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R 
ESEARCH performed over the past few years, in par- 
ticular, has made it clear that, in addition to the 
liver, hepatocyte growth factor (HGF) 1 affects vir- 

tually every tissue in the body ranging from the nervous 
system to the immune and reticuloendothelial systems. 
Recent findings have also revealed that the biological re- 
sponses of target cells to HGF are not confined to the in- 
duction of cell proliferation and motility per se but include 
a plethora of effects such as inhibition of cell growth, in- 
duction of morphogenesis, stimulation of T cell adhesion 
to endothelium and migration, enhancement of neuron 
survival, and regulation of erythroid differentiation. Fur- 
thermore, the discoveries of the HGF receptor as Met, of 
an HGF-related factor, called HGF-like protein, and of 
HGF-like's receptor as Ron, a transmembrane tyrosine ki- 
nase similar to the HGF receptor, have added yet more 
levels of complexity to the nature of HGF and its now 
growing family. 

Structural Properties of HGF 

Hepatocyte growth factor is a mesenchymally derived hep- 
arin-binding glycoprotein that is secreted as a single-chain 
(pro-HGF), biologically inert precursor. Under appropri- 
ate conditions such as tissue damage (21), pro-HGF is con- 
verted to its bioactive form by proteolytic digestion at a 
specific site within the molecule. This proteolytic digestion 
may be mediated by urokinase plasminogen activator 
(uPA) (27) or by a protease homologous to factor XII 
(21). Mature HGF is a heterodimer, consisting of a 60,000 
Mr alpha and a 30,000 Mr beta chain held together by a sin- 
gle disulfide bond. The nucleotide sequences of human, 
rat, and mouse HGF cDNAs also predict that both chains 
of HGF are encoded by a single open reading frame re- 
sulting in a 728-amino acid polypeptide. The alpha chain 
of HGF contains a hairpin loop (of ~27 amino acids) at its 
amino terminus and four unique domains known as kringles, 
while its beta chain contains a serine protease-like struc- 
ture (26). (For in depth review, see references 20 and 30.) 
The kringle motif, an 80-amino acid double-looped struc- 
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ture formed by three internal disulfide bridges, was first 
described for many of the enzymes involved in coagulation 
and fibrinolysis. Understandably, HGF resembles several 
coagulation/fibrinolytic related proteins such as plasmino- 
gen, but these proteins have no known growth potentiat- 
ing activity comparable to HGF. Conversely, HGF has no 
known protease activity, since the characteristic amino ac- 
ids normally present in the catalytic site of serine pro- 
teases have been mutated in HGF, while the consensus se- 
quences which normally surround them still remain (26). 
These unique structural features of HGF have led to the 
assignment of HGF as the prototype of a new family of 
growth factors. 

The HGF Receptor 

Recent studies have shown that HGF transduces its multi- 
ple biological effects such as mitogenesis, motogenesis, 
metastogenesis and morphogenesis via activation of a trans- 
membrane tyrosine kinase cell surface receptor known as 
Met (2, 40). The met protooncogene was cloned and se- 
quenced before HGF itself had been cloned and was ini- 
tially discovered as an activated oncogene based on its abil- 
ity to transform normal fibroblast cell lines (4). The mature 
Met receptor is a heterodimer held together by disulfide 
bonds and consists of an alpha chain that is ~50,000 Da 
which remains entirely extracellular, and a large polypep- 
tide chain with a molecular mass of 145,000 (named the beta 
chain) which traverses the plasma membrane and contains 
the intracellular tyrosine kinase domain. Both polypeptide 
chains of the Met receptor are derived posttranslationally 
from a single chain precursor by proteolytic cleavage at a 
specific site within the precursor molecule. (For review see 
reference 9). The HGF receptor (HGFR) is expressed in 
normal epithelium of almost every tissue; however, other 
cell types such as melanocytes, endothelial ceils, microglial 
cells, neurons, hematopoietic cells, and a variety of tumor 
cell lines of various origins also express this receptor. 

