CEP3 Encodes a Centromere Protein of Saccharomyces cerevisiae

Alexander V. Strunnikov, Jeffrey Kingsbury, and Douglas Koshland
Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210

Abstract. We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acen- tric" minichromosomes. "Synthetic acentic" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).

Chromosome segregation in mitosis requires the presence of a specialized chromosomal structure that facilitates binding of chromosomes to the microtubules (mt) of the mitotic spindle. Functionally, this structure could be defined as a linker between DNA and microtubules, and is known as the centromere, or kinetochore (used interchangeably here). Structural organization of centromeres varies dramatically among evolutionary remote species and can be extremely complex (Brinkley et al., 1992; Grady et al., 1992). This complexity makes the structure-function analysis of a centromere a very difficult challenge. Fortunately, the centromere of the budding yeast, Saccharomyces cerevisiae, (Clarke and Carbon, 1980) provides an excellent model for studying centromere organization and activity. The centromere DNA (CenDNA) of S. cerevisiae is less than 150 bp in length (Bloom and Carbon, 1982), drastically smaller than CenDNA of other well studied eukaryotes (Pluta et al., 1990). The CenDNA in yeast thus provides a place for binding of only limited number of protein molecules. Also, only a single microtubule is attached to each kinetochore in the cells of budding yeast (Peterson and Ris, 1976). These facts outline the unique status of S. cerevisiae centromere in the list of model segregation loci.

Upon the identification of the centromere locus of yeast chromosomes (Clarke and Carbon, 1980), the efforts of several groups were focused on the identification of proteins associated with centromere DNA in vivo, in conjunction with the dissection of structural properties of CenDNA itself. It has been suggested that yeast CenDNA can be subdivided into three distinct structural elements (recently reviewed in Hegemann and Pleig, 1993). The first, CDEI is associated with the Cpi/Cbf3p/Cpflp protein (Bram and Kornberg, 1987; Baker et al., 1989; Cai and Davis, 1990; Mellor et al., 1990). Both CDEI and CPI are dispensable for centromere function under the standard laboratory conditions. The second element, CDEII, is an A- and T-rich region protected from nuclease digestion and/or modification in vivo (Bloom et al., 1984; Densmore et al., 1991). The CDEII element is required for proper centromere function, however there is no data, so far, indicating that it directly binds to a specific polypeptide. Finally, the CDEIII element is absolutely essential for centromere assembly and activity, both in vivo and in vitro (Hegemann et al., 1988; Lechner and Carbon, 1991; McGrew et al., 1986; Panzeri et al., 1985). The multisubunit CDEIII-binding complex Cbf3 has been purified and partially characterized (Lechner and Carbon, 1991). The Cbf3 complex has three major components: p58, p64, and p110. As these subunits have not been purified individually, the primary biochemical activity of each of them is un-
known. The genes encoding p58 (CTFI3) (Doheny et al., 1993) and p110 (NDC10/CBF2/CTFI4) (Doheny et al., 1993; Goh and Kilmartin, 1993; Jiang et al., 1993a) have recently been characterized. The p58 and p110 proteins (henceforth, referred to as Ctf13p and Ndc10p, respectively) are indispensable for viability of yeast cell. The cells of the temperature-sensitive (ts) ndc10-1 mutant do not exhibit cell cycle arrest at nonpermissive temperature, instead they undergo an abortive mitosis, leaving most of chromosomal DNA unsegregated but associated with an asymmetric spindle (Goh and Kilmartin, 1993). In contrast, the only known ts allele of ctf13 (Doheny et al., 1993) causes cells to arrest at nonpermissive temperature in G2-M with an uninduced nucleus and a short mitotic spindle.

Clearly, the identification of additional protein components of yeast kinetochore is necessary to understand its molecular structure and function. We expect such kinetochore proteins to have several characteristic features exemplified by Cpi, Ctf13p and Ndc10p. First, they should be physically associated either directly or indirectly with CenDNA and/or the spindle microtubules. Second, cells deprived of a kinetochore protein should show some cytological defects consistent with the inability to segregate chromosomes properly. Third, the *trans*-mutations in the genes encoding centromere components should show genetic interaction with *cis*-CenDNA mutations (cen). These features provide at least three criteria to recognize a particular protein as a kinetochore component. Some other proteins satisfy at least one of these criteria and so, are the potential candidates for kinetochore components: p64 (Lechner and Carbon, 1991), Mkl (Shero and Hieter, 1991), Cse1 and Cse2 (Xiao et al., 1993), Cbf5 (Jiang et al., 1993b), Top2 (Jiang et al., 1993b), Kar3 (Middleton and Carbon, 1994), and Mif2 (Brown et al., 1993). However, the DNA binding proteins essential for assembly of functional kinetochore remain unidentified. Particularly, proteins which make direct contacts with CDEIII are important, as CDEIII is absolutely required for centromere function. Based on our belief that the yeast centromere is a complex multisubunit structure, with many structural components yet to be found, we have designed a genetic screen aimed directly at identifying proteins involved in the formation of yeast centromeres.

