Cell Surface Expression of Receptor Protein Tyrosine Phosphatase RPTPμ Is Regulated by Cell–Cell Contact

Martijn F. B. G. Gebbink, Gerben C. M. Zondag, Gregory M. Koningstein, Elles Feiken, Richard W. Wubbolts, and Wouter H. Moolenaar

Division of Cellular Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands

Abstract. RPTPμ is a transmembrane protein tyrosine phosphatase with an adhesion molecule-like ectodomain. It has recently been shown that RPTPμ mediates homophilic interactions when expressed in insect cells. In this study, we have examined how RPTPμ may function as a cell contact receptor in mink lung epithelial cells, which express RPTPμ endogenously, as well as in transfected 3T3 cells. We find that RPTPμ has a relatively short half-life (3–4 hours) and undergoes posttranslational cleavage into two noncovalently associated subunits, with both cleaved and uncleaved molecules being present on the cell surface (roughly at a 1:1 ratio); shedding of the ectodomain subunit is observed in exponentially growing cells. Immunofluorescence analysis reveals that surface expression of RPTPμ is restricted to regions of tight cell–cell contact. RPTPμ surface expression increases significantly with increasing cell density. This density-induced upregulation of RPTPμ is independent of its catalytic activity and is also observed when transcription is driven by a constitutive promoter, indicating that modulation of RPTPμ surface expression occurs posttranscriptionally. Based on our results, we propose the following model of RPTPμ function: In the absence of cell–cell contact, newly synthesized RPTPμ molecules are rapidly cleared from the cell surface. Cell–cell contact causes RPTPμ to be trapped at the surface through homophilic binding, resulting in accumulation of RPTPμ at intercellular contact regions. This contact-induced clustering of RPTPμ may then lead to tyrosine dephosphorylation of intracellular substrates at cell–cell contacts.

Receptor-like protein tyrosine phosphatases (receptor PTPs) represent a new family of transmembrane proteins that are thought to transduce external signals by dephosphorylating phosphotyrosine residues on intracellular substrates (for review see Walton and Dixon, 1993). Although the receptor PTPs are growing in number and diversity, little is known about the nature of their extracellular ligands and their normal intracellular activities. It is also unknown where at the cell surface receptor PTPs are localized and how delivery and localization to the cell surface is regulated.

We have recently cloned and characterized a mammalian receptor PTP, termed RPTPμ, which has an ectodomain similar to both the Ig-like and fibronectin type III–like domains of cell adhesion molecules (Gebbink et al., 1991). We and others have shown that RPTPμ can mediate cell–cell adhesion when expressed in nonadherent insect cells (Gebbink et al., 1993a; Brady-Kalnay et al., 1993). RPTPμ-mediated cell adhesion is calcium independent and does not require a functional intracellular catalytic domain. Cell–cell adhesion can also be mediated by a closely related receptor PTP, termed RPTPκ (Jiang et al., 1993), but despite their structural resemblance, RPTPμ and RPTPκ fail to undergo heterophilic interactions (Zondag et al., 1995). These results strongly suggest that RPTPμ and related receptor PTPs serve a role in cell–cell recognition and signaling. In general, cell–cell signaling is fundamental to embryonic development, tissue renewal, and tumor suppression. In particular, by coupling cell–cell interaction to the regulation of protein tyrosine phosphorylation, RPTPμ might transduce signals involved in contact-mediated growth inhibition and differentiation. However, experimental data on RPTPμ functioning within a monolayer of mammalian cells are still lacking.

To examine how RPTPμ may function in contact-mediated signaling, we have studied the mechanisms that control the disposition and distribution of RPTPμ at the surface of mammalian cells as a function of cell–cell contact. Through biochemical and immunofluorescence analysis of mink lung epithelial cells, which express RPTPμ endoge-
nously, and 3T3 cells stably transfected with wild-type or mutant RPTPα cDNAs, we show that surface expression of RPTPα increases with cell density and is regulated by cell–cell contact. The results lead to a model in which homophilic binding causes newly synthesized RPTPα to accumulate at regions of cell–cell contact. The cell biological implications of this model are discussed.