HGF, the Hepatocyte and Liver Regeneration 

HGF's existence was originally postulated based on stud- 
ies in which liver regeneration was surgically stimulated by 
removal of two-thirds of the liver in rats resulting in the 
appearance of a hepatocyte mitogen in the peripheral 
blood. Following two-thirds partial hepatectomy, plasma 
HGF levels are found to be 15- to 25-fold greater than 
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those of the control animal. A similar rise in HGF also oc- 
curs sharply after acute liver injury after administration of 
chemicals such as carbon tetrachloride. The levels of HGF 
then decline within 24 h but remain elevated for the dura- 
tion of the regenerative response. Analogous changes in 
plasma HGF levels have also been described after admin- 
istration of chemicals to rats that augment liver DNA syn- 
thesis and liver weight (19), such as phenobarbital, dilan- 
tin, valium, and others that, in long term administration, 
function as liver tumor promoters, as well as in human 
liver disease whenever a massive loss of hepatocytes oc- 
curs such as in a condition known as acute fulminant hepa- 
titis (37). These findings, as well as several other direct and 
indirect pieces of evidence, implicate HGF as an important 
paracrine and perhaps endocrine regulator of liver growth. 
(For review see reference 20). 

The HGF/HGFR system may also influence other as- 
pects of liver growth and development. In addition to its 
ability to stimulate proliferation and morphogenesis of 
mature hepatocytes, HGF is linked to hepatocyte stem cell 
proliferation and differentiation (8). As stem cells in the 
liver proliferate, nearby Ito cells also undergo cell division. 
These neighboring cells express HGF pointing to a possi- 
ble paracrine effect of HGF on the growth of stem cells 
which express HGFR (8). Several studies also strongly 
suggest a role for HGF in liver embryogenesis. In situ hy- 
ridization studies reveal that HGF and HGFR expression 
is highest in the liver as compared to other tissues (Katyal 
and Michalopoulos, unpublished observations). Addition- 
ally, HGF protein is also present in the developing liver, 
especially in the hematopoietic cells (5), which may impli- 
cate HGF not only in liver formation but also in hemato- 
poiesis (see below). Other supportive evidence includes 
the finding that HGF may be involved in the transforma- 
tion of apolar embryonic hepatocytes into acinar struc- 
tures prior to the appearance of the mature hepatocyte 
plate (34) which are the same morphological changes seen 
during liver regeneration and in hepatocytes cultured in 
type I collagen gels in the presence of HGF. Direct evi- 
dence on the role of HGF in liver growth and develop- 
ment comes from very recent investigations on transgenic 
mice homozygous for a null mutation in the I-IGF gene 
(knock-out mice). These studies have revealed that such 
animals do not survive beyond day 15 of embryonic devel- 
opment with most notable defects seen in liver formation 
and architecture primarily due to an extensive loss of he- 
patic parenchyma (31). Moreover, lack of HGF expression 
also affected the development of the placenta as was evi- 
denced by a severe reduction in the number of tropho- 
blasts (31, 38). 

Other investigations have defined a fundamental role 
for HGF in mediating responses to tissue injury in other 
organs in adults. In animal models in which kidney (16) or 
lung (42) has been damaged experimentally, HGF expres- 
sion is induced markedly. This increase in HGF mRNA is 
followed by increases in the level of pro-HGF and in its 
subsequent activation by proteolytic cleavage to the bioac- 
tive heterodimeric form in the damaged tissue (21). Addi- 
tionally, when exogenous HGF is administered to these 
animals, it remarkably enhances the regeneration of the 
injured organ (20). These findings indicate that HGF is ac- 
tivated locally which may in part explain the lack of re- 
sponse to the biological effects of HGF in uninjured tis- 

sues. The discovery that the mRNAs for HGF (20) and the 
HGF receptor (23) are induced in stromal and epithelial 
cells, respectively, by inflammatory cytokines such as IL-1, 
IL-6, and TNFa also supports the idea that this ligand/re- 
ceptor system is involved in mediating inflammatory re- 
sponses to tissue injury. These studies have defined HGF 
as a major mediator of tissue repair and organ regeneration 
and underscores its potential use as a therapeutic agent for 
treating diseases such as acute liver or renal failure. 

Biological Effects of HGF on Other Cell Types 

The growth regulating effects of HGF on various cell 
types, other than hepatocytes, is now well-documented. 
(For review see references 20 and 30). One of the hallmark 
in vitro responses to HGF is the induction of cell motility 
and dissociation (scattering) of various normal and malig- 
nant epithelial cells. Based on this property, HGF was in- 
dependently purified and characterized from the culture 
medium of fibroblast cell lines such as MRC-5, and was 
named scatter factor (35). Subsequent investigations, how- 
ever, revealed that this molecule is identical to HGF (39). 
A third type of biological activity associated with HGF is 
its remarkable morphogenic effects on epithelial tissues. 
HGF is now believed to be most potent epithelial morpho- 
gen inducing formation of branching tubules and gland- 
like structures in epithelial cells derived from kidney or 
mammary tissue in vitro (24, 33). 