Materials and Methods

Strains and Genetic Techniques

S. cerevisiae strains (S288C background) are listed in Table I. Strain YPH102 was used for mutagenesis, YPH499 was used for backcrosses of centromere mutants (*cep*). Strain S42 (Doheny et al., 1993) was used as a tester for ndc10 alleleism. Media, incubation conditions, and strain manipulations were according to published protocols (Sherman et al., 1986; Echeversia coli strains DIF5a (BRL), TOP10 (Invitrogen, San Diego, CA) and SCS110 (Stratagene, La Jolla, CA) were used for plasmid propagation. Standard methods of yeast genetics were done as described (Guthrie and Fink, 1991; Sherman et al., 1986). Mitotic stability of plasmids, defined as the fraction of cells in a culture that retain the plasmid when the cells are grown under selective conditions, was estimated as described previously (Strunnikov et al., 1993). As this parameter correlates well with the efficiency of plasmid transmission per cell division (Hieter et al., 1985a; Koslund et al., 1985), it was used as a routine estimate for the efficiency of minichromosome transmission. The disruption allele (*cep3-Δ*) of *cep3* was constructed by transforming the AS260 diploid strain with pAS450 (see below) digested with Eagl and XbaI, giving AS270. Disruption of one copy of *CEP3* gene with HIS3 marker was confirmed by Southern blot hybridization. After sporulation, segregation of two viable (HIS3⁺) to two inviable (HIS-⁺) spores was observed in every tetrad. The HIS3⁺ spores were recovered only after transformation of AS270 with pAS452 prior to tetrad analysis. Haploid His3⁺ strains (*cep3-Δ") always carried the pAS452 (CEP3) plasmid.

Nomenclature

Standard nomenclature (Jones et al., 1992) for yeast genes and proteins was used. As most of yeast centromere factors and corresponding genes are known under redundant names (CP, Cep, Ctf, Ctf, Ndc) we chose the existing "Cep" acronym (Baker and Madison, 1990) for the genes isolated in our screen. Centromere mutations where designated using the locus name, CDE number, and particular mutation name, e.g., *cenb-III(X*) . The CDEIII mutations used are shown in Fig. 1B.

The Screening Procedure for Isolation of cep Mutants

A schematic view of the selection procedure is given in Fig. 1. The first screening included monitoring of plasmids with different reporter CenDNA to identify those suitable for large scale mutagenesis. Strain YPH102 was transformed with corresponding plasmid containing *leu2-d* gene and a CenDNA of interest. The cultures were mutagenized with EMS (50-90% viability). Cells where plated to form single colonies in the absence of selection for leucine prototrophy. The plates were then replicated onto media lacking leucine and incubated for 48 h at 23°C. The frequency of *Leu⁺* colonies was determined for each reporter CenDNA tested, and the corresponding colonies were picked from master plates. The *trans*-mutations were distinguished from other mutant classes via retransformation with the same minichromosome. The plasmid pAS97 (see below), which exhibited the highest rate of induced *trans*-mutations and, at the same time, the lowest rate of spontaneous *Leu⁺* formation with the same minichromosome. Only mutants reproducibly showing *Leu⁺* phenotype and temperature sensitivity where chosen for further analysis. All mutant alleles were back cross at least twice at twofold, to demonstrate that the generated mutations are single mutations of nuclear origin, and that temperature sensitivity cosegregates in meiosis with the accumulation of pAS97.

Plasmid Construction

Yeast-E. coli shuttle vectors, used for cloning purposes were pRS vectors (Christianson et al., 1992; Sikorski and Hieter, 1989). P7Blue (Novagen, Inc., Madison, WI) was used as a cloning vector for PCR-generated fragments.

