscopy, and photographed.

For immunofluorescence, A. nidulans strain R153 was grown on glass coverslips, fixed, and processed as described (Denison et al., 1993), except that an extra permeabilization step in methanol at -20°C for 10 min was added. Affinity-purified anti-MYOA serum was used at a 1:20 dilution in PBS (2.7 mM KCl, 1.5 mM KH2PO4, 0.137 M NaCl, and Na2HPO4, pH 7.2). FITC-conjugated goat anti-rabbit IgG (Sigma Immunochemicals, St. Louis, MO) was used at a dilution of 1:100 to localize the rabbit antibodies. Staining for actin was performed as described (Harris et al., 1994).

Secreted Acid Phosphatase Assay

Secreted acid phosphatase activity was measured as described previously (Caddick and Arst, 1976) using 100 µl spent culture medium in 1 ml of 6 mM p-nitrophenol phosphate, 100 mM Pipes, and 2 mM EDTA, pH 6.0, at 37°C. Specific activity is expressed as nanomoles of p-nitrophenol liberated per milligram of dry weight of mycelia per minute at 37°C.

Materials. Restriction endonucleases and DNA-modifying enzymes were from New England Biolabs Inc. (Beverly, MA), Promega Biotech (Madison, WI), or Boehringer Mannheim Biochemicals (Indianapolis, IN), and they were used according to the manufacturer's instructions. Other reagents were from Sigma or Fisher Scientific.

Results

Cloning and Sequencing the myoA Heavy Chain cDNA

Using PCR, we obtained a specific hybridization probe for an A. nidulans myosin I and isolated cDNA and genomic clones. Sequence and restriction mapping indicated that all the cDNA clones isolated were derived from a single gene. The largest cDNA clone was completely sequenced, and the amino acid sequence of the myosin was deduced. The predicted amino acid sequence indicated that we had cloned a myosin I cDNA (Fig. 2). The structure of the predicted MYOA protein is most similar to that of MYO3 from S. cerevisiae, and it is similar to that of other amoeboid myosins I. The head domain of ~700 amino acids is highly homologous to the head region of all myosins, and the ~550-amino acid carboxyl terminal domain shows limited homology to other myosins I. Immediately after the head domain is a re-
Figure 2. The nucleotide sequence and deduced amino acid sequence of the myo4 heavy chain gene. Nucleotides and amino acids are numbered at the left of each figure. The underlined nucleotide sequences are those that correspond to the degenerate oligonucleotide primers used for PCR amplification. These sequence data are available from GenBank under accession No. U12427.

Figure 3. Dot matrix comparison of MYOA with S. cerevisiae MYO3 and with A. castellanii myosin IB and myosin IC. The heavy chain amino acid sequences were compared using the mutational index, which counts exact matches and conservative substitutions (as defined by the PAM 250 matrix). The window size was 10 residues, and the minimum acceptable score was 8. The positions of the myosin head and tail regions are shown above each matrix.
residues terminating with a tryptophan residue. The MYO3 gene cloned from *S. cerevisiae* also terminates with this unusual motif (Goodson and Spudich, 1995).

The MYOA heavy chain sequence shows the greatest overall similarity to the heavy chain sequence of the MYO3 gene from *S. cerevisiae*, as seen by dot matrix comparison (Fig. 3.3). A comparison of the derived MYOA heavy chain sequence to two amoeboid myosins I heavy chain sequences from *A. castellanii*, myosin IB and myosin IC, illustrates the high degree of sequence similarity in the head domain (Fig. 3. B and C). There is limited sequences similarity between the MYOA heavy chain sequence and either of the *A. castellanii* myosin I heavy chain sequences in the tail domain, with the exception of the SH3 domain. Another interesting feature of MYOA is the sequence that extends beyond the SH3 domain. This region differs from the GPA/GPQ domain described in other myosins, but it retains proline and alanine amino acids. In fact, the proline- and alanine-rich sequences resemble the sequence motifs of 3BP-1, which have been shown to bind the SH3 domain of the *Abl* tyrosine kinase protein (Cicchetti et al., 1992).