Based on these properties, it has been postulated that 
HGF is a mediator of epithelial-mesenchymal interaction 
and interconversion. (For a review see reference 29). Most 
tissues either express HGF mRNA or contain HGF pro- 
tein. Among these are blood (megakaryocytes, monocytes, 
leukocytes, and platelets), brain, bone marrow, liver, lung, 
kidney, placenta, spleen, and skin. The highest levels of 
HGF mRNA are detected in the adult lung, liver, skin, and 
spleen although the other tissues mentioned all contain 
detectable levels of HGF mRNA and/or protein. In gen- 
eral, HGF mRNA is expressed in stromal cells such as fi- 
broblasts, smooth muscle cells, mast cells, macrophages, 
endothelial cells, leukocytes, and megakaryocytes of vari- 
ous tissues but not in epithelial cells. HGF receptor ex- 
pression, on the other hand, is mainly detected in epithe- 
lial cells. This unique expression pattern in combination 
with the mitogenic, motogenic, and morphogenic proper- 
ties of HGF support the idea that this ligand is an impor- 
tant paracrine mediator of the interaction between the ep- 
ithelial and stromal compartments of various tissues 
during development and in the maintenance of homeosta- 
sis in adult tissues (29, 32). 

HGF has also been shown to induce mesenchymal to ep- 
ithelial conversion in fibroblasts overexpressing HGF and 
HGFR when these cells are injected into nude mice (36). 
In another investigation using cell lines derived from meta- 
naphric ridge cells of mouse embryos, it was shown that 
HGF stimulates epithelial differentiation of these mesen- 
chymal cells suggesting that this cytokine may be involved 
in the early commitment of cells in the kidney (15). The re- 
cent findings by Woolf et al. (41) show that simultaneous 
expression of HGF and HGFR occurs in the kidney mes- 
enchyme during the early development of the mouse kid- 
ney and that anti-HGF antibody inhibits the differentia- 
tion of metanephric mesenchymal cells into the epithelial 
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precursors and subsequent nephrogenesis when added to 
metanephric organ cultures. Other studies have also impli- 
cated HGF in early embryological processes such as the 
formation of the primitive streak and induction of neural 
tissues as demonstrated by studying HGF and HGFR ex- 
pression in Xenopus and chick during early stages of de- 
velopment and by ectopic application of HGF in a chick 
embryo model. (For review see reference 20.) 

The potential participation of HGF in organogenesis 
and the later stages of embryonic development has also 
been well documented by studying HGF and HGFR ex- 
pression in rodents (5, 32). As stated, recent studies have 
shown that the disruption of the HGF gene results in em- 
bryonic lethality, primarily due to defects in proper devel- 
opment of the placenta and liver (31, 38). In these studies, 
however, other organs and tissues where HGF and HGFR 
are reportedly expressed during embryogenesis (such as 
lung, kidney, and the central nervous system), appeared 
normal at the time of death (day 15 of gestation). This may 
indicate that either HGF is not essential for the early 
stages of embryogenesis or that compensation or redun- 
dancy exists in the HGF signaling network. It should be 
noted that further analysis of these animals has been ham- 
pered due to their death in utero preventing additional in- 
vestigations on the functions of HGF in other processes 
such as terminal differentiation and maturation or regen- 
eration of other tissues (31). 

It should be emphasized that although epithelial cells 
are one of the major targets of HGF, as more investiga- 
tions are conducted, it is becoming clear that nonepithelial 
cell types such as hematopoietic, lymphoid, neural, and 
skeletal muscle cells also respond to the multifaceted ac- 
tions of HGF. The first clue indicating that HGF may be 
involved in hematopoiesis came from studies on progeni- 
tor-enriched murine bone marrow cells and on several mu- 
fine myeloid progenitor tumor cell lines blocked in the 
early stages of myeloid differentiation. Such investigations 
revealed, first, that these cells express the HGFR, and sec- 
ond, that HGF synergizes with IL-3 or GM-CSF to sup- 
port the growth of these cells in culture (17, 22). Conflict- 
ing results, however, were obtained by these two 
investigations with regard to whether HGF alone stimu- 
lates mitogenesis in myeloid progenitor cell lines. Al- 
though HGF synergized with other factors to stimulate 
growth of progenitor cells, it apparently did not influence 
the pattern of myeloid differentiation since the ratio of 
macrophages to granulocytes in resultant colonies re- 
mained similar to those obtained with IL-3 or GM-CSF 
alone (17). 