Plasmid pAS93, the backbone of most of the minichromosomes used in mutagenesis experiments, was constructed from FAT-RS303 (*leu2-d, HIS3, 2µ-ORI, Amp*) (contribution of D. Gottschling, University of Chicago, Chicago, IL). The *HIS3* marker was removed by digestion with BamHI and religation; the *URA3* gene (*Smal-HindIII fragment*) and *ARSFl4* (*HindIII-Xhol fragment*) were inserted into PvuII-Xhol sites to make pAS93; pAS93 has unique BamHI, SalI, and SmaI sites, used for cloning of CenDNA fragments, giving the following minichromosomes: pAS94 (*cen3-III(X)5 BamHI-BamHI fragment*); pAS95 (*GAL1-CEN3 BamHI-BamHI fragment*); pAS96 (*cenb-III(X)8c Sall-BamHI fragment*); pAS97 (*cenb-III(X)5c Sall-BamHI fragment*); pAS98 (*cenb-III(X)CBI Sall-Sall fragment*); pAS112 (*cenb-III(X)CBI Sall-Sall fragment*); pAS113 (*cenb-III(X)9c Sall-BamHI fragment*); pAS114 (*cenb-III(X)9c Sall-BamHI fragment*); pAS122 (*cenb-III(X)9c Sall-BamHI fragment*). pAS76 has the *CEN4* Xhol-Scal fragment inserted into Sall-Smal sites of YEpFA77 (Runge and Zakian, 1989). The corresponding pDK minichromosomes (without *leu2-d* and *2µ-ORI*) have been described before (Kingsbury and Koshland, 1991; pDK381 contains CEN6 BamHI-BamHI fragment, pDK377 contains *cenb-III(X)5c Sall-BamHI fragment*; pDK371 contains *cenb-III(X)CBI Sall-Sall fragment*; pDK378 contains *cenb-III(X)9c Sall-BamHI fragment*; pDK374 contains *cenb-III(X)7c BamHI-BamHI fragment* and pDK380 contains *cenb-III(X)8c Sall-BamHI fragment*. Descriptions of CenDNA fragments used were published previously (Hegemann et al., 1988; Hill and Bloom, 1987; McGrew et al., 1986). Several plasmids, containing the *CEP3* gene from the original isolate pAS300, have been constructed. pAS409 (pRS414 backbone) contains the entire genomic insert of pAS300 as 9-kb Eagl-BamHI fragment. pAS420 is pRS414 with 3.2-kb BssHII-EcoRI fragment of pAS300. HincII-HincII fragment; pAS114 (*cenb-III(X)6a Sall-BamHI fragment*); pAS122 (*cenb-III(X)6a Sall-BamHI fragment*). pAS76 has the *CEN4* Xhol-Scal fragment inserted into Sall-Smal sites of YePlFAT77 (Runde and Zakian, 1989). The corresponding pDK minichromosomes (without *leu2-d* and *2µ-ORI*) have been described before (Kingsbury and Koshland, 1991; pDK381 contains CEN6 BamHI-BamHI fragment, pDK377 contains *cenb-III(X)5c Sall-BamHI fragment*; pDK371 contains *cenb-III(X)CBI Sall-Sall fragment*; pDK378 contains *cenb-III(X)9c Sall-BamHI fragment*; pDK374 contains *cenb-III(X)7c BamHI-BamHI fragment* and pDK380 contains *cenb-III(X)8c Sall-BamHI fragment*. Descriptions of CenDNA fragments used were published previously (Hegemann et al., 1988; Hill and Bloom, 1987; McGrew et al., 1986).
Table 1.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPH102</td>
<td>MAATa ade2 his3 leu2 lys2 urs3</td>
<td>Ph. Hieter</td>
</tr>
<tr>
<td>YPH499</td>
<td>MAATa ade2 his3 leu2 lys2 trpl urs3</td>
<td>Ph. Hieter</td>
</tr>
<tr>
<td>S42</td>
<td>MAATa ctf1(4dc10)-42 ade2 leu2 lys2 urs3 his3</td>
<td>Ph. Hieter</td>
</tr>
<tr>
<td>AS260</td>
<td>MAATa/MAATa cep3-3/CEP3 ade2 his3 leu2 lys2 trpl/1TRP1 urs3</td>
<td>This study</td>
</tr>
<tr>
<td>AS270</td>
<td>MAATa/MAATa cep3-3/CEP3 ade2 his3 leu2 lys2 trpl/1TRP1 urs3</td>
<td>This study</td>
</tr>
<tr>
<td>1dAS255</td>
<td>MAATa cep3-1 ade2 his3 leu2 lys2 trpl urs3</td>
<td>This study</td>
</tr>
<tr>
<td>6bAS255</td>
<td>MAATa cep3-1 ade2 his3 leu2 lys2 trpl urs3</td>
<td>This study</td>
</tr>
<tr>
<td>lcAS281</td>
<td>MAATa cep3-1 ade2 his3 leu2 lys2 trpl urs3</td>
<td>This study</td>
</tr>
<tr>
<td>2bAS282</td>
<td>MAATa cep3-2 ade2 his3 leu2 lys2 trpl urs3</td>
<td>This study</td>
</tr>
<tr>
<td>3dAS282</td>
<td>MAATa cep3-2 ade2 his3 leu2 lys2 trpl urs3</td>
<td>This study</td>
</tr>
<tr>
<td>2aAS257</td>
<td>MAATa cep3-3 ade2 his3 leu2 lys2 urs3</td>
<td>This study</td>
</tr>
</tbody>
</table>

Antibodies and Cytological Methods

Indirect immunofluorescence was performed as described (Kilmartin and Adams, 1984). Yeast nuclear DNA was stained by DAPI included into mounting media (Mowiol; Cal Biochem, La Jolla, CA). Microtubules were detected with the mouse monoclonal antibody YOLI/34 (1:200) (Kilmartin et al., 1982) and goat anti–mouse antibodies conjugated to rhodamine (Cappel Laboratories, Cochranville, PA). Mouse monoclonal anti–c-myc antibody 9E10 (Evan et al., 1985) and mouse monoclonal anti–hemagglutinin antibody 12CA5 (BAbCo, Richmond CA) were used to monitor tagged Cep3p on Western blots. The pooled monoclonal antibodies against a 90-KD component of the spindle pole body (Rout and Kilmartin, 1990), were used undiluted for indirect immunofluorescent staining.

Minichromosome–Microtubule Binding Assays

The microtubule-minichromosome binding assays were performed essentially as described (Kingsbury and Koshland, 1991) with minor modifications (Kingsbury and Koshland, 1993). Binding experiments were done for two or four parallel cultures, always including YPH102/pDK381 strain as a control. For each minichromosome/strain combination (Fig. 6) the independent binding experiments have been performed at least twice.

Results

Isolation of cep Mutants

The first extrachromosomal replicon identified in yeast was the endogenous 2 μm plasmid (Beggs, 1978). It is a circular multicopy (20–30) double-stranded DNA molecule which uses its own specialized system to partition effectively during mitotic divisions (Broach and Volkert, 1991). In contrast, artificial minichromosomes with a centromere locus, segregate using the mitotic apparatus designed for chromosomes and are maintained as single copy per cell. The screen for genes encoding putative centromere proteins was based on the observation that the presence of both 2μm plasmid replication/segregation locus (2μM-ORI) and a yeast centromere on the same circular plasmid (2 μm/CEN plasmid) creates an epistatic relationship between these two loci (Tschumper and Carbon, 1983). Such a plasmid behaves as a single-copy minichromosome and not as multicopy 2 μm plasmid (Tschumper and Carbon, 1983). Several reports have been published however that compromising centromere function in such a minichromosome can convert it into a multicopy equivalent of the 2 μm plasmid, at least in some cells in the population (Apostol and Greer, 1988; Chlebowicz-Sledziewska and Sledziewski, 1985; Schulman and Bloom, 1993). These results provided the primary basis for design of our screen (Fig. 1 A).

