Human SEC13Rp Functions in Yeast and Is Located on Transport Vesicles Budding from the Endoplasmic Reticulum

David A. Shaywitz, Lelio Orci,* Mariella Ravazzola,* Anand Swaroop,† and Chris A. Kaiser
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; *Department of Morphology, University of Geneva Medical School, 1211 Geneva 4, Switzerland; and †Departments of Ophthalmology, Human Genetics, and Human Genome Center, University of Michigan, Ann Arbor, Michigan 48105

Abstract. In the yeast Saccharomyces cerevisiae, Sec13p is required for intracellular protein transport from the ER to the Golgi apparatus, and has also been identified as a component of the COPII vesicle coat structure. Recently, a human cDNA encoding a protein 53% identical to yeast Sec13p has been isolated. In this report, we apply the genetic assays of complementation and synthetic lethality to demonstrate the conservation of function between this human protein, designated SEC13Rp, and yeast Sec13p. We show that two reciprocal human/yeast fusion constructs, encoding the NH2-terminal half of one protein and the COOH-terminal half of the other, can each complement the secretion defect of a sec13-1 mutant at 36°C. The chimera encoding the NH2-terminal half of the yeast protein and the COOH-terminal half of the human protein is also able to complement a SEC13 deletion. Overexpression of either the entire human SEC13Rp protein or the chimera encoding the NH2-terminal half of the human protein and the COOH-terminal half of the yeast protein inhibits the growth of a sec13-1 mutant at 24°C; this growth inhibition is not seen in a wild-type strain nor in other sec mutants, suggesting that the NH2-terminal half of SEC13Rp may compete with Sec13-1p for a common target. We show by immunoelectronmicroscopy of mammalian cells that SEC13Rp (like the putative mammalian homologues of the COPII subunits Sarlp and Sec23p) resides in the region of the transitional ER. We also show that the distribution of SEC13Rp is not affected by brefeldin A treatment. This report presents the first demonstration of a putative mammalian COPII component functioning in yeast, and highlights a potentially useful approach for the study of conserved mammalian proteins in a genetically tractable system.

Proteins secreted by eukaryotic cells are vectorially transported from the ER through the Golgi apparatus to the cell surface in a series of steps mediated by membrane-bounded vesicles (Palade, 1975). The ability to study vesicle budding and fusion events in both yeast and mammalian systems has greatly facilitated the detailed molecular study of intracellular protein transport (Pryer et al., 1992; Rothman and Orci, 1992; Kaiser, 1993). Vesicular transport between adjacent Golgi stacks has been extensively investigated in mammalian systems, and a clear model has now emerged (Ostermann et al., 1993). In this scheme, transport is initiated by the attachment of the small molecular weight GTP-binding protein, ADP-ribosylation factor (ARF),1 to the donor compartment (Donaldson et al., 1992; Helms and Rothman, 1992; Helms et al., 1993). Bound ARF-GTP stimulates the recruitment of coatomer, a seven-subunit protein complex, from the cytosol, and budding occurs when coatomer binds (Donaldson et al., 1992; Orci et al., 1993b,c; Palmer et al., 1993; Hara-Kuge et al., 1994). Finally, the hydrolysis of ARF-GTP, presumably at the target membrane, results in coat disassembly, and permits the vesicle to fuse (Tanigawa et al., 1993; Elazar et al., 1994).

Both ARF and the β-COP subunit of coatomer have also been implicated in ER to Golgi transport. Transport of the vesicular stomatitis virus glycoprotein (VSV-G) from the ER is inhibited by the overexpression of a dominant negative ARF mutant (T31N) in cultured cells (Dascher and Balch, 1994). VSV-G transport from the ER is also inhibited by β-COP-specific antibodies in both microinjected (Peperkok et al., 1993) and digitonin-permeabilized (Peter et al., 1993) cells. These data suggest a possible role for coatomer in ER to Golgi transport.