Galimi et al. (10) recently reported that the HGF recep- 
tor is present in a small fraction of highly-enriched he- 
matopoietic progenitor cells from human bone marrow 
and peripheral blood and showed that, in the presence of 
erythropoietin, HGF induces the formation of colonies 
along the erythroid lineage when cultured in vitro. How- 
ever, in the presence of erythropoietin and stem cell fac- 
tor, it was demonstrated that HGF supports the growth of 
multipotent colonies (granulocyte-erythroid-megakary6- 
cyte) rather than recruiting erythroid precursors. 

The differences in the results of the experiments de- 
scribed above may be due to variations in technique such 
as culture conditions (i.e., presence or absence of particu- 
lar cytokines and doses), purity of cells, or simply because 

so few studies have addressed HGF's  involvement in he- 
matopoiesis. Additionally, whether HGF's  mitogenic/dif- 
ferentiation effects on hematopoietic stem cells are medi- 
ated through the HGFR directly or whether HGF through 
its receptor causes secretion of other modulating cytokines 
has not been addressed in studies thus far completed. Re- 
gardless of how HGF elicits such responses, the fact that 
hematopoiesis is altered at all in the presence of HGF de- 
serves further study. 

The role of the HGF family in hematopoiesis and reticu- 
loendothelial cell function is further underscored by other 
findings. It has been shown that the HGF-like receptor 
(Ron) is highly expressed in hematopoietic stem cells (12) 
and monocytes (11). Moreover, HGF-like protein (also 
known as macrophage stimulating protein) was demon- 
strated to elicit monocyte migration through Ron activa- 
tion (11). Biological activities affecting reticuloendothelial 
cells have also been described for HGF and the HGFR us- 
ing in vitro models. These include activation of the oxida- 
tive response of human neutrophils (13), promotion of ad- 
hesion and migration of a subset of human T cells (1), and 
enhancement of humoral immune responses in murine B 
cells (6). 

Recently, in vivo studies in which HGF was implanted 
into rabbits have demonstrated that HGF has angiogenic 
activities (3). Interestingly, HGF has also been linked to 
Kaposi's sarcoma (KS), a form of human neoplasm in 
which the cellular origin has not been defined, but is be- 
lieved to be an endothelial derivative. Several lines of evi- 
dence support this possibility. First, HGF is secreted by 
HTLV-II-infected T lymphocytes; secondly, HGF induces 
endothelial cells to convert to a Kaposi sarcoma tumor 
cell-like phenotype; thirdly, antibody against HGF inhibits 
the growth of KS cells in culture; and lastly, HGF is 
present in KS lesions (25). 

The presence of HGF and its receptor in specific regions 
of the developing and adult mammalian nervous system 
points to the fact that this ligand/receptor system may 
have a neurotrophic function (14). Recently, HGF was 
shown to promote the survival of motor neurons and en- 
hance the neurotrophic function of ciliary neurotrophic 
factor. In other studies, Krasnoselsky and colleagues re- 
ported that rat sciatic nerve Schwann cells express the 
HGF receptor and strongly respond to the mitogenic ef- 
fects of HGF in culture (18). 

HGF has also been examined in the context of endo- 
crine function. Studies on the effects of HGF on the endo- 
crine system show that HGF may contribute to the forma- 
tion and maintenance of organs involved in hormone 
secretion such as the pancreas and the thyroid. Using pri- 
mary organ cultures of human fetal pancreas, Otonkoski 
et al. have recently reported that HGF is the most potent 
inducer of ~-cell proliferation and formation of islet-like 
cell clusters subsequently resulting in insulin production in 
vitro (28). HGF also seems to regulate the growth and func- 
tion of the thyroid gland as revealed by in vitro studies (7). 

Although the early work on HGF was confined almost 
exclusively to one organ, the liver, researchers with wide- 
ranging scientific interests have helped over the years to 
define the multifaceted functions and target cells of HGF. 
Clearly, however, much remains to be learned about HGF, 
and more biological and physiological roles for this growth 
factor will undoubtedly be revealed. 