Materials and Methods

Cells

Mink lung epithelial cells (CCL64; American Type Culture Collection, Rockville, MD) mouse NIH-3T3 cells (clone 2.2; Livney et al., 1987), monkey COS cells, Rat-1 fibroblasts, human MelJuso melanoma cells, human mammary carcinoma (Lucy), and mouse N1E-N115 neuroblastoma cells were cultured in DME supplemented with 10% FCS. Porcine aortic endothelial (PAE) cells (Miyazono et al., 1988) were kindly provided by C. H. Heldin (Ludwig Institute, Uppsala, Sweden) and grown in Ham’s F-10 medium (Life Technologies, Inc., Grand Island, NY) with 10% FCS. Rat adrenal pheochromocytoma (PC12) cells were grown in DME with 10% FCS and 5% horse serum. Human umbilical vein endothelial cells were isolated by trypsin digestion of umbilical veins and cultured on fibronectin-coated plates in RPMI1640 and M199 media (1:1 mixture) with 20% human serum. SP2/0 myeloma cells and hybridomas were grown in Iscove’s medium supplemented with 10% FCS. Insect SF9 cells were grown in Grace’s medium.

cDNA Constructs

The generation of cDNAs encoding either the full-length human RPTPα or a truncated form (termed either Ex1 or X1) lacking both phosphatase domains has been described previously (Gebbink et al., 1993a). A chimeric construct (ExG) containing the extracellular domain of RPTPα fused COOH terminally to glutathione S-transferase (GST) was generated in a two-step polymerase chain reaction procedure. First, GST was amplified using pGEX (Smith and Johnson, 1988) as template using oligonucleotides 5’-GACCATACAGTAAAATGTCCCTATACTAGGT-3’ and 5’-CCCCTCTTAGAT-CATT’/q’GGAGGATGGTCGCCATGCA-3’; a fragment of RPTPα was amplified with oligonucleotides 5’-GACCATACAGTAAAATGTCCCTATACTAGGT-3’ and 5’-GACCATACAGTAAAATGTCCCTATACTAGGT-3’. Both overlapping fragments were purified on gel and mixed. Next, a fusion construct was amplified using oligonucleotides 5’-GACCATACAGTAAAATGTCCCTATACTAGGT-3’ and 5’-GACCATACAGTAAAATGTCCCTATACTAGGT-3’. This construct was subcloned into the eukaryotic expression vector pMT2.

Antibodies

To generate mAbs against the RPTPα ectodomain, we sought to produce large amounts of a secreted ectodomain fusion protein in transfected 3T3 cells, rather than in Escherichia coli. The fusion construct, termed ExG, encodes the entire ectodomain of the human RPTPα molecule (aa 1-157; Gebbink et al., 1991) fused COOH terminally to GST (Fig. 1A). NIH-3T3 cells transfected with this construct secrete the ExG protein into the medium, from which it was readily purified with glutathione beads (yield: ∼1 mg/liter culture medium; Fig. 1B) and then used for immunizing mice. Mice were injected intraperitoneally three times with ∼50 μg protein bound to glutathione Sepharose beads (Pharmacia, Uppsala, Sweden) at 2 wk intervals. 6 wk after the last immunization, one mouse was selected and boosted intravenously with ExG, eluted from the Sepharose beads. After 3 d, the mouse was killed and spleen cells were fused with SP2/0 myeloma cells to generate hybridoma cell lines according to Harlow and Lane (1988). Hybridoma supernatants were tested by ELISA and FACS® analysis. Supernatants were tested for recognizing human RPTPα expressed on the surface of transfected 3T3 cells, which lack endogenous RPTPα. The negative hybridomas were selected and cloned. Fig. 1C shows a representative FACS® analysis of RPTPα-expressing cells using mAb 3D7; this mAb recognizes not only human but also rodent RPTPα (endogenously expressed in mink and rat cells; see Fig. 1C and Results). Six out of seven mAbs precipitate a protein of approximately 195 kD. D, lanes 2–8; these mAbs also detect a cleavage product of ∼100 kD, which will be detailed under Results.

Antiserum 37 (Ab37) raised against a synthetic peptide corresponding to the COOH terminus of RPTPα has been described previously (Gebbink et al., 1991). Mouse mAb 3G4 (Ig2b2) was raised against the extracellular fibronectin type III repeats of human RPTPα (Gebbink et al., 1993a). An anti-GST mAb, 2F3, was obtained during the same screen. mAb 108, recognizing the extracellular domain of the EGF receptor, rabbit polyclonal anti-EGFR COOH terminal antiserum and anti-PLCγ (Margolis et al., 1989) were kindly provided by J. Schlessinger (New York University). Anti-diacetylgluceroxin kinase mAbs (Schaap et al., 1993) were kindly provided by D. Schaal (The Netherlands Cancer Institute). For immunoprecipitation of phosphotyrosine-containing proteins, 1 μg antiphosphotyrosine antibody PY20 (Affiniti Research Products Ltd., UK) was used per milligram of total protein. For anti-phosphotyrosine immunoblots, antibody 4G10 (Upstate Biotechnology, Inc., Lake Placid, NY) was used.