Vesicular transport from the ER to the Golgi has been extensively studied in the yeast Saccharomyces cerevisiae, and more than 20 genes have been implicated in this process (Kaiser, 1993). One of these genes, SEC21, is homologous...
to the γ-subunit of coatomer (Hosobuchi et al., 1992). However, purification of *S. cerevisiae* transport-competent vesicles synthesized in vitro has revealed a coat complex containing five proteins previously implicated in vesicle formation—Sec13p, Sec23p, Sec24p, Sec31p, and Sar1—but not Sec21p (Barlowe et al., 1994). Sec13p and Sec23p were initially identified by temperature-sensitive mutations which block vesicle formation at the non-permissive temperature (Novick et al., 1980; Kaiser and Schekman, 1990). Sec24p and Sec31p were identified by the physical association with Sec23p and Sec13p, respectively (Hicke et al., 1992; Salama et al., 1993). Sar1p was initially isolated as a suppressor of a mutation in the vesicle formation gene *SEC12* (Nakano and Muramatsu, 1989). Since none of these proteins show any apparent homology to subunits of the mammalian coatomer, the yeast coat complex has been designated COP II (Barlowe et al., 1994).

Mammalian genes showing significant sequence similarity to three COP II proteins have now been identified. Using degenerate PCR, Kuge et al. (1994) isolated two different mammalian clones encoding proteins with predicted amino acid sequences 61% identical to the sequence of the yeast Sar1p protein. The export of VSV-G protein from the ER is inhibited by overexpression of a dominant negative Sar1 mutant (T39N), as well as by the incubation of semi-intact cells with Sar1-specific antibody. Immuno-EM analysis reveals that Sar1 is highly enriched on vesicular carriers in the transitional region of the ER, consistent with a role in Golgi transport. A similar distribution was also seen in mammalian cells for Sec23p, using cross-reacting antibodies raised against the yeast Sec23p protein (Orci et al., 1991). A mouse Sec23p homologue, encoding a product 40% identical to the yeast Sar1p, was recently discovered (Wadhwa et al., 1993); the relationship between this protein and the protein that cross-reacts with the anti-yeast-Sec23p antibody has not yet been established. Finally, Swaroop et al. (1994) have identified a human gene, *SEC13R*, that encodes a protein with 53% identity and 70% similarity to the amino acid sequence of the yeast COP II protein Sec13p.

The extensive genetic study of secretion provides us with the tools to explore the relationship between the function of a yeast COPII component and the function of a potential mammalian homologue. Perhaps the most direct way to study this relationship is to examine the behavior of the human protein in yeast—particularly yeast bearing a mutation in the corresponding endogenous gene. Not only is this approach useful in helping us understand and compare the process of vesicular transport in yeast and mammalian cells, but evidence of interchangeability is also required for the rigorous demonstration of homology (Tugendreich et al., 1994).

To investigate the functional relationship between the human protein SEC13Rp and yeast Sec13p, we examined the effect of human SEC13R expression in mutant and wild-type yeast. Through the application of two different genetic criteria—complementation (Benzer, 1962) and synthetic lethality (Dobzhansky, 1946; Sturtevant, 1956; Huffaker, 1987)—we have been able to show that SEC13R exhibits SEC13 function, and therefore may be designated a mammalian homologue of SEC13. Although SEC13R itself does not complement the temperature-sensitive yeast mutant sec3-1, two reciprocal human/yeast chimeras, encoding the NH2-terminal of one protein and the COOH-terminal half of the other, are each able to rescue the sec3-1 secretion defect at 36°C; one of the chimeras can also complement a SEC13 deletion. Furthermore, overexpression of the entire mammalian gene exhibited a negative effect in sec3-1 mutants but not in either wild-type yeast or in other sec mutants; this result, an example of the genetic phenomenon of synthetic lethality, strongly suggests that in yeast, Sec13p and SEC13Rp participate in the same pathway. Together, the genetic data provide compelling evidence that human SEC13Rp can function in yeast; SEC13Rp thus represents the first putative mammalian homologue of a yeast COPII component to fulfill this criteria.

Immuno-EM analysis of pancreatic cells using antibodies raised against SEC13Rp demonstrates that SEC13Rp is concentrated in the transitional ER, in a distribution indistinguishable from that previously observed for Sec23 in the same cell type (Orci et al., 1991, 1993a). The distribution of SEC13Rp is not affected by brefeldin A treatment, in contrast to the result seen for coatomer (Orci et al., 1993a).