The second rationale for the cep screen was the use of a dose-dependent marker to follow changes in the copy number of the 2 μm/CEN plasmid. Such markers have been used previously for other applications and genetic screens (Hieter et al., 1985b; Larionov et al., 1989; Runge et al., 1991; Smith et al., 1990; Toh-E, 1981). In our screen for cep mutants we used the leu2-d gene as that marker. The leu2-d...
The expression of the single transition from normal 20-30 copies per cell to 100-150 copies of the plasmid copy number control, allowing flexibility in plasmid copy number, control, allowing transition from normal 20-30 copies per cell to 100-150 copies (under leu2-d selection) without any deleterious effect on cell physiology. Due to the epistatic effect mentioned above, the 2μm/CEN/leu2-d minichromosome can not undergo amplification from one copy per cell to 100 copies per cell without abolishing centromere function completely (Schulman and Bloom, 1993). This loss of function of the plasmid-born CEN locus (reporter centromere) as a result of unlinked (chromosomal) mutation in a cep locus (Fig. 1A) is the essence of the screen described below.

Mutagenesis of YPH102 cells that contained the 2μm/CEN minichromosome with a wild-type CenDNA (CEN4 or CEN6) failed to produce trans-mutations that could inactivate the reporter centromere. The most likely explanation for this failure is that these cep mutations not only inactivated the reporter centromere on the plasmid but also inactivated the chromosomal centromeres. Such cep mutants would work as a reporter CEN, as a result of unlinked (chromosomal) mutation in a cep locus (Fig. 1A) is the essence of the screen described below.

To identify CenDNA mutations with the appropriate level of partial centromere activity for our screen, we constructed the strains containing the 2μm/CEN minichromosomes with different CenDNA mutations. We then tested these strains for the generation of Leu+ clones before and after mutagenesis. Mutagenesis of strains harboring 2μm/CEN plasmids with cen6-(III)18c (dysfunctional CDEII) did not give significant numbers of Leu+ clones after the mutagenesis. The activity of this reporter centromere was apparently too similar to wild-type and hence, as discussed above, failed to give cep mutants. Strains that had 2μm/CEN plasmids with GAL1::cen3-(III)15t or cen6-(III)19t20 had undetectable levels of spontaneous Leu+ clones but numerous Leu+ clones after the mutagenesis. These induced Leu+ clones were good candidates for cep mutants, indicating that either of these CenDNA mutations would work as a reporter for our screen.

The minichromosome pAS97 (Fig. 1A), having cen6-(III)15t as a reporter CEN, was primarily used for the screen described in this report (see Materials and Methods). When the YPH102/pAS97 strain was mutagenized, the estimated frequency of induced Leu+ clones carrying cep mutations was 9 × 10^-4. The unwanted Leu+ clones, including the cis-mutants and clones with rearranged minichromosomes, originated with a similar frequency. More than 30 cep mutants were isolated. 10 of them were conditional lethal mutants recessive for temperature-sensitive growth. These 10
mutations fell into two complementation groups designated cep2 (seven alleles: cep2-11 to cep2-17) and cep3 (three alleles: cep3-1 to cep3-3). All seven cep2 alleles failed to complement ndcl0-42 for temperature sensitivity, indicating that cep2 is allelic to the ndcl0 gene. Assuming, that the NDCl0 gene encodes a centromere protein, isolation of multiple ndcl0 alleles in our cep-screen indicates our approach was selective for centromere-specific genes.

CEP3 Is a Novel Essential Gene

Both cep2 and cep3 genes were cloned by complementation of the corresponding ts-mutations. Plasmids carrying inserts with the putative wild type genes conferred temperature resistant growth to the mutant strains. We isolated two independent DNA fragments which complemented the cep3-1 and cep3-3 mutations. Standard genetic procedures were performed to show that these plasmids indeed contained the CEP3 gene. First, we showed that the integration of URA3 marker into the chromosomal locus corresponding to the cloned fragment always segregated away from the cep3 mutation in the meiotic progeny of diploid cells, heterozygous for both insertion and cep3.

This result shows that the gene we cloned corresponds to the chromosomal locus of cep3 is mutation, and is not an ectopic suppressor gene. Second, using a stepwise subcloning procedure, we localized the complementing activity to a single ORF (see below). Minor truncations of the putative CEP3 ORF from its 5' and 3' ends abolished complementing activity, indicating that we had identified the authentic CEP3 ORF. The cloned gene also complemented the "synthetic centric" phenotype of all three cep3 mutations.

The DNA sequence of 2,074-bp fragment containing the cep3 gene was determined. The sequence of CEP3 fragment revealed a 608-codon ORF, potentially encoding a novel protein with molecular mass of 71 kD (Fig. 2 A). The amino terminus of predicted polypeptide contained a binuclear zinc-cluster motif Zn(II)2Cys6 (Pan and Coleman, 1990) (Fig. 2 B) common to several DNA-binding proteins (Dhawale and Lane, 1993). The rest of Cep3p did not show any significant similarity to known protein sequences. According to secondary structure prediction (Rost and Sander, 1993) the novel protein with molecular mass of 71 kD (Fig. 2 A) was predicted to contain 37 % alpha-helix, and 37 % form loops. Only one short region of the protein was predicted (Lupas et al., 1991) to form coiled-coil structure with probability higher than 0.3 (Fig. 2 A).