Transient Expression in COS Cells and Insect SF9 Cells

COS cells were transfected using the calcium phosphate precipitation method described by Gebbink et al. (1991). Insect SF9 cells were infected with recombinant Ac-PvLhFL baculovirus (Gebbink et al., 1993a) for 24 h.

Stable Transfection of 3T3 Cells

Mouse NIH 3T3 cells (clone 2.2, which lacks endogenous EGF receptors; Livney et al., 1987) were cotransfected with the appropriate cDNA construct and a vector with the neomycin resistance gene (pSV2-neo; Sviak et al., 1984) using the calcium phosphate precipitation method. Stable transfectants were selected by G418 resistance (Gibco Life Technologies, Inc.). Single-cell subclones were generated by limited dilution.

Flow Cytometry

3T3 cells were washed with PBS and incubated for 10 min in PBS containing 0.5 mM EDTA and 0.02% (wt/vol) NaN3. Strongly adherent lung cells were collected by incubation for 10 min with trypsin + EDTA containing 0.02% NaN3. Cells were harvested by centrifugation and resuspended; 106 cells were used per staining. FACS® analysis was done in indirect immunofluorescence with fluorescein-conjugated goat anti–mouse F(ab)2 (Zymed Laboratories, Inc., South San Francisco, CA) using a FACScan instrument (Becton Dickinson & Co., Mountain View, CA).

Metabolic Labeling

Cells grown in 10-cm dishes were washed twice with DME and then preincubated for 45 min in methionine-free minimal essential medium. Cells were labeled with 50 μCi/ml [35S]methionine (Amersham International, Amersham, UK) for different time periods. SF9 cells were labeled in methionine-free Grace’s medium (Life Technologies, Inc.).

Cell Surface Iodination

Cells grown in 10-cm plates were washed three times with PBS and incubated for 15 min in 500 μl PBS with 10 μl lactoperoxidase (100 μg), 10 μl Na2S2O4 (1 mM; Amersham) and 25 μl freshly prepared H2O2 (0.1% in PBS). After 7.5 min of incubation, fresh lactoperoxidase (10 μl) and H2O2 (25 μl) were added. Iodinated cells were lysed and RPTPα precipitated with mAb 3D7 followed by SDS-PAGE analysis and autoradiography.

Immunoprecipitation and Immunoblotting

Cells were washed three times with ice-cold PBS and lysed in NP-40 lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 10% glycerol, 1% NP-40, 2 mM PMSF, 5 μg/ml leupeptin, 2.5 μg/ml aprotinin). After centrifugation, the supernatant was preclotted with protein A-Sepharose (Pharmacia). When polyclonal antibody Ab37 was used, an equal volume of 2× BUSS buffer (1× BUSS: 150 mM NaCl, 10 mM NaH2PO4, pH 7.8, 1 mM DTT, 1% bovine serum albumin, 0.5% SDS, and 1% NP-40) was added. Protein A-Sepharose preclotted with specific antibodies was added, and lysates were incubated for 2 h. Immune complexes were washed three times with lysis buffer, transferred to a new tube, and washed once again. Where indicated, the immunoprecipitates were incubated for 2 h with 3 U Endo F (Boehringer Mannheim, Mannheim, Germany) after boiling for 1 min in 20 μl Endo F digestion buffer (0.25 M NaAC, pH 6.1, 20 mM EDTA, 10 mM β-mercaptoethanol, 0.1% SDS), subsequent cool-
Figure 1. Generation and analysis of mAbs against the RPTP_μ ectodomain. (A) Schematic representation of the RPTP_μ-GST fusion construct (ExG) compared with full-length RPTP_μ. MAM represents the domain homologous to meprin, A5 and μ (Beckmann and Bork, 1993); Ig is the immunoglobulin-like domain; and FNIII is the fibronectin type III-like repeat. The amino acid sequence linking RPTP_μ and GST is indicated. (B) SDS-PAGE analysis of ExG protein purified from conditioned medium from ExG-transfected 3T3 cells (Coomassie blue staining). Purified ExG protein was treated with Endo F as indicated. Molecular mass standards are in kilodaltons. (C) Flow cytometric analysis of cell surface expression on untransfected 3T3, stably transfected 3T3[FL], and mink lung cell (MvLu) cultures. Cells were harvested and stained with anti-RPTP_μ mAb (3D7) or control antibody (anti-GST mAb 2F3). (D) SDS-PAGE analysis of anti-RPTP_μ immunoprecipitates. Lysates from 3T3[FL] cells labeled with [35S]methionine for 2 h were precipitated with polyclonal COOH-terminal antipeptide antibody 37 (lane 1), control antibody (anti-GST mAb 2F3; lane C), or with the following anti-RPTP_μ mAbs: lane 2, 4B7 (isotype: IgG2a/K); lane 3, 2G1 (IgG2a/K), lane 4, 2D7 (IgG2a/K); lane 5, 3D7 (lgG2a/K); lane 6, 1E1 (lgG1/k); lane 7, 1D9 (lgG2b/k); and lane 8, 2C10 (lgG2b/k). It is seen that mAbs 2D7 (lane 4) and 1E1 (lane 6) precipitate RPTP_μ less efficiently (probably due to the low affinity of these IgG1 isotypes for protein A, rather than a lower affinity for RPTP_μ, since both mAbs work well in FACS[®] analysis; not shown). MAb 2G1 (lane 3) is seen to be less specific. The mAbs precipitate both the uncleaved form of RPTP_μ (200 kD) as well as a cleaved form (100-kD doublet).