As a whole, our data not only support the existence of a mammalian COPII structure, but also emphasize the utility of heterologous gene expression as tool to study conserved proteins (Whiteway et al., 1993; Thukral et al., 1993).

Materials and Methods

Strains, Materials, and General Methods

Yeast culture, genetic manipulations, and molecular techniques were as described (Sambrock et al., 1989; Rose et al., 1990). Mammalian cell extracts were prepared by standard methods (Harlow and Lane, 1988). Materials were obtained from Sigma Chemical Company (St. Louis, MO) unless stated otherwise.

Gel electrophoresis was performed according to the Laemmli SDS-PAGE method using 10% polyacrylamide (Laemmli, 1970). For Western blotting affinity-purified anti-SEC13Rp antibody was used at 1:10,000 dilution. Secondary antibody was goat anti-rabbit IgG, conjugated to HRP (Amersham Corp., Arlington Heights, IL), at a 1:10,000 dilution. Filter-bound antibodies were then detected with peroxidase-catalyzed chemiluminescence (ECL kit, Amersham Corp.).

The monkey fibroblast cell line COS was grown in complete medium consisting of Dulbecco's modified Eagle's medium with 10% fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin, and 100 U/ml streptomycin. The Chinese hamster ovary cell line CHO was grown in complete medium consisting of Ham's F12 medium with 5% fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin, and 100 U/ml streptomycin. Both cells lines were maintained at 37°C in a 5% CO2 cell incubator.

Generation of Chimeric Constructs

The cloning of the SEC13R gene has been previously described (Swaroop et al., 1994). A C1a site was introduced at nucleotide 449 in the SEC13R cDNA, corresponding to the C1a site present in SEC13 at nucleotide 488 (Pryor et al., 1993), using the oligonucleotide-directed mutagenesis method of Kunkel et al. (1987). (The antisense) primer used for this mutagenesis was: 5'-GGCAATGGTGTGAGCATCGA__TGATCTTCTTTACTTC-3'; altered nucleotides are underlined. In addition to introducing a restriction site, this procedure also altered two amino acids, changing Asn147→Asp (see Fig. I). Both mutated and wild-type forms were cloned into the vector pCD43 directly downstream of the GAL10 promoter. Since both forms behaved identically in all assays described, only the strain
pCIM3 is a modified pRS316 (ARS CEN LEU2) vector (Sikorski and Hieter, 1989) in which divergent GAL1 and GAL10 promoters have been introduced between the BamHI and EcoRI sites in the polylinker. The NH2-terminal Sec13p/COOH-terminal SEC13Rp chimera was constructed by linking a 5'-BamHI/EcoRI fragment with a Clal-KpnI SEC13 fragment. The reciprocal chimera was constructed by linking a 5'-EcoRI/ClaI SEC13R fragment with a Clal-KpnI SEC13 fragment. The initial chimera was generated by first introducing a BamHI site immediately 5' to the initial ATG by PCR, using pCK1315 as a template (Pryer et al., 1993) and 5'-GCCGAATTCACACATGGTGGCGTGCTGATAGC-3' as the (sense) primer. The resulting BamHI/SalI fragment was cloned into pCD43, and was able to rescue sec13-1 mutants at the restrictive temperature.

Chimera Complementation/Inhibition Assays

All constructs were transformed into RHY305. The vector pRS315 (Sikorski and Hieter, 1989) was co-transformed in all experiments, rendering all strains essentially prototrophic. Transformants were then assayed at 36°C (complementation) or at 24°C (inhibition) on synthetic minimal media (Difco Laboratories, Inc., Detroit, MI) supplemented with either 2% glucose or 2% galactose.