The chromosomal copy of the CEP3 gene was disrupted by substituting the CEP3 ORF with the HIS3 marker. We failed to recover the resulting allele, cep3-D1, as a haploid strain, thus showing that CEP3 is an essential gene. The essential nature of CEP3 and the presence of a DNA-binding motif suggest that Cep3p is a new DNA-binding component of yeast centromere.

To assess the expression level of CEP3, we introduced two alternative in-frame epitope tags (See Materials and Methods) into the COOH-terminal part of Cep3p (Fig. 2 A). The cep3:myc construct did not complement cep3-1, cep3-2, or cep3-D1 defects. This result indicates that the essential region of Cep3p is not limited to the putative Zn-binding cluster. However the alternative CEP3:ha construct did complement the cep3-1 and cep3-D1 mutations. The Cep3p is a rare protein as the Cep3p-ha protein can only be detected on Western blots when concentrated by immunoprecipitation (data not shown).
Detailed cytological analysis of the \(\text{cep3} \) mutants was limited to \(\text{cep3}-1 \) and \(\text{cep3}-2 \), as \(\text{cep3}-3 \) cells showed practically identical characteristics in all preliminary tests. When the wild-type and \(\text{cep3} \) cells were shifted to 37°C (the non-permissive temperature for \(\text{cep3} \)), their viability remained the same for 4 h. However, by 8 h the viability of \(\text{cep3} \) cells dropped below 20%. Time-course observations showed, that after the 6-h shift to nonpermissive temperature the \(\text{cep3} \) cells reach full arrest of cell division (Fig. 3 A). In the course of incubation at 37°C, the late anaphase cells and small-budded cells, present at 25°C (Fig. 4 A), disappear. The large-budded (dumbbell) cell with an undivided nucleus at the bud neck and a short spindle (Fig. 4 B) become the dominating class in the \(\text{cep3} \) population (Fig. 3 A). Most of the \(\text{cep3} \) cells arrested at 37°C have diploid DNA content (Fig 3 B). This complex of features is highly suggestive of G2-M phase arrest. The virtual absence of elongated mitotic spindles, was verified by the spindle pole body staining (Fig. 5 C). Therefore the phenotype of \(\text{cep3} \) is more similar to \(\text{ctfl3-30} \) cells (Doheny et al., 1993) than to \(\text{ndcl0-1} \) mutant (Goh and Kilmartin, 1993).

The staining of spindle microtubules in the \(\text{cep3} \) cells lacking their mitochondrial DNA also revealed that the dominant class of cells in the arrested \(\text{cep3} \) population is not homogeneous. We found some indications of the abnormal distribution of nuclear DNA, including the separation of chromosomal DNA from the mitotic spindle, nuclear DNA cut by the cytokinesis, and nuclear DNA unevenly spread between the mother and daughter cell (Fig. 5, A and B). The latter phenotype is probably due to the spindle movements known as the phenomenon of nuclear transits (Palmer et al., 1989), accompanied by the failure of the majority of chromosomes to attach to the mitotic spindle. The presence of cells with their spindles and nuclear DNA positioned in the different cell bodies (Fig. 5, A and B) suggests that in the arrested \(\text{cep3} \) cells chromosomes fail to maintain attachment to the microtubules of mitotic spindle.

Interestingly, at the restrictive temperature some of the examined \(\text{cep2 (ndcl0)} \) mutants arrest like the \(\text{cep3} \) cells (data not shown). This finding brings up the possibility that the \(\text{cep3}, \text{ctfl3} \) (Doheny et al., 1993) and \(\text{ndcl0} \) (Goh and Kilmartin, 1993) cells may display the same kind of mitotic arrest as a consequence of centromere inactivation.

Interaction between cep3 Mutations and Centromere Mutations In Vivo

Given the synthetic destabilization of the reporter centromere, \(\text{cen6-III} \) in the \(\text{cep3} \) mutants and the presence of a DNA binding motif in the Cep3p, it is reasonable to postulate that Cep3p is a CDEIII-specific DNA-binding protein. To investigate this possibility we determined the specificity of interaction between the \(\text{cep3} \) mutations and different CenDNA mutations. \(\text{cep3} \) mutants were transformed with pDK minichromosomes (URA3, ARS1, CEN minichrom-
Figure 4. Micrograph of the cep3 cells under permissive and restrictive temperatures. (A) The logarithmic population of cep3-2 cells (3dAS282) at 25°C. DNA is stained with DAPI and the microtubules are stained with anti-tubulin antibodies. Differential interference contrast (DIC) images show general cell shape. The late anaphase cells with elongated mitotic spindles, as well as small-budded cells are present in the population. (B) The cep3-2 cells (2bAS282 strain) after 6 h at 37°C. The dominating class of large budded cells with an undivided nucleus and a short spindle is evident. Bar, 10 μm.

Therefore, the Ndc10p may also directly or indirectly participate in CDEIII binding (see Discussion). On the other hand, the smcl-1 mutation, which also affects minichromosome transmission (Strunnikov et al., 1993), did not exhibit the synthetic acentric phenotype with any of centromeres harboring these CenDNA mutations (data not shown). Therefore, the synthetic acentric phenotype is not a general property of any mutation that affects minichromosome transmission. The similar pattern of interaction with centromere DNA mutations at the permissive temperature displayed by the cep2 and cep3 mutants suggests that the corresponding proteins act in close proximity in vivo.