Immunofluorescence Microscopy

RPTP_μ-expressing cells were grown on glass coverslips, fixed in PBS containing 4% paraformaldehyde, and incubated with mAb 3D7 followed by fluorescent staining using FITC-conjugated goat anti-mouse F(ab')₂. RPTP_μ staining was analyzed using a confocal microscope (model MRC-600; Bio-Rad Laboratories, Richmond, CA).

Results

Endogenous Expression of RPTP_μ

Little is known about the expression pattern of the RPTP_μ protein; the highest mRNA levels have been found in murine lung, heart, and brain tissue (Gebbink et al., 1991). As shown in Fig. 2, immunoprecipitation and immunoblot experiments reveal that RPTP_μ is expressed in many different cell types, including human and porcine vascular endothelial cells, human mammary carcinoma and melanoma cells, as well as in mink lung epithelial cells and Rat-1 fibroblasts, but not in NIH-3T3 cells, PC12 pheochromocytoma cells, nor in N1E-115 neuroblastoma cells. The highest endogenous expression is observed in mink lung epithelial cells; these cells express about half the levels found in stably transfected NIH-3T3 fibroblasts.

Biosynthesis and Processing of RPTP_μ: Two-subunit Structure and Shedding of the Ectodomain

Virtually nothing is known about the biosynthesis of RPTP_μ. We used mink lung epithelial cells and transfected 3T3 fibroblasts for biosynthesis analysis because these cells show the highest expression levels. As shown in Fig. 3 A, a COOH-terminal antibody precipitates not only the mature 195-kD RPTP_μ protein but also a proteolytic product of RPTP_μ (100-kD doublet). Similar RPTP_μ pro-
surface-iodinated mink cells reveals that both the cleaved
proteolytic product is also detected in all cell types tested.

Figure 2. Expression of RPTPμ in various cell lines. RPTPμ was
immunoprecipitated from 1 mg total protein using mAb 3D7 and
analyzed by immunoblotting using anti-COOH-terminal Ab 37.
Those following cells were analyzed: PC12, rat adrenal pheochro-
mocytoma; N115, mouse neuroblastoma; Rat-1, rat fibroblast; PAE,
porcine aortic endothelial cells; HUVEC, human umbilical
vein endothelial cells; 3T3, mouse NIH-3T3 fibroblasts; 3T3-
RPTPμ/FL, 3T3 cells (3T3[FL]) transfected with full-length
RPTPμ cDNA; 3T3-RPTPμ/ExJ, 3T3 cells (3T3[XJ]) transfected
with truncated RPTPμ cDNA, lacking the entire catalytic
domain (and thus not recognized by COOH-terminal Ab 37);
Mv1LU, mink lung cells; Lucy, human ovary carcinoma; Mel-
Juso, human melanoma. Both mAb 3D7 and Ab37 recognize
the mouse homolog of RPTPμ, as determined by transient transfection
of the mouse cDNA in COS cells (not shown). Note that, in
addition to the 195-kD full-length RPTPμ protein, the 100-kD
proteolytic product is also detected in all cell types tested.