Zarnegar and Michalopoulos The Many Faces of Hepatocyte Growth Factor 1179 



Due to space limitation, the authors wish to acknowledge the uncited 

works of many investigators who have equally contributed to progress in 

the fields of HGF and HGFR research. Work conducted in the authors' 
laboratories has been supported in part by grants from the American 

Cancer Society (CN no. 55) and National Institutes of Health (no. 
R01ES06109-01) awarded to R. Zarnegar and by a grant from National 

Institutes of Health (Ca no. 35373) awarded to G. K. Michalopoulos. 

Received for publication 14 December 1994 and in revised form 3 April 

1995. 

References 

1. Adams, D. H., L. Harvath, D. P. Bottaro, R. Interrante, G. Catalano, Y. 
Tanaka, A. Strain, S. G. Hubscher, and S. Shaw. 1994. Hepatocyte 
growth factor and macrophage inflammatory protein 1 13: Structurally 
distinct cytokines that induce rapid cytoskeleton changes and subset- 
preferential migration in T ceils. Proc. Natl. Acad. Sci. USA. 91:71344- 
71346. 

2. Bottaro, D. P., J. S. Rubin, D. L. Faletto, A. M.-L. Chan, T. E. Kmiecik, G. F. 
Vande Woude, and S. A. Aaronson. 1991. Identification of the Hepato- 
cyte Growth Factor Receptor as the c-met proto-oncogene product. Sci- 
ence (Wash. D C). 251:802404. 

3. Bussolino, F., M. F. Di Rezo, M. Ziche, E. Bocchietto, M. Olivero, L. Nal- 
dini, G. Gaudino, L. Tamagnone, A. Coffer, and P. M. Comoglio. 1992. 
Hepatocyte growth factor is a potent angiogenic factor which stimulates 
endothelial cell motility and growth. J. Cell Biol. 119:629-641. 

4. Cooper, C. S., M. Park, D. G. Blair, M. A. Tainsky, K. Huebner, C. M. 
Croce, and G. F. Vande Woude. 1984. Molecular cloning of a new trans- 
forming gene from a chemically transformed human cell line. Nature 
(Lond.). 311:29-33. 

5. DeFrances, M. C., H. Wolf, G. K. Michalopoulos, and R. Zarnegar. 1992. 
The presence of hepatocyte growth factor in the developing rat. Develop- 
ment (Camb.). 116:387-395. 

6. Delaney, B., W. S. Koh, K. H. Yang, S. C. Strom, and N. E. Kaminiski. 1993. 
Hepatocyte growth factor enhances B-cell activity. Life Sci. 53:89-93. 

7. Dremier, S., M. Taton, K. Coulonval, T. Nakamura, K. Matsumoto, and J. E. 
Dumont. 1994. Mitogenic, dedifferentiating, and scattering effects of 
hepatocyte growth factor on dog thyroid cells. Endocrinology. 135:135- 
140. 

8. Evarts, R. P., Z. Hu, K. Fujio, E. R. Marsden, and S. S. Thorgeirsson. 1993. 
Activation of hepatic stem cell compartment in the rat: role of transform- 
ing growth factor alpha, hepatocyte growth factor, and acidic fibroblast 
growth factor in early proliferation. Cell Growth & Differ. 4:555-561. 

9. Faletto, D. L., D. R. Kaplan, D. O. Halverson, E. M. Rosen, and G. F. 
Vande Woude. 1993. Signal transduction in c-met mediated motogenesis. 
In Hepatocyte Growth Factor-Scatter Factor and c-met Receptor. I. D. 
Goldberg and E. M. Rosen, editors. Birkhuser Verlag, Basel. 107-130. 

10. Galimi, F., G. P. Bagnara, L. Bonsi, E. Cottone, A. Follenzi, A. Simeone, 
and P. M. Comoglio. 1994. Hepatocyte growth factor induces prolifera- 
tion and differentiation of multipotent and erythroid hemopoietic pro- 
genitors. J. Cell Biol. 127:1743-1754. 

11. Gaudino, G., A. Follenzi, L. Naldini, C. CoUesi, M. Santoro, K. A. Gallo, P. J. 
Godowski, and P. M. Comoglio. 1994. Ron is a heterodimeric tyrosine ki- 
nase receptor activated by the HGF homologue MSP. EMBO (Eur. Mol. 
Biol. Organ.) J. 13:3524-3532. 

12. Iwama, A., K. Okano, T. Sudo, Y. Matsuda, and T. Suda. 1994. Molecular 
cloning of a novel receptor tyrosine kinase gene, STK, derived from en- 
riched hematopoietic stem cells. Blood. 83:3160--3169. 