Radiolabeling and Immunoprecipitations

Cells were pre-grown at 24°C in selective SC medium containing 2% raffinose, and were induced by the addition of 2% galactose 3 h prior to the start of labeling. 1 h before labeling, cells were shifted to 36°C. 8 x 107 exponentially growing cells (4 x 106 OD600 units) were radiolabeled in supplemented SD medium by incubating with 30 μCi[35S]methionine per OD600 unit (express protein labeling mix [NEN, Boston, MA], sp. act. 1,200 Ci/mmol). Samples were chased by the addition of 1/100 vol of a solution containing 0.1 M ammonium sulfate, 0.3% cysteine, and 0.4% methionine. Labeled samples of 1 OD600 unit of cells were collected into chilled tubes containing 1 vol of 40 mM sodium azide. Protein extracts were prepared in 30 μl ESB by vigorous agitation with glass beads. Extracts were diluted with 1 ml IP buffer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.2% SDS), absorbed for 20 min with 50 μl 10% Staphylococcus aureus cells (Sigma Chemical Co.), and cleared by centrifugation at 12,000 g for 5 min. 0.5 μl anti-CPY antibody was added, and extracts were rotated for 1 h at room temperature. Immune complexes were collected by adding 25 μl 50% protein A/Seapharose (Pharmacia, Piscataway, NJ) per sample, and incubating an additional hour at room temperature. Protein A/Seapharose pellets were washed twice with IP buffer, and twice with detergent-free IP buffer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl). Protein was released into 30 μl ESB by heating to 100°C for 2 min. 12 μl of the supernatant were separated by SDS-PAGE and visualized by fluorography (Harlow and Lane, 1989).

Generation of SEC13-deletion Strain

RHY297 (MATa sec13-4 ura3-52 leu2-3,112 ade2-101 ade3-24 [pKR4 (ARS CEN LEU2 ADE3 SEC13)]) carries a sec3 allele (sec3-1) in which the entire SEC13 coding sequence is deleted. RHY297 was constructed by R. Hammer as follows. A 50-nucleotide oligonucleotide (SEC13-N5: 5'-CAT TTT AAA TTC TTC ATC TTC TTC AGC GAT CCC TAT GCT GAT ATA AAA TTA TCT ATC GCC TAT ATC ATC) consisting of 28 and 26 nucleotides complementary to the 5' and 3' untranslated region of SEC13, respectively, and six nucleotides creating a BamHI site (underlined) was used to mutagenize pKRI (CEN SEC13 URA3) (Roberg, K., unpublished results) using the protocol of Kunkel et al. (1987). PHR012 is a mutation-generating product that lacks the entire SEC13 coding region as judged by restriction mapping, but retains SEC13 flanking DNA. A 5-kb hisG-URA3-hisG marker cassette (modified from Alani et al., 1987; Eileledge, S., unpublished results) was inserted into the BamHI site of PHR012 to make pKRI. The PHR012 corresponds to the SEC13 region fused to Staphylococcal protein A, using the pro-
To demonstrate that both chimeras correct the sec13 secretion defect, the transport of the marker protein carboxypeptidase Y (CPY) was monitored by pulse-chase analysis. CPY is targeted to the vacuole via the ER and Golgi. The core-glycosylated p1 form of the enzyme can be resolved from the form that has received Golgi-specific modification (p2) and the mature form (M) that has been proteolytically cleaved in the vacuole (Stevens et al., 1982). Cells were grown in exponential phase at 24°C in medium containing raffinose, induced for 2 h with galactose, then shifted to 36°C for 1 h. Cells were next pulse labeled for 10 min, and then chased with excess methionine and cysteine. Lysates were prepared, and immunoprecipitated with anti-CPY antibodies. In sec13-1 mutants, at 36°C, CPY is unable to exit the ER, and remains almost exclusively in the p1 form (Fig. 3). However, upon the galactose-induced overexpression of either the NH2-terminal yeast Sec13p/COOH-terminal human SEC13Rp chimera or the NH2-terminal human SEC13Rp/COOH-terminal yeast Sec13p chimera, CPY is able to exit the ER, progress through the Golgi apparatus, and arrive in the vacuole (Fig. 3). The observation that either half of SEC13Rp can supply sufficient Sec13p activity to permit a yeast/human chimeric protein to complement the temperature-sensitive secretion defect of a sec13-1 mutant suggests that SEC13Rp and Sec13p are functionally similar.