MYOA Is Present in Dormant Conidiospores

Using bacterially expressed recombinant protein, we have raised antibodies against the COOH-terminal portion of MYOA. The affinity-purified antisera specifically recognized a protein of the predicted molecular mass for MYOA, 138 kD, on an immunoblot of *A. nidulans*-soluble protein extract (Fig. 4 A, lane 2). Affinity-purified antisera precubated with the recombinant protein against which it was raised failed to detect the MYOA protein band (Fig. 4 A, lane 1). To learn more about MYOA regulation during spore germination, an immunoblot of soluble protein extract from conidiospores and growing germings was probed with the affinity-purified anti-MYOA antisera. MYOA was detectable in germings and, surprisingly, in dormant conidiospores (Fig. 4 B). The presence of MYOA in dormant spores suggest a role for this myosin in the early events of conidiospore germination. As we describe in a later section, this data is consistent with our studies of a conditionally lethal myoA mutant, which demonstrate that MYOA is required to establish polarized growth in germings. Curiously, the migration of MYOA from conidiospores was slower than that observed from germings. It is possible that the change in electrophoretic mobility was the result of a change in the phosphorylation state of MYOA in germings versus conidiospores. Since other myosins I have been shown to be regulated by phosphorylation, this will be investigated for MYOA.

Immunolocalization of MYOA

To identify the cellular location of MYOA, germings were stained with the affinity-purified anti-MYOA antisera. Actin localization was also analyzed in these germings by staining with an antiactin monoclonal antibody. Indirect immunofluorescence of actin and MYOA (Fig. 5) indicate that actin is most highly concentrated at the growing tip of hyphae with punctate staining throughout the cytoplasm. MYOA also displays punctate staining at the tip (Fig. 5 B) and in the cytoplasm. The distribution of MYOA is similar to that observed for other myosin I isoforms, as antibodies raised against bovine adrenal myosin I stain highly motile, actin-rich cortical regions such as filopodia, lamellododia, and ruffles in cultured cells (Wagner et al., 1992). Myosins I have been localized to the plasma membrane of locomoting *D. discoideum* and *A. castellanii* cells, particularly at the leading edge of advancing pseudopodia and in the phagocytic cups (Fukui et al., 1989; Baines et al., 1992). In *A. castellanii*, myosin IA is found almost exclusively in the cytoplasm.
myoA Encodes an Essential Myosin I

Gene disruption experiments have been used to identify genes essential for cellular viability in several organisms. We have disrupted the myoA gene in a diploid strain of A. nidulans by homologous recombination, and we confirmed it by genomic Southern analysis. We were unable to recover prototrophic haploids that would also be lacking myoA function (data not shown). This result suggested that myoA is essential in A. nidulans, or that strains lacking myoA function have a significant growth disadvantage. Using the following strategy, we have shown that myoA is an essential gene.

Because disrupted diploid strains are heterozygous for myoA, they cannot be used to study the phenotypic consequences of the absence of myoA function. An alternative strategy in which expression of the myoA gene could be regulated was used to address the question of MYOA function in A. nidulans. A SmaI to SpeI genomic clone fragment of myoA spanning 21 basepairs of 5' noncoding sequence and the first 363 amino acids of myoA protein sequence was cloned downstream of the alcA alcohol dehydrogenase promoter in the vector pAL3 (Waring et al., 1989). Integration of this plasmid by homologous recombination at the myoA locus resulted in strains that have the myoA gene situated immediately 3' to the alcA promoter (Fig. 6 A). These conditional myoA null mutant strains are dependent on the activity of the alcA promoter for transcription of myoA. Expression from the alcA promoter is regulated by the carbon source present in the medium. Primary transformants were selected for growth in minimal medium containing glycerol as the sole carbon source. Glycerol allows for a level of transcription from the alcA promoter that is intermediate between that seen on ethanol, which induces, or glucose-containing media, which represses alcA transcription (Fig. 6 B). This was done because over- or underexpression of MYOA might be inhibitory for growth. Transformants were then tested for growth on minimal media containing these different carbon sources. Strains that did not grow on glucose, but that grew on ethanol- or glycerol-containing media were selected and analyzed by Southern (Fig. 6 C). All of the strains displayed the predicted genotype expected for conditional disruption of myoA. Two lanes on the Southern displayed multiple bands probably because of incomplete digestion by the restriction endonuclease.