The cep3 Mutation Interferes with Centromere Function In Vitro

The kinetochore of S. cerevisiae acts as a tripartite system (CenDNA-kinetochore proteins-microtubules) which acquires motility at the time of mitosis. Based on this concept, three types of biochemical assays have been applied previously to testing the yeast centromere function in vitro: protein-DNA interaction (Doheny et al., 1993; Ng and Carbon,
Figure 5. Arrested population of cep3-1 cells lacking mitochondria. (A) The cep3-1 (lcAS281) culture lacking mitochondrial DNA (rho°) after 6 h at 37°C. The cells where stained with DAPI and anti-tubulin antibodies. The cell marked with an arrow has underwent partial separation of chromosomal DNA; the bulk of chromosomal DNA and the spindle are separated from each other and positioned in different cell bodies, the phenotype never observed in wild type cells. (B) The rho° cep3-1 cells (lcAS281) representing the abnormal subtypes of the large budded cells with an undivided nucleus. From top to the bottom: separation of chromosomes from the mitotic spindle; cut-like phenotype; formation of a potential aploid cell. Bar, 10 μm. (C) Spindle pole body staining of the cep3-2 cells. 2bAS282 cells were stained with antibodies against the 90-kD SPB component after 6 h. at 37°C. The position of SPBs shows that corresponding mitotic spindles remain bipolar (no spindle collapse) but do not elongate, even in the cells with chromosomal DNA spread out between the mother and daughter cells. Bars, 10 μm.

1987), centromere-microtubule interaction (Kingsbury and Koshland, 1991; Kingsbury and Koshland, 1993), and motility assays (Hyman et al., 1992; Middleton and Carbon, 1994). To reveal the molecular basis of the "synthetic acentric" phenotype, we carried out experiments testing the fidelity of centromere binding to bovine microtubules in a cell-free system. This minichromosome-microtubule binding assay has been described previously (Kingsbury and Koshland, 1991, 1993). It involves quantitative precipitation of minichromosomes isolated from yeast cells (in the form of chromatin) by their association with taxol-stabilized bovine microtubules. All experimental data presented in this report were obtained for Cep3⁺ or Cep3⁻ cells arrested with nocodazole prior to the preparation of the extracts contain-
ing minichromosomes. Arrest with nocodazole (G2–M transition), as was previously shown (Kingsbury and Koshland, 1991), confers the highest mt-binding potential for wild type cultures. This provides a wide range for the comparison of experimental data obtained for mutant and wild type extracts and CenDNA. The G2-M transition is also the phase when the function of a centromere is actually required for progression of the normal cell division cycle through mitosis, i.e., when the kinetochore is in its most active state. In fact, comparison of mt-binding activity of cis-mutant centromeres from the asynchronous culture (Kingsbury and Koshland, 1991) to activity from nocodazole arrested cells (Fig. 6) suggests that centromeres assembled with some cis-mutant CenDNA (e.g., cen6-(III)15t) achieve almost full wild-type activity in the cells arrested in G2-M.

Four types of cultures (grown at 23°C) were used for microtubule-binding experiments: Cep3+ cells with wild type CEN6 minichromosome, Cep3+ cells with mutant CenDNA (cen6-(III)15t) minichromosome, Cep3- cells with wild type CEN6 minichromosome and Cep3- cells with mutant CenDNA (cen6-(III)15t) minichromosome (Fig. 6). These combinations are analogous to ones used for assaying minichromosome stability in vivo (Table II). For both cep3/CEN6 or cep3/cen6 combinations, only a slight difference in the capacity of minichromosome–microtubule binding was observed at 23°C (Fig. 6). However, combining the cep3 (trans) and cen (cis) mutation in the same cell produced a striking effect: the microtubule–minichromosome binding became indistinguishable from the background level (i.e., of acentric plasmid precipitation; Kingsbury and Koshland, 1991). This result indicates that there is an intimate link between the structure of CDEIII and the Cep3p function. These cell-free system experiments are in agreement with data obtained in vivo for these minichromosomes. Results of these experiments provide a basis for a hypothesis addressing the mechanism of the "synthetic acentric" phenotype: the synthetic acentrics are probably generated in vivo, due to the inability of cen6-(III)15t minichromosomes to bind yeast microtubules.

The structural properties of Cep3p, as well as the cytological, genetic, and biochemical data obtained for cep3 mutants, provide a basis for assuming that Cep3 protein is the CDEIII-binding subunit of yeast centromere, indispensable for both kinetochore assembly and function. To summarize, several properties of Cep3p suggest that it is a centromere protein: (a) mutant forms of the protein show allele specific interactions with particular CenDNA mutations; (b) minichromosomes isolated from cep3 cells exhibit a defect in the centromere-dependent binding to microtubules in vitro; (c) the Cep3 protein is essential for cell viability, and the cep3 mutants exhibit complex mitotic defects consistent with a failure of centromere function; and (d) the amino acid sequence of the Cep3 protein is identical to the sequence of p64 found in the Cbf3 complex (Lechner, 1994). The fact, that both Cep3p and Cep2p, are the subunits of Cbf3 complex, shows that our screen was very selective for genes encoding the components of yeast centromere.

Discussion

Developing a Selective Primary Screen for Kinetochore Components

Centromere proteins have been previously identified in cells of vertebrates as centromere (or kinetochore) antigens (Compton et al., 1991; Earnshaw et al., 1987a, b; Yen et al., 1992). The yeast centromere proteins have been identified by their biochemical properties (CenDNA association) (Jiang et al., 1993a; Lechner and Carbon, 1991) or by secondary screening of existing collections of temperature-sensitive mutants (Goh and Kilmartin, 1993) or mutants with frequent chromosome loss (Doheny et al., 1993). However, the identification of additional centromere components by these approaches has proved limited, mainly because they are labor intensive. In this report we described a new approach for identifying centromere proteins by selecting mutants displaying the "synthetic acentric" phenotype. Using this approach we have isolated multiple mutations in two genes en-

Table II.