The ability of SEC13Rp to exhibit Sec13p function was illustrated further by the viability of a yeast strain expressing an NH2-terminal yeast Sec13p/COOH-terminal human SEC13Rp chimeric protein, but containing no endogenous Sec13p (Fig. 4). To determine whether a yeast/human chimera

tionally substitute for a defective SEC13 gene. The sec13-1 allele represents a single point mutation in SEC13, and cannot support growth at temperatures above 30°C (Pryer et al., 1993). The overexpression of SEC13R cDNA from a galactose-inducible promoter in a sec13-1 strain did not restore viability at 36°C (Fig. 2 a). However, significant growth was observed at 36°C upon the galactose-induced overexpression of a chimeric construct encoding the NH2-terminal half of yeast Sec13p and the COOH-terminal half of human SEC13Rp. This chimera was constructed by first creating a ClaI restriction site at nucleotide 449 of the human cDNA, corresponding to a naturally occurring ClaI site in nucleotide 488 of the yeast gene; each ClaI site occurs roughly in the middle of the protein coding sequence. The NH2-terminal-encoding half of yeast SEC13 was then fused to the COOH-terminal-encoding half of human SEC13R, using the ClaI site as a junction (Fig. 1). Induction of a construct encoding only the NH2-terminal half of yeast Sec13p was unable to complement a sec13-1 defect (data not shown; Pryer et al., 1993), suggesting that the COOH-terminal region of Sec13p is functionally required, and is not dispensable (see Discussion). The galactose-induced overexpression of the reciprocal chimeric construct, encoding the NH2-terminal half of human SEC13Rp and the COOH-terminal half of yeast Sec13p, also complemented the sec13-1 defect, though somewhat less efficiently (Fig. 2 a).

To prove that both chimeras correct the sec13 secretion defect, the transport of the marker protein carboxypeptidase Y (CPY) was monitored by pulse-chase analysis. CPY is targeted to the vacuole via the ER and Golgi. The core-glycosylated p1 form of the enzyme can be resolved from the form that has received Golgi-specific modification (p2) and the mature form (M) that has been proteolytically cleaved in the vacuole (Stevens et al., 1982). Cells were grown in exponential phase at 24°C in medium containing raffinose, induced for 2 h with galactose, then shifted to 36°C for 1 h. Cells were next pulse labeled for 10 min, and then chased with excess methionine and cysteine. Lysates were prepared, and immunoprecipitated with anti-CPY antibodies. In sec13-1 mutants, at 36°C, CPY is unable to exit the ER, and remains almost exclusively in the p1 form (Fig. 3). However, upon the galactose-induced overexpression of either the NH2-terminal yeast Sec13p/COOH-terminal human SEC13Rp chimera or the NH2-terminal human SEC13Rp/COOH-terminal yeast Sec13p chimera, CPY is able to exit the ER, progress through the Golgi apparatus, and arrive in the vacuole (Fig. 3). The observation that either half of SEC13Rp can supply sufficient Sec13p activity to permit a yeast/human chimeric protein to complement the temperature-sensitive secretion defect of a sec13-1 mutant suggests that SEC13Rp and Sec13p are functionally similar.

The ability of SEC13Rp to exhibit Sec13p function was illustrated further by the viability of a yeast strain expressing an NH2-terminal yeast Sec13p/COOH-terminal human SEC13Rp chimeric protein, but containing no endogenous Sec13p (Fig. 4). To determine whether a yeast/human chime
Camera could complement a SEC13 deletion, the NH2-terminal Sec13p/COOH-terminal SEC13Rp chimera was transformed into the indicator strain RHY297. RHY297 is an ade2 ade3 strain in which the entire SEC13 coding sequence has been deleted; the strain carries a plasmid bearing SEC13, LEU2, and ADE3. The strain is normally dependent upon the plasmid-encoded SEC13, and is also colored, reflecting the accumulation of a red intermediate resulting from ade2-blocked adenine biosynthesis (Jones and Fink, 1981; Koshland et al., 1985). However, upon transformation with a plasmid capable of complementing the SEC13 deletion, the SEC13, ADEL, LEU2 plasmid is no longer required, and can be lost during colony growth. Plasmid loss is detected by the appearance of white sectors; in the absence of the ADEL gene product, the adenine biosynthetic pathway is blocked at an earlier stage, prior to the ade2 block, and the red-colored intermediate is not produced.