The amount of MYOA present in soluble extracts of the alcA-myoA mutant strain, CL3 (Fig. 6 c, lane 10), grown in minimal media containing ethanol, glycerol, or glucose was assessed by Western analysis. MYOA was present when CL3 is grown on media with ethanol or glycerol present, but little or no MYOA was detected after growth in minimal media with glucose or in rich glucose media (Fig. 7, YG). When the alcA promoter was most strongly repressed in YG medium, CL3 contained little or no MYOA protein after incubation in this medium. MYOA was present in all of the extracts tested for the wild-type strain, R153.

Radial growth analysis provides a sensitive assay for deter-
mining differences in growth rates of strains under various culture conditions. The radial growth of the alcA-myoA mutant strain, CL3, was compared to a wild-type strain, R153, on minimal media with ethanol, glycerol, or glucose as carbon sources (Fig. 8 a). Each measurement was the average of ~15 colonies for each strain analyzed, the exception being that only one CL3 colony grew on the glucose containing media and it was included in the figure. This colony also displayed sectoring, which indicates that genomic rearrangements had occurred. The CL3 strain grew just as well as R153 on ethanol- or glycerol-containing medium, and under these conditions, myoA was expressed. On minimal medium with glucose or in rich glucose medium (0.5% yeast extract, 1% glucose), myoA was transcriptionally repressed, and CL3 did not grow except for the aberrant colony previously mentioned. R153 had the fastest growth rate on this medium since glucose is a preferred carbon source. From this assay, it was clear that myoA was required for growth.

To examine the phenotype of an alcA-myoA mutant strain, CL3 conidia were germinated in YG medium, as was the control strain R153. After 11 h of growth in rich glucose medium R153, displayed normal growth (Fig. 8 b, panel A). The alcA-myoA strain exhibited no hyphal growth; instead, the conidiospores had swollen considerably and contained large vacuoles (Fig. 8 b, B). These germlings were unable to establish polarized hyphal growth, but they contained multiple nuclei and displayed a normal nuclear division cycle (data not shown). Extended incubation of CL3 did not result in a noticeable change in cellular morphology, and at the later time points of 17 and 34 h, the germlings became phase dark, suggesting that they were dead (Fig. 8 b, C and D).

Attempts to rescue the alcA-myoA mutant strain by plating on high osmolarity medium containing 0.6M KCl did not restore growth; instead, microscopic examination determined that many of the germlings had lysed (data not shown). Similar osmotic sensitivity has been observed in S. cerevisiae actin mutants and actin-binding protein mutants (Shortle, D., communication cited in Novick and Botstein, 1985; Chowdhury et al., 1992). More recently, it has been shown that when A. castellanii cells are loaded with antibodies that inhibited myosin IC function in vitro, the cells lysed when they were subjected to osmotic shock (Doberstein et al., 1993).

A. castellanii myosin IC has been previously localized to the contractile vacuole (Baines and Korn, 1990), and these results indicate an important role for the myosin I in the function of this organelle.

Acid Phosphatase Secretion Is Reduced in the CL3 Mutant Strain

Acid phosphatase secretion has been used as a marker for secretory mutant identification in S. cerevisiae (Novick et al., 1980). Furthermore, it has been shown that newly synthesized acid phosphatase secretion is polarized to the bud (Field and Schekman, 1980). In filamentous fungi, secretion is also polarized, and acid phosphatase has been localized to apical vesicles (Hill and Mullins, 1980). There are two possible explanations for the CL3 strain to not display polarized growth under repressing conditions does. One is that myoA is involved in the transport of essential components to the growing hyphal tip. This may involve transport through the cytoplasm to the tip, or MYOA may function in apical targeting of the vesicles. The other explanation is that MYOA is involved in the organization of the actin cytoskeleton at the growing tip of the cell. To test whether protein secretion is affected in the CL3 mutant strain, we compared secreted acid phosphatase levels with those of a wild-type strain (Table I). Acid phosphatase activity was measured in spent medium for cultures that were grown overnight in minimal media with the appropriate carbon source. When the mutant strain CL3 is grown in ethanol-containing medium, the level of secreted acid phosphatase is similar to that secreted by a wild-type strain (data not shown). In glucose medium, the levels of secreted acid phosphatase in the CL3 mutant strain are threefold lower than those in the wild-type strain, and they are similar to those seen in an acid phosphatase mutant pacC14. The impaired enzyme secretion in the mutant suggests that MYOA is involved in protein secretion, where it may act as a motor for vesicle transport.