Mitotic stability of minichromosomes with reporter centromere:

<table>
<thead>
<tr>
<th>Strain</th>
<th>CEN6</th>
<th>cen6-(III)15t</th>
<th>cen3-(III)BCTI</th>
<th>cen6-(III)1920</th>
<th>cen3-(II)X78</th>
<th>cen6-(II)8c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cep+</td>
<td>88.9 ± 4.3</td>
<td>85.4 ± 6.2</td>
<td>77.0 ± 5.0</td>
<td>84.8 ± 3.8</td>
<td>86.3 ± 4.5</td>
<td>87.9 ± 0.9</td>
</tr>
<tr>
<td>cep3-1</td>
<td>86.3 ± 4.2</td>
<td>6.0 ± 3.8</td>
<td>3.6 ± 3.5</td>
<td>78.7 ± 7.0</td>
<td>80.3 ± 1.8</td>
<td>80.0 ± 4.0</td>
</tr>
<tr>
<td>cep3-2</td>
<td>87.4 ± 0.8</td>
<td>9.3 ± 2.1</td>
<td>11.8 ± 5.1</td>
<td>81.3 ± 2.7</td>
<td>83.3 ± 4.5</td>
<td>65.4 ± 13.2</td>
</tr>
<tr>
<td>cep2-12</td>
<td>81.8 ± 3.9</td>
<td>10.3 ± 2.6</td>
<td>15.8 ± 2.2</td>
<td>63.9 ± 17.8</td>
<td>83.7 ± 4.3</td>
<td>65.8 ± 5.0</td>
</tr>
</tbody>
</table>

Figure 6. Minichromosome-microtubule binding experiments. Four types of extracts used for microtubule binding experiments: CEP3/CEN6, strain YPH102 transformed with pDK381; CEP3/cen6-(III)15t, YPH102 with pDK377 minichromosome; cep3/cep3, CEN6, idAS255 with pDK381 minichromosome; cep3/cen6-(III)15t, idAS255 with pDK377 minichromosome. Binding at mt concentrations, higher than required for saturation of binding in wild type strain (Kingsbury and Koshland, 1991), was done to exclude the possible rescue of binding activity in cep3 mutant extracts by the excess of mt.

Strunnikov et al. CEP3/GENE FOR A CENTROMERE PROTEIN
coding probable centromere components; one of these genes, NDC10 (CEP2), had been identified previously (Goh and Kilmartin, 1993; Jiang et al., 1993a) while the other, CEP3, is a novel gene.

The improved efficiency of our approach relies on three major principles. First, by requiring the reporter minichromosome to achieve a very high copy number, we selected only those mutants that completely inactivate the reporter centromere, thus eliminating the possible background of mutants, able to accumulate only few extra copies of minichromosome (Larionov et al., 1989). Second, we used a reporter centromere that was already partially impaired by a cis-mutation. In this way mutant centromere proteins, that inactivated the reporter centromere, would still be active on chromosomal centromeres, allowing the mutant cells to survive. Third, since we assumed that many kinetochore proteins would be essential for viability, we imposed the requirement that the cep mutants be conditionally lethal.

The “synthetic acentric” approach has at least two obvious virtues for the future studies on centromere proteins. First, it provides a very rapid and efficient means to isolate mutant alleles of genes encoding the pl10 and p64 components of the kinetochore. These mutations may serve as powerful tools for dissecting the molecular organization and the cellular role of these proteins. For example, some new alleles of ndcl0 (cep2) isolated by our synthetic approach (see below) are phenotypically distinct from known ndcl0 alleles. Second, although this approach may be saturated for the cen6-(III)151 reporter, as evidenced by the isolation of multiple alleles of ndcl0 and cep3, other reporter CenDNA sequences with CDEII or CDEIII mutations may be used to identify genes encoding additional centromere proteins. For example, the cen6-(III)1920 mutation is not synthetically acentric when combined with the ndcl0 or cep3 alleles, yet potential cep mutants were obtained with this centromere as a reporter (Strunnikov, A. V., unpublished results).

The CEP3 Gene Encodes a Putative CenDNA-binding Protein That Is Necessary for Microtubule-binding Activity of the Centromere

DNA sequence analysis revealed that CEP3 encodes a protein with a predicted NH2-terminal DNA-binding domain Zn(II)2Cys6 (Pan and Coleman, 1990). In other fungal proteins this domain mediates DNA binding in a sequence-specific manner and has been found only in transcription factors-like proteins, dispensable under standard laboratory conditions. The most characterized member of this family, Gal4p, binds a palindromic DNA sequence as a dimer (Marmorstein et al., 1992). Interestingly, CenDNA mutations that interact with cep3 alleles lie in symmetrical positions of the CDEIII palindrome, suggesting that Cep3p could also bind DNA as a dimer. Previously, a limited functional symmetry of CDEIII was described (Jehn et al., 1991) based on data obtained for cis mutations.

