ON THE DIFFERING APPEARANCE OF INTRANUCLEAR AND CYTOPLASMIC GLYCOGEN IN LIVER CELLS IN GLYCOGEN STORAGE DISEASE

H. SHELDON, M. SILVERBERG, and I. KERNER. From the Pathological Institute, McGill University, and The Montreal Children’s Hospital, Canada

With new methods of preparing thin sections for electron microscopy, glycogen has been identified in the cytoplasm of liver cells as dense particles of various sizes (3, 4, 7, 9). Glycogen does not usually occur within the nucleus, but it has been described there in a variety of pathological conditions (1). This report concerns the appearance of glycogen in the nucleus of liver cells from a patient with glycogen storage disease, type II (von Gierke’s disease).

MATERIALS AND METHODS

Specimens of liver were obtained from a wedge biopsy of a 6-year-old male patient (MCH-135536) with hepatomegaly, retarded physical development, a flat adrenalin tolerance curve, and abnormal liver function tests. Markedly decreased glucose-6-phosphatase and normal debrancher enzyme activity was found in the specimen of liver. For electron microscopy, the tissue was fixed for 1 hour in either a cold 1 per cent potassium permanganate or osmium tetroxide solution buffered to pH 7.4 in sodium Veronal acetate which contained a mixture of salts (13). Dehydration in graded alcohols was followed by embedding in Epon 812 (5). Sections were cut with a glass knife on either an LKB or Porter-Blum microtome, mounted on carbon-coated Formvar films, stained with lead hydroxide according to either Watson (12) or Millonig (6), and examined in an RCA EMU-3E electron microscope.

For light microscopy, specimens were fixed in alcohol or cobalt formalin, embedded in paraffin and stained with Best’s carmine for glycogen, or haematoxylin and eosin. Frozen sections were made for fat stains.

The stain for glycogen was controlled by diastase digestion which removed the nuclear and cytoplasmic material which stained with Best’s carmine.

OBSERVATIONS

The large liver cells contain much glycogen in their cytoplasm when seen in the light microscope. Many liver cells contain a large centrally placed intranuclear glycogen body which stains in the same way as the cytoplasmic glycogen (Fig. 1). Because of the staining qualities of this body, it can be differentiated from the nucleolus or other intranuclear inclusions; Pollister and Himes have recently discussed the identification of intranuclear glycogen (8). Fat stains show small lipid droplets in the cytoplasm of most of the liver cells.

Electron microscope observations show that the cytoplasm of these liver cells contains closely packed, large, dense rosettes which are fairly

FIGURE 1

This light micrograph of a section of liver from glycogen storage disease, type I, was stained with Best’s carmine stain for glycogen. It shows the presence of glycogen within the nucleus of a liver cell (at arrow). Magnification, approximately 1000.

FIGURE 2

This electron micrograph of a thin section of liver from the same patient shows the appearance of the glycogen in the cytoplasm and within the nucleus of the cell. Even at this comparatively low magnification one can see a difference in the particle sizes. The nuclear envelope shows numerous interruptions in its circumference (arrows). The mitochondria (m) in this cell do not differ from those which have been described in normal liver cells. This specimen was fixed in potassium permanganate. Magnification, approximately 11,000.
uniform in size; they measure about 950 A, and conform to the descriptions of cytoplasmic glycogen in thin sections as reported by Drochmans (3), Karrer (4), Millonig and Porter (7), and Revel, Napolitano, and Fawcett (9). After establishing the generally similar appearance of the glycogen particles in stained specimens which had been fixed with either osmium tetroxide or potassium permanganate, we found it convenient to study chiefly the permanganate-fixed material.