Discussion

We have cloned a new unconventional myosin, myoA, from A. nidulans. The sequence of this myosin predicts it is a member of the amoeboid myosin I class and it is most similar to MY03 from S. cerevisiae. The head domain closely resembles the head regions of other myosin I; however, the tail portion of MYOA has significant differences. The divergence of the tail from other myosin I sequences is characteristic of this class of myosins.

Disruption of myosins I in any system to date has indicated that they are not essential for growth or viability. Most of

Table I. Secretion of Acid Phosphatase by Wild-type and alcA-myoA Mutant A. nidulans

<table>
<thead>
<tr>
<th>Strain</th>
<th>Acid phosphatase activity*</th>
<th>Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>R153 Wild type</td>
<td>58 ± 14</td>
<td></td>
</tr>
<tr>
<td>alcA-myoA</td>
<td>pyrG89</td>
<td>19 ± 16</td>
</tr>
<tr>
<td>pacC14</td>
<td>choA1, yA2</td>
<td>19 ± 9</td>
</tr>
</tbody>
</table>

*Secreted acid phosphatase activity is expressed in nmoles p-nitrophenol liberated per milligram of dry mycelia per minute at 37°C. All cultures were grown in minimal medium with glucose at 37°C. The values are the mean ± SD for three cultures assayed on different days.
these studies have been carried out in *D. discoideum* using homologous recombination to disrupt the myosin I gene. Disruption of unconventional myosins has resulted in cells with normal morphology and terminal development with only subtle defects (Jung and Hammer, 1990; Titus et al., 1993; Jung et al., 1993). *D. discoideum* strains with null MyoA− and MyoB− mutant genes display a reduced average instantaneous velocity relative to wild-type cells. They also exhibit an increase in the formation of lateral pseudopodia, and they turn more frequently, but the size of the lateral pseu-

Figure 8. (a) Colony growth rates of a wild-type *A. nida-
ulus* strain, R153, and the *alcA-myoA* strain, CL3, on minimal medium containing either ethanol, glucose, or glycerol as sole carbon source. (b) Cellular morphology of wild-type *A. nidulans* (A) and the CL3 mutant (B–D) strains grown on rich medium for 11 (A and B), 17.5 (C) or 34 (D) h. Bar in D, 10 μm.
dopodia is diminished. A reduced efficiency of chemotactic aggregation is evidenced by delayed cytoplasmic streaming, and these strains have a decreased rate of phagocytosis (Titus et al., 1993; Jung and Hammer, 1990). Cells null for the MyoD gene of D. discoideum show no obvious phenotypic defects (Jung et al., 1993). However, the first indication of the importance of myosins I has come from the discovery that in A. castellani, antibodies directed against myosin IC interfere with the function of the contractile vacuole in vivo, leading to overfilling of this organelle and cell lysis (Doberstein et al., 1993). This observation suggests an essential role for myosin IC in generation of the force required for contraction of the vacuole or in the transfer of water to the vacuole during refilling.