Of the three major proteins in the Cbf3 complex, Cep3p is the only subunit with an evident DNA-binding motif. Therefore, it is reasonable to assume that Cep3p mediates binding of the Cbf3 complex to CDEIII. Surprisingly, all tested cep2 (ndcl0) mutations have similar pattern of interaction with CDEIII mutations as do cep3 alleles (this study). One possible explanation for this phenomenon is that Ndcl0p also binds to the same nucleotides of CDEIII as does Cep3p. However, this seems unlikely, as Ndcl0p and Cep3p do not share significant sequence similarity and Ndcl0p lacks any known DNA-binding motif. More likely, Ndcl0p is a co-factor of Cep3p binding to CDEIII. Alternatively, Ndcl0p could be an unconventional DNA-binding protein affecting Cep3p due to the close proximity of Cep3p and Ndcl0p binding sites. These models are yet to be verified by biochemical studies, however, our genetic data provide the first evidence that Cep3p and Ndcl0p physically interact in vivo.

What would be a hypothetical way to construct a functional centromere, taking into account that Cep3p has the only known DNA-binding motif among the Cbf3 components? One possibility is, that Cep3p Zn-cluster is solely responsible for tethering all other centromere components to the CenDNA. This seems unlikely because the binding of kinetochore proteins to CenDNA should have special requirements to withstand the pulling forces that are exerted during mitosis. The interaction between CDEIII and the relatively simple DNA-binding motif of Cep3p, likely, would not be sufficient for this purpose. Also, since CDEII, CDEIII and flanking sequences form a large special chromatin structure (Bloom et al., 1984), it seems likely that other DNA-binding components exist. Based on the fact, that CDEIII and the proteins bound to it are the key elements for the assembly of this entire complex (mutations in CDEIII can both abolish centromere function [Hegemann et al., 1988; McGrew et al., 1986] and prevent formation of centromere chromatin [Saunders et al., 1988]), we can suggest that the DNA-binding motif of Cep3p first recognizes CDEIII, then interacts with CDEII in the Cbf3 complex to CDEIII. Surprisingly, all tested cep mutants be conditionally lethal.

In addition to the putative DNA-binding properties of Cep3p in vivo, we examined the role of Cep3p in organizing microtubule-binding activity of the kinetochore. We showed that the minichromosomes isolated from cep3 cells exhibit a dramatic defect in centromere-dependent binding of minichromosomes to microtubules in vitro. This observation has three important implications. First, it validates the use of isolated minichromosome as the means to identify and characterize structural components of kinetochore, required for microtubule binding. Second, cep3-1 is the first described mutation in a Cbf3 component that disrupts the microtubule binding activity of centromere, corroborating the importance of Cbf3 complex for centromere structure and function (Lechner and Carbon, 1991; Hyman et al., 1992). Third, the microtubule-binding data suggest a molecular model for the “synthetic acentric” phenomenon. While it is theoretically possible that Cep3p directly binds microtubules, it is more likely that the presence of Cep3p is needed to assemble a multi-protein complex which has mt-binding subunits, in ac-
Cellular Response to the Loss of Centromere Function

The cells of multicellular organisms developed a sensitive mechanism which delays anaphase if even one chromosome fails to achieve its metaphase position (Nicklas and Arana, 1992). It has been suggested that this delay reflects a "checkpoint" that monitors chromosome congression and kinetochore-microtubule attachment. As some aspects of cell cycle regulation in S. cerevisiae may be quite different from multicellular organisms (Nasmyth, 1993), it is possible that loss of kinetochore function would not generate a cell cycle delay. In fact no delay was observed in ncd10-1 cells, the first mutants demonstrated to be defective in an essential yeast centromere protein (Goh and Kilmartin, 1993). At restrictive temperature these cells undergo asymmetric elongation of the mitotic spindle leaving most of the chromosomes unsegregated. However, experiments with CenDNA mutations (Spencer and Hieter, 1992) and analysis of ctf13-30 mutant suggested that yeast cells could respond to the loss of centromere function in more classical fashion. The inactivation of Ctf13p results in a metaphase-like delay with no elongation of the mitotic spindle. Since CTF13 encodes an essential Cbf3 component, the ctf13-30 arrest could reflect an authentic "checkpoint" in response to the loss of centromere integrity (Doheny et al., 1993). Our data obtained for three independent alleles of cep3 support the latter idea. The arrest in cep3 mutant cells is phenomenologically close to the published description of ctf13-arrested cells. Moreover we found an indication that the arrest in cep3 cells is probably due to the separation of chromosomes from mitotic spindle. If the arrest observed in cep3 and ctf3 cells is a checkpoint activated by the inability of chromosomes to establish stable contacts with kinetochore microtubules, the ncd10-1 mutant could still retain partial kinetochore activity, resulting in a catastrophic anaphase. This interpretation makes the control of chromosome segregation in S. cerevisiae more relevant to the metaphase–anaphase control in the cells of Metazoa.

In conclusion, we described an effective and non-laborious screen for cep genes. This screen allowed isolation of the CEP3 gene, a new essential gene encoding a putative centromere component in yeast, as well as new alleles of the CEP2 (NDCL0) gene, encoding a known centromere protein. These results bring us closer to understanding the centromere structure, however, more proteins need to be identified. Our system based on the generation of synthetic acentric mutants should be very useful in the identification of these unknown centromere proteins.

We would like to thank Tami Kingsbury, Vincent Guacci, and Ayumu Yamamoto for critical reading of the manuscript. We also thank Johannes Lechner for communicating p64 sequence prior to publication. Finally, we thank Cristine Norman for help in preparation of the manuscript. This work was supported by a grant from National Institutes of Health (GM-41718) to D. Koshland.

Received for publication 20 September 1994 and in revised form 6 December 1994.

Jiang, W., J. Lechner, and J. Carbon. 1993a. Isolation and characterization of a 240 kd Multisubunit Protein Complex, CBF2, which is essential for chromosome segregation, Cold Spring Harbor, NY.