A single liver cell is shown in Fig. 2, where abundant cytoplasmic glycogen can be seen. The mitochondria are not remarkable, and the elements of the endoplasmic reticulum, both rough and smooth surfaced, are scanty in these liver cells. Most cells contain appreciably more fat than is shown here, and many cells contain dense bodies which may be lysosomes. The nucleus in the cell in Fig. 2 is bounded by a convoluted envelope in which well defined nuclear pores can be seen. The majority of the cytoplasmic glycogen particles appear larger than the stomata of the nuclear pores. In the centre of the nucleus, separated from the nuclear envelope by a clear band of nucleoplasm, there is an agglomeration of dense, granular glycogen material which appears particulate at higher magnifications (Fig. 3). The intranuclear glycogen is different from the cytoplasmic glycogen in that the particles are demonstrably smaller than the rosettes in the cytoplasm. They are approximately 300 A in diameter. It is possible that the material in the nucleus only appears particulate, and that the discrete nature of the granules may be an illusion of the thin section. Conceivably, the particles may be attached to one another like pearls on a string. The particles of intranuclear glycogen have a smaller diameter than the openings in the nuclear envelope. There are also small (50 A) densities in both the cytoplasmic and intranuclear glycogen particles, as described previously by Revel, Napolitano, and Fawcett (9).

DISCUSSION

A variable appearance of glycogen in thin sections has been described by those investigators who have shown that different methods of preparation result in differences in its appearance (4, 7, 9). In the present study we need to account for different appearances in the same cell where such factors as autolysis, osmolarity, pH, temperature and nature of the fixative, and embedding material are constant. Even the fact that a large particle may only be partly included in a given section cannot explain the difference in appearance between the populations of cytoplasmic and intranuclear glycogen granules. Because glycogen is known to vary in its molecular weight, and a range of particle sizes has been visualized in other studies, the suggestion has been made that the larger particles may represent aggregates of smaller units (4). This could be true in the present instance, but it seems odd then that there are no large particles among the small ones in the nucleus.

There are reasons to expect variations in the morphology of glycogen molecules; it has been said that no two molecules are identical. In any cell it would be difficult to imagine a population of glycogen molecules in which none were being either synthesized or degraded. Stetten states that there are probably many glycogens, and glycogen might better be used as a generic rather than a specific term (11).

A situation in which one might expect to find a more homogeneous population of glycogen molecules is any one of the glycogen storage diseases. Since glycogen can be synthesized but not broken down, it accumulates within the cell. In type I glycogen storage disease, on which the present observations were made, there is a deficiency of glucose-6-phosphatase. Deficiency in this enzyme permits the synthesis of normal glycogens

Figure 3

This electron micrograph of a thin section of liver from glycogen storage disease, type I, shows the appearance of intranuclear and cytoplasmic glycogen at higher magnification. A mitochondrion is shown at m. The nuclear envelope runs from the upper right to the lower left. This specimen was fixed in osmium tetroxide. Magnification, approximately 32,000.
This simplified scheme for glycogenesis (A) and glycogenolysis (B) illustrates the role of some of the enzymes which have been identified in glycogen synthesis and degradation. From the diagram one can see that a branched glycogen is formed by the action of amylase (1→4 → 1→6) transglycosidase; such a branched glycogen can be debranched by amylase (1→6) glucosidase. Deficiency of either of these enzymes may result in a glycogen storage disease, as may a deficiency in phosphorylase. In the present case, glucose-6-phosphatase (*), the last step in the glycogenolytic pathway (B) is absent.

SUMMARY

Light and electron microscope observations on liver cells from a case of glycogen storage disease in which there is a deficiency of glucose-6-phosphatase show the presence of glycogen within the nucleus of many cells. Electron micrographs demonstrate that the particles of glycogen within the nucleus are uniformly smaller than those in the cytoplasm.

Note Added in Proof. A recent study on glycogen storage disease has come to our attention (SALAMON, J. C., HABIB, R., and BERNHARD, W., *Étude au microscope électronique de la glycogénose hépatique*, Path. et Biol., 1961, 9: 1251) in which intranuclear glycogen deposits are identified but no comment is made on the differing size of the populations of intranuclear and cytoplasmic particles.

The technical assistance of P. M. Spicer, A. Strömblad, and B. Jönsson is gratefully acknowledged.

This study was supported by Grant A-4422 from the United States Public Health Service, National Institute of Arthritis and Metabolic Diseases, and by Dominion Provincial Health Grant 604-13-58. Dr. Sheldon is a Markle Scholar in Medical Science.

Received for publication, January 25, 1962.

REFERENCES

2. COST, G. T., Glycogen structure and enzyme deficiencies in glycogen storage disease, *Harvey Lectures*, 1953, 48, 145.