In this paper, we provide the first genetic evidence that a myosin I isoform performs an essential function. Gene disruption experiments in A. nidulans indicated the inability to maintain haploids with a disrupted myoA gene. The suitability of using A. nidulans for myosin I functional analysis is made evident by the identification of conditional myoA null mutant strains that allow regulation of myoA transcription. The result of repressing myoA transcription in these strains provide significant insight into the role played by myoA in A. nidulans. MYOA is required for hyphal tip emergence from germinating conidia. Interestingly, MYOA is found in the dormant spore, further suggesting it is required during the earliest events of germination. Reciprocal shift experiments in which the alcA-myoA mutant strains after 4 h are switched from inducing to repressing media show that many of these strains can germinate and grow relatively normally. If the strains are grown overnight in repressing medium and then shifted to inducing medium, many of the germings never extend germ tubes, and those that do often appear abnormal (data not shown). These data further indicate that MYOA is required for early events in polarized growth. There are two possible explanations for the mutant phenotype. One is that myoA functions to transport cellular and membrane components, cell wall precursors, and secreted enzymes required for growth along actin filaments, or that MYOA may be involved in attachment or fusion of transport vesicles at a specialized site on the plasma membrane. Alternatively, myoA could be involved in organizing the cortical actin cytoskeleton that leads to the formation of a polarized germing. MYOA is mainly localized at the growing tip of wild-type cells, although punctate staining is also seen throughout the cytoplasm. This type of distribution has also been observed for other myosin I isoforms. In Acanthamoeba, myosin IA is predominantly associated with small vesicles in the cytoplasm and with the cortex beneath phagocytic cups (Yonemura and Pollard, 1992; Baines et al., 1992). Acanthamoeba myosin IB and IC are associated with the plasma membrane and large vacuole membranes, but myosin IB alone is concentrated at phagocytic membranes, and myosin IC is the sole isofrom associated with the contractile vacuole (Baines et al., 1992). In addition, myosins I are localized at the plasma membrane of locomoting Dictyostelium cells, particularly at the leading edge of advancing pseudopodia and in the phagocytic cups (Fukui et al., 1989). Cell fractionation experiments indicate that MYOA is mainly associated with the large particulate fraction, and that it is presumably associated with the plasma membrane. These data and the immunofluorescence localization of MYOA would imply that myoA functions at the plasma membrane of the growing hyphal tip. The alcA-myoA mutant strains display reduced acid phosphatase secretion. Acid phosphatase is used as a marker enzyme in general secretion and so these results imply a role for myosins in vesicle transport of essential components to the growing tip rather than in actin cytoskeleton organization. The cell fractionation experiments do not accurately address MYOA association with vesicles since secretory vesicles are usually present in low abundance in wild-type cells since secretion is rapid and constitutive.

In those systems examined thus far, myosins I are coded for by an apparently functionally redundant multigene family. It was therefore a surprise when we determined that myoA was an essential gene in A. nidulans. This suggested that the myosin I gene family may not be as complex in A. nidulans. Using low stringency hybridization to a genomic Southern for A. nidulans and S. cerevisiae, we detected fewer bands in A. nidulans using a probe from the conserved head domain (data not shown). Using the same probe to screen a genomic library in λ phage at low stringency, we have been unable to clone other myosin genes from A. nidulans. These results suggest there are fewer myosin genes in A. nidulans than found in other organisms. However, our inability to detect additional myosin sequences does not prove that there are no additional myosin genes in A. nidulans.

The maintenance of cell wall integrity is particularly important at the tip of hyphal cells. Vesicles are rapidly transported to the growing tip, where they fuse with the membrane. Disruption of the composition of the membrane at the apical surface, e.g., choline deficiency, leads to cessation of polarized growth and multiple branching (Markham et al., 1993). In addition, the osmotic pressure must be maintained so that the cells retain their shape. The alcA-myoA mutants are osmotically sensitive, and secretion is much reduced. In addition, there is inappropriate hyphal branching if partial function of myoA is allowed by growth in minimal medium that contains glucose. This may indicate that in these mutants, the cell wall integrity is affected by the decreased transport of wall components to the tip. The evidence in this paper indicates a specific role for MYOA in secretion. However, it is not known whether MYOA is involved in both transport and secretion, or if it is acting as a receptor for vesicles at the apical membrane. Electron microscopic examination of the conditional lethal strains will address these questions and will provide further insight into the essential role of MYOA in polarized growth and secretion.

The authors thank Christopher Cabral for isolating the genomic myoA clone used in these experiments, Walter Macchioni, Jr., for his help in the phosphatase secretion assays, and Dr. Antonio Rossi for supplying the pacCl4 strain. We would also like to thank Dr. Anthony R. Means for his support and encouragement during the early parts of this project. This work was supported in part by a National Institutes of Health grant to G. S. May.

Received for publication 25 October 1994 and in revised form 2 December 1994.

References

Baines, I. C., and E. D. Korn. 1990. Localization of myosin IC and myosin...

Urratia, R. A., G. Jung, and J. A. Hammer III. 1993. The Dictyostelium myosin IIE heavy chain encodes a truncated isoform that lacks sequences corre...