13. Jiang, W., M. C. Puntis, T. Nakamura, and M. B. Hallett. 1992. Neutrophil 
priming by hepatocyte growth factor, a novel cytokine. Immunology. 77: 
147-149. 

14. Jung, W., E. Castren, M. Odenthal, G. F. Vande Woude, T. Ishii, H. P. 
Dienes, D. Lindholm, and P. Schirmacher. 1994. Expression and func- 
tional interaction of hepatocyte growth factor-scatter factor and its re- 
ceptor c-met in mammalian brain. J. Cell Biol. 126:485-494. 

15. Karp, S., A. Ortiz-Arduan, S. Li, and E. G. Neilson. 1994. Epithelial differ- 
entiation of metanephric mesenchymal cells after stimulation with hepa- 
tocyte growth factor. Proc. Natl. Acad. Sci. USA. 91:5286-5290. 

16. Kawaida, K., K. Matsumoto, H. Shimazu, and T. Nakamura. 1994. Hepato- 
cyte growth factor prevents acute renal failure and accelerates renal re- 
generation in mice. Proc. Natl. Acad. Sci. USA. 91:4357-4361. 

17. Kmiecik, T. E., J. R. Keller, E. Rosen, and G. F. Vande Woude. 1992. 
Hepatocyte growth factor is a synergistic factor for the growth of he- 
matopoietic progenitor cells. Blood. 80:2454-2457. 

18. Krasnoselsky, A., M. Massay, M. C. DeFrances, G. K. Michalopoulos, R. 
Zarnegar, and N. Ratner. 1994. J. Neuroscience. 14:7284-7290. 

19. Lindroos, P., W. H. Tsai, R. Zarnegar, and G. K. Michalopoulos. 1992. 
Plasma levels of HGF in rats treated with tumor promoters. Carcinogene- 
sis (OxJ~). 13:139-141. 

20. Matsumoto, K., and T. Nakamura. 1994. Pleiotropic roles of HGF in mito- 

genesis, morphogenesis, and organ regeneration. Gann Monogr. Cancer 
Res. 42:91-112. 

21. Miyazawa, K., T. Shimomura, D. Naka, and N. Kitamura. 1994. Proteolytic 
activation of hepatocyte growth factor in response to tissue injury. J. 
Biol. Chem. 269:8966-8970. 

22. Mizuno, K., O. Higuchi, J. N. Ikhle, and T. Nakamura. 1993. Hepatocyte 
growth factor stimulates growth of hematopoietic progenitor cells. Bio- 
chem. Biophys. Res. Commun. 194:178-186. 

23. Moghul, A., L. Lin, A. Beedle, A. Kanbour-Shakir, M. C. DeFrances, Y. 
Liu, and R. Zarnegar. 1994. Modulation of c-MET proto-oncogene 
(HGF receptor) mRNA abundance by cytokines and hormones: evi- 
dence for rapid decay of the 8 kb c-MET transcript. Oncogene. 9:2045- 
2052. 

24. Montesano, R., K. Matsumoto, T. Nakamura, and L. Orci. 1991. Identifica- 
tion of a fibroblast-derived epithelial morphogen as hepatocyte growth 
factor. Cell. 67:901-908. 

25. Naidu, Y. M., E. M. Rosen, R. Zitnick, I. Goldberg, M. Park, M. Naujokas, 
P. J. Polvirini, and B. J. Nickoloff. 1994. Role of scatter factor in the 
pathogenesis of AIDS-related Kaposi sarcoma. Proc. Natl. Acad. Sci. 
USA. 91:5281-5285. 

26. Nakamura, T., T. Nishizawa, M. Hagiya, T. Seki, M. Shimonishi, A. Sug- 
imura, K. Tashiro, and S. Shimizu. 1989. Molecular cloning and expres- 
sion of hepatocyte growth factor. Nature (Lond.). 342:440-443. 

27. Naldini, L., E. Vigna, A. Bardelli, A. Follenzi, F. Galimi, and P. M. Co- 
moglio. 1995. Biological activation of pro-HGF (hepatocyte growth fac- 
tor) by urokinase is controlled by a stoichiometric reaction. J. Biol. 
Chem. 270:603-611. 