The proteolytic products have recently been detected by immunoblot
analysis (Brady-Kalnay and Tonks, 1994). Treatment of the
immunoprecipitates with Endo F, which removes N-linked carbohydrates, reduces the size of the full-length protein to 160 kD, whereas the cleaved products migrate around 93 and 68 kD. From these results, we infer that the NH₂-terminal 100-kD fragment is exclusively extracellular, whereas the COOH-terminal component comprises a small extracellular segment (containing two glycosylation sites), the transmembrane region and the intracellular domains. We also conclude that both subunits remain associated during cell lysis.

RPTPμ cleavage is also observed in transfected 3T3 cells (Fig. 1 D), but not in transiently transfected COS cells nor in baculovirus-infected Sf9 cells (Fig. 3 A). No cleavage is observed in the ExG fusion protein lacking the transmembrane region (Fig. 1 B), indicating that membrane anchoring is required for cleavage. Taken together, our results support an RPTPμ cleavage scheme as illustrated in Fig. 3 B. A similar cleavage pattern has also been proposed for two other receptor PTPs, namely LAR (Streuli et al., 1992; Yu et al., 1992) and RPTPk (Jiang et al., 1993); the cellular protease(s) responsible remain(s) to be identified.

SDS-PAGE analysis of immunoprecipitated RPTPμ from
surface-iodinated mink cells reveals that both the cleaved
and full-length forms of RPTPμ are present on the cell
surface, at an estimated ratio of approximately 1:1 (Fig. 3 C). A similar ratio of cleaved/uncleaved RPTPμ molecules was found in the 3T3 transfectants, as shown below (see Fig. 5 B).

The RPTPμ cleavage scheme shown in Fig. 3 B immediately suggests that the NH₂-terminal cleavage product, comprising almost the entire ectodomain, may be released into the extracellular environment. To test this possibility, conditioned medium and total cell lysates from transfected 3T3 cells were analyzed by immunoprecipitation. Fig. 3 D shows that, indeed, the 100-kD ectodomain fragment can be immunoprecipitated from the medium of exponentially growing 3T3 transfectants, but not from medium of non-transfected control cells; in total cell lysates, the same antibody precipitates both uncleaved RPTPμ and the cleaved ectodomain (Fig. 3 D).

The delivery of newly synthesized RPTPμ to the cell
surface and its processing was further examined by [%5S]methionine pulse-chase analysis in combination with Endo H digestions. During a 30-min labeling pulse, no cleavage is observed (Fig. 4; t = 0). When pulse-labeled cells are subsequently chased for various times, two cleavage products of ~100 kD begin to appear simultaneously. Furthermore, it is seen that newly synthesized RPTPμ becomes fully resistant to Endo H treatment, which occurs during intracellular transport through the Golgi apparatus. The proteolytic products are fully Endo H resistant, indicating that cleavage occurs after transit through the Golgi apparatus. It is also seen that at chase periods >2 h, when Endo H–sensitive RPTPμ is hardly detectable, not all RPTPμ protein has undergone cleavage. It thus appears that both cleaved and uncleaved RPTPμ molecules can be transported to the cell surface. We estimate the half-life of RPTPμ in 3T3 and mink cells (Fig. 4 B, middle panel) at ~3-4 h; for comparison, the estimated half-life of the EGF receptor in mink cells is >8 h (Fig. 4 B, right panel).

RPTPμ Biosynthesis and Processing Is Independent of Catalytic Activity

We examined whether the catalytic activity of RPTPμ is important for its biosynthesis and delivery to the cell surface. To this end, we performed [%35S]methionine pulse-chase analysis of 3T3 cells stably transfected with a truncated, membrane-anchored form of RPTPμ (termed ExJ or XJ), which lacks the entire catalytic region. As can be seen in Fig. 4 B (left panel), the biosynthesis of truncated RPTPμ, its proteolysis, and estimated half-life are very similar to what is observed with full-length RPTPμ. Thus, biosynthesis and intracellular transport of RPTPμ do not depend on its catalytic activity.

Localization of RPTPμ at Intercellular Contact Regions and RPTPμ Stabilization at the Cell Surface

Our previous work has shown that RPTPμ, when expressed in nonadhesive insect cells, has a uniform distribution along the plasma membrane (Gebbink et al., 1993a). However, the surface localization of RPTPμ (or any other receptor PTP) in mammalian cells has not been examined to date.