RHY297 was transformed with the construct encoding the NH2-terminal Sec13p/COOH-terminal SEC13Rp chimera protein, grown on plates containing galactose but not leucine (to maintain selection for the LEU2 marker), and analyzed by Western blot using affinity-purified anti-Sec13p antibodies as a probe (Pryer et al., 1993). Yeast Sec13p itself has a predicted molecular weight of approximately 33 kD. The yeast/human chimera, however, has a slightly heavier predicted molecular weight, since the human COOH-terminal region is 20 amino acids longer than the corresponding region of the yeast protein. Extracts from wild-type cells revealed a single band at 33 kD, representing endogenous Sec13p (Fig. 3). Extracts from RHY297 cells transformed with the yeast/human chimera construct revealed two bands: a 33-kD band representing Sec13p, and a slower-migrating band representing the chimera construct.

Figure 4. Complementation of a SEC13 deletion by the Sec13p/SEC13Rp chimera. 50 µg of protein extract from the indicated yeast strains was analyzed by Western blotting using affinity-purified anti-Sec13p antibody, as described previously (Pryer et al., 1993). Lane 1, extracts from wild-type yeast; lane 2, from wild-type yeast expressing the Sec13p/SEC13Rp chimera; lane 3, from a SEC13-deletion strain expressing the Sec13p/SEC13Rp chimera.

When the RHY297 strain containing the chimera construct was grown on plates containing galactose but not leucine, we discovered that the galactose-induced overexpression of SEC13Rp inhibited the growth of a sec13-1 mutant strain at 24°C (Fig. 2 b), implying that the NH2-terminal half of Sec13p and the COOH-terminal half of Sec13p also inhibited growth of the sec13-1 strain at 24°C (Fig. 2 b), implying that the NH2-terminal half of Sec13p was responsible for this growth inhibition. Consistent with this interpretation, the NH2-terminal Sec13p/COOH-terminal Sec13Rp chimera produced no obvious phenotype at 24°C.

Human SEC13Rp Specifically Inhibits Growth of a sec13-1 Mutant

In the course of the complementation experiments, we discovered that the galactose-induced overexpression of SEC13Rp inhibited the growth of a sec13-1 mutant strain at permissive temperatures. Although this strain normally grows well at 24°C, cell growth was dramatically inhibited by the induction of SEC13Rp (Fig. 2 b). Galactose-induced overexpression of SEC13Rp produced no evident phenotype in a wild-type strain or in strains carrying temperature-sensitive alleles of SEC12, SEC16, SEC17, or SEC18, suggesting that the observed effect was specific for the sec13-1 strain (Fig. 5). Overexpression of the chimera encoding the NH2-terminal half of SEC13Rp and the COOH-terminal half of Sec13p also inhibited growth of the sec13-1 strain at 24°C (Fig. 2 b), implying that the NH2-terminal half of Sec13Rp was responsible for this growth inhibition. Consistent with this interpretation, the NH2-terminal Sec13p/COOH-terminal Sec13Rp chimera produced no obvious phenotype at 24°C. The inhibitory effect of SEC13Rp expression on the growth of a sec13-1 strain at 24°C suggests that both SEC13Rp and Sec13-1p may interact with the same protein or substrate, and thus may participate in the same step or pathway. For example, SEC13Rp may titrate out a Sec13p target by binding to it unproductively.

Subcellular Localization of SEC13Rp

To explore further the function of SEC13Rp in mammalian cells, we raised rabbit serum against a hybrid protein of Staphylococcus protein A fused to SEC13Rp. Antibodies specific for SEC13Rp were affinity-purified using a hybrid protein composed of E. coli β-galactosidase fused to SEC13Rp. Purified antibodies recognized a single prominent band with

Figure 5. Specificity of SEC13Rp-induced growth inhibition. Indicated yeast strains containing a galactose-inducible SEC13Rp construct were incubated at 24°C in the presence of galactose. Strains used were: DSY174 (wild-type), DSY223 (sec13), DSY216 (sec13), DSY228 (sec16), DSY232 (sec17), and DSY236 (sec18).
Figure 6. Specificity of antisera to the Sec13Rp protein. 50 μg of the indicated cell extracts were subjected to Western analysis and probed using the affinity-purified anti-SEC13Rp antibody. Lane 1, wild-type yeast; lane 2, wild-type yeast+pGAL-SEC13Rp; lane 3, CHO cells; lane 4, COS cells. The anti-SEC13Rp antibody recognizes a single predominant species of the predicted molecular weight, 36 kD.