28. Otonkoski, T., G. M. Beattie, J. S. Rubin, A. D. Lopez, A. Baird, and A. 
Hayek. 1994. Hepatocyte growth factor scatter factor has insulinotropic 
activity in human fetal pancreatic cells. Diabetes. 43:947-953. 

29. Rosen, E., S. K. Nigam, and I. D. Goldberg. 1994. Scatter Factor and the 
c-Met receptor: a paradigm for mesenchymal/epithelial interaction. J. 
Cell Biol. 127:1783-1787. 

30. Rubin, J. S., D. P. Bottaro, and S. A. Aaronson. 1993. Hepatocyte growth 
factor/scatter factor and its receptor, the c- met proto-oncogene product. 
Bichim. Biophys. Acta. 1155:357-371. 

31. Schmidt, C., F. Bladt, S. Goedecke, V. Brinkmann, W. Zschiesche, M. 
Sharpe, E. Gherardi, and C. Birchmeier. 1995. Scatter factor/hepatocyte 
growth factor is essential for liver development. Nature (Lond.). 373:699- 
702. 

32. Sonnenberg, E., D. Meyer, K. M. Weidner, and C. Birchmeier. 1993. Scat- 
ter Factor/Hepatocyte Growth Factor and its receptor, the c-met tyrosine 
kinase, can mediate a signal exchange between mesenchyme and epithe- 
lia during mouse development. J. Cell Biol. 123:223-235. 

33. Soriano, J. V., M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano. 
1995. Hepatocyte growth factor stimulates extensive development of 
branching duct-like structures by cloned mammary gland epithelial cells. 
.L Cell Science. In press. 

34. Stamatoglou, S. C., and R. C. Hughes. 1994. Cell adhesion molecules in 
liver function and pattern formation. FASEB (Fed. Am. Soc. Exp. BioL ) 
J. 8:420--427. 

35. Stoker, M., E. Gherardi, M. Perryman, and J. Gray. 1987. Scatter factor is a 
fibroblast-d¢rived modulator of epithelial cell mobility. Nature (Lond.). 
327:239-242. 

36. Tsarfaty, I., S. Rong, J. H. Resau, S. Rulong, P. Pinto da Silva, and G. F. 
Vande Woude. 1994. The met proto-oncogene mesenchymal to epithelial 
cell conversion. Science (Wash. DC). 263:98-101. 

37. Tsubouchi, H., Y. Niitani, S. Hirono, H. Nakayama, E. Gohda, N. Arakaki, 
N. Sakiyama, K. Takahashi, M. Kimoto, S. Kawakami, et al. 1991. Levels 
of the human hepatocyte growth factor in serum of patients with various 
liver diseases determined by an enzyme-linked immunosorbent assay. 
Hepatology. 13:1-5. 

38. Uehara, Y., O. Minowa, C. Mori, K. Shiota, J. Kuno, T. Noda, and N. Kita- 
mura. 1995. Placental defect and embryonic lethality in mice lacking 
hepatocyte growth factor/scatter factor. Nature (Lond.). 373:702-705. 

39. Weidner, K. M., N. Arakaki, G. Hartmann, J. Vandekerckhove, S. Wein- 
gart, H. Rieder, C. Fonatsch, H. Tsubouchi, T. Hishida, Y. Daikuhara, 
and W. Birchmeier. 1991. Evidence for the identity of human scatter fac- 
tor and human hepatocyte growth factor. Proc. Natl. Acad. Sci. USA. 88: 
7001-7005. 

40. Weidner, K. M., M. Sachs, and W. Birchmeier. 1993. The Met receptor ty- 
rosine kinase transduces motility, proliferation, and morphogenic signals 
of scatter factor/hepatocyte growth factor in epithelial cells. Z Cell Biol. 
121:145-154. 

41. Woolf, A. S., M. Kolatsi-Joannou, P. Hradman, E. Andermarcher, C. 
Moorby, L. G. Fine, P. S. Jat, M. D. Noble, and E. Gherardi. 1995. Roles 
of hepatocyte growth factor/scatter factor and the Met receptor in the 
early development of the metanephros. Z Cell Biol. 128:171-184. 

42. Yanagita, K., K. Matsumoto, K. Sekiguchi, H. Ishibashi, Y. Niho, and T. 
Nakamura. 1993. Hepatocyte growth factor may act as a pulmotrophic 
factor on lung regeneration after acute lung injury. J. Biol. Chem. 268: 
21212-21217. 

The Journal of Cell Biology, Volume 129, 1995 1180 