Figure 7. Localization of SEC13Rp by immunofluorescence. SEC13Rp appears in a perinuclear distribution in (a) CHO and (b) COS cells. Immunofluorescence performed using affinity-purified anti-SEC13Rp antibodies. Magnification: ×700.

Discussion

This report provides strong evidence that the function of Sec13p has been highly conserved through evolution. In yeast, Sec13p is required for vesicle budding from the ER, and has been identified as a constituent of the vesicle-coating protein complex designated COPII (Pryer et al., 1993; Barlowe et al., 1994). We have shown that two reciprocal human/yeast chimeric Sec13 constructs can each complement a sec13-1 mutant, and can rescue both the growth defect and the secretion defect. We have also shown that one of these chimeric constructs can complement a deletion of SEC13. In addition, we have demonstrated that the human SEC13Rp protein itself inhibits the growth of a sec13-1 mutant, but not of either wild-type yeast or mutants in SEC12, SEC16, SEC17, or SEC18. We also show that SEC13Rp is located in the transitional ER, in a distribution identical to that previously observed for mammalian Sec23. Finally, we show that the cellular distribution of SEC13Rp is insensitive to BFA treatment, consistent with the behavior previously observed for mammalian Sec23, but not for coatamer components.

Complementation of the growth defect of a sec13-1 mutant at 36°C represents a stringent assay that requires no presumptions about the specific function of Sec13p. The ability of both yeast/human chimeric proteins to complement a sec13-1 mutant implies that in both cases, the human region of the chimeric protein is fulfilling the function or functions normally performed by the corresponding region of the yeast protein. The ability of both chimeras to restore CPY transport in a sec13-1 strain specifically demonstrates complementation of the ER to Golgi transport defect characteristic of sec13-1 mutants.

If the two reciprocal chimeras complement both the growth defect and the secretion defect of a sec13-1 mutant, then why does the entire SEC13R cDNA not complement either defect? We believe that there are at least two contributing factors. First, we would suggest that although both halves of human SEC13Rp can function in yeast, they do not function at quite the same level of wild-type Sec13p; this would explain why the full-length SEC13Rp protein, representing the sum of two sub-optimal halves, cannot rescue the sec13-1 secretion defect. Second, we would propose that in a sec13-1 strain, the NH2-terminal region of SEC13Rp is toxic, resulting in the growth defect observed at 24°C in strains...
Figure 8. By electron microscope immunolabeling of (a) insulin or (b) acinar rat pancreatic cells, SEC13Rp is restricted to the transitional area of the ER. Transitional elements (TE) of the ER with associated transfer vesicles (asterisks); the arrow in the inset indicates a labeled bud on a transitional cisterna; G, Golgi complex; CV, condensing vacuole in the Golgi region. Note that the dense cytosolic matrix in the transitional area of b is also labeled in addition to transfer vesicles. See Table I for the quantitation of the immunogold labeling. Magnifications: (a) ×53,000 (inset, ×72,000); (b) ×54,000. Bars: (a and b) 0.5 μm; (inset) 0.1 μm.

Table I. SEC13Rp Immunogold Labeling of Transitional Area, ER, and Golgi of Pancreatic Acinar and Insulin Cells

<table>
<thead>
<tr>
<th></th>
<th>Acinar cell</th>
<th>Insulin cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER (n = 10)</td>
<td>0.34</td>
<td>0.18</td>
</tr>
<tr>
<td>Transitional</td>
<td>61 ± 13</td>
<td>110 ± 23</td>
</tr>
<tr>
<td>area* (n = 10)</td>
<td>(54 ± 6 vesicles per μm²; 28% ± 4% of vesicles labeled)</td>
<td>(105 ± 15 vesicles per μm²; 48% ± 7% of vesicles labeled)</td>
</tr>
<tr>
<td>Golgi (n = 10)</td>
<td>1 ± 0.7</td>
<td>2 ± 1</td>
</tr>
</tbody>
</table>

n, number of pictures evaluated. Quantitation was performed as described previously (Orci et al., 1991).
* Including the budding front of the transitional ER, vesicles, and intervening cytosol.
expressing either the full-length SEC13Rp protein or the NH₂-terminal SEC13Rp/COOH-terminal Sec13p protein. Although the precise reason for this toxicity is not known, the observation that it is only seen in a sec13 mutant, and not in either a wild-type strain or in other sec mutants, suggests a synthetic lethal interaction between SEC13R and sec13-1, and implies that sec13-lp and SEC13Rp participate in the same pathway, and perhaps compete for a common target. The ability of the NH₂-terminal SEC13Rp/COOH-terminal Sec13p protein to rescue a sec13-1 mutant, suggests that the toxicity associated with the NH₂-terminal region of SEC13Rp develops over a period of time longer than that encompassed by the pulse-chase assay.

Localization of SEC13Rp to the transitional ER and associated transport vesicles represents an important observation. These data not only situate SEC13Rp in precisely the area expected for a mammalian protein involved in ER to Golgi transport, but also emphasize that SEC13Rp is concentrated at this level. This is strong evidence that SEC13Rp is specifically involved in ER to Golgi transport. If SEC13Rp is in fact a component of a mammalian COPII complex, then these data would suggest that COPII is involved solely in transport between the ER and the Golgi apparatus, and, unlike coatomer, is not involved in intra-Golgi transport.

The observation that SEC13Rp does not redistribute upon BFA treatment is encouraging because it places SEC13Rp and mammalian Sec23p in a different category from all the known coatomer components. Furthermore, since BFA is known to inhibit the binding of ARF to donor membranes, it is tempting to speculate that ARF is not involved in the recruitment of SEC13Rp and mammalian Sec23p; perhaps this function is fulfilled by Sar1.

Functional complementation of a yeast mutant by a human/yeast chimera has been reported for a number of different genes. Mutants in yeast genes encoding the transcription factor SWI2p (Khavari et al., 1993), the nucleotide exchange factor CDC25p (Wei et al., 1992), the RNA-binding protein SNPlp (Smith and Barrell, 1991), and the ABC-transporter STE6p (Teem et al., 1993) have all been complemented by chimeric constructs consisting of fused regions of the wild-type yeast gene and its putative mammalian homologue. Not only does such complementation demonstrate the conservation of function between yeast and human gene products, but it can also allow for the detailed study of the mammalian protein, as is illustrated by the work by Teem et al., (1993) on the cystic fibrosis transmembrane conductance regulator.

Together, the data presented in this report argue that the function of Sec13p has been conserved from yeast to humans, and also support the existence of a mammalian COPII complex. More generally, our results emphasize that chimera studies represent a useful, easily-adaptable approach for applying the tools of yeast genetics to the study of conserved mammalian proteins.

We are particularly grateful to R. Hammer and P. Espenshade for advice and encouragement. We thank F. Solomon and H. Lodish for reviewing drafts of this manuscript. We thank M. Elrod-Erickson, K. Roberg, J. Pomeronzt, W. Payne, E. Hong, J. and A. Shaywitz, and A. Wald for helpful discussions; we thank C. Gonzales-Agosti and members of the Solomon lab, S. Podos and members of the Kreiger lab, and H. Lodish and members of his lab for sharing their expertise, advice, and reagents.

This work was supported by the National Institutes of Health (National Institutes of General Medical Sciences) and the Searle Scholars Program (to C. Kaiser), by the Swiss National Science Foundation and the Human Frontier Science Program (to L. Orci), and by the Retinitis Pigmentosa Foundation (to A. Swaroop). C. Kaiser is a Lucille P. Markey Scholar, and this work was supported in part by a grant from the Lucille P. Markey Charitable Trust.

Received for publication 26 July 1994 and in revised form 7 December 1994.

References
membrane enzyme that catalyzes exchange of guanine nucleotide bound to ARF. *Nature (Lond.)*. 360:352-354.