We analyzed RPTPμ expression by immunofluorescence microscopy using mAb 3D7, which is directed against
Figure 3. Processing of RPTPμ. (A) Mink lung cells (MvLu), transiently transfected COS cells, and recombinant baculovirus-infected SF9 cells were labeled with [35S]methionine (16 h) and RPTPμ was precipitated from cell lysates using anti-COOH-terminal Ab 37. Immunoprecipitates were split and treated with either Endo F or control buffer for 2 h followed by SDS-PAGE. Note that RPTPμ from mink lung cells migrates somewhat slower than RPTPμ from COS or SF9 cells, probably due to more extensive glycosylation. The molecular mass of the protein before and after cleavage and Endo F treatment is indicated. The intensity of the 68-kD cleaved ectodomain is lower than that of the remaining COOH-terminal part, since the NH2-terminal cleavage product contains only 7 methionine residues compared with the COOH-terminal part, which contains 28 residues. (B) Schematic representation of the presumed processing of RPTPμ. The arrow indicates the proteolytic cleavage site. (C) Cell surface expression of RPTPμ. Confluent mink lung cells (MvLu) were either metabolically labeled with [35S]methionine for 16 h or surface-labeled with 125I as indicated. RPTPμ was precipitated with anti-COOH-terminal Ab 37 and analyzed by SDS-PAGE (7.5% gel). (D) Shedding of the RPTPμ ectodomain. Immunoblot analysis of anti-RPTPμ (mAb 3D7) immunoprecipitates from medium derived from transfected and untransfected 3T3 cells, cultured for 24 h. The blot was probed with anti-RPTPμ mAb 3G4. The arrow indicates the cleaved ectodomain of RPTPμ. For comparison, RPTPμ was immunoprecipitated from lysates of the same cells and analyzed on the same blot. Note that in this lysate uncleaved RPTPμ is present, indicating that the shed ectodomain is not derived from dead cells.

RPTPμ Surface Expression Is Up-regulated by Cell–cell Contact

We examined RPTPμ surface expression in mink lung epithelial cells as a function of cell density by FACS® analysis. Sparse cultures with little or no intercellular contacts show relatively low surface expression (Fig. 6 A, micrograph I and Fig. 6 B). However, when cells are grown to near confluence, RPTPμ expression is increased about twofold (Fig. 6 A, micrograph II, and Fig. 6 B). A further increase in cell surface RPTPμ levels (about threefold) is observed when cells are highly confluent with maximal intercellular contacts (Fig. 6 A, micrograph III). This density-dependent expression pattern of RPTPμ is in marked contrast to that of the receptor for EGF, whose surface expression is significantly downregulated at high cell density (Fig. 6).

The above FACS® analysis was complemented and extended by immunoblotting experiments. The results confirm that RPTPμ expression is significantly upregulated in high-density cultures, whereas endogenous EGF receptor levels are decreased (Fig. 6). In control experiments, expression of an intracellular signaling enzyme (phospholipase C) is seen to be independent of cell density (Fig. 6 C, left panel).

We also examined cellular phosphorytrosine patterns as a function of cell density. Antiphosphotyrosine immunoprecipitations followed by immunoblotting with antiphosphotyrosine antibody reveal that in high-density cultures, where RPTPμ expression is maximal, phosphotyrosine levels are significantly reduced (Fig. 6 C, right panel). The major tyrosine-phosphorylated substrates migrate at an
apparent molecular mass of 120–130 kD, but otherwise remain unidentified. From the same cell lysates, equal amounts of control protein (diacylglycerol kinase) were precipitated, indicating that the differences in RPTPIx, EGF receptor, and phosphotyrosine levels are physiological and not due to differences in immunoprecipitation conditions.

Density-dependent Expression of Full-Length and Truncated RPTPμ in 3T3 Transfectants

Having shown that surface expression of endogenous RPTPμ is upregulated at increasing cell density, we next examined how this regulation occurs. If enhanced RPTPμ surface expression would be induced at the transcriptional level, then it should not occur when RPTPμ expression is under the control of a constitutive promoter as in stably transfected 3T3 cells. Contrary to this prediction, transfected RPTPμ in 3T3 cells shows the same density-dependent expression pattern as endogenous RPTPμ in mink cells (Fig. 7). This implies that regulation of surface expression by cell–cell contact occurs posttranscriptionally. Thus, it appears that upregulation of RPTPμ surface expression is the direct result of increased cell–cell contact.

A similar density-dependent expression pattern was observed in 3T3 cells transfected with the truncated form of RPTPμ (ExJ), which lacks the entire catalytic domain (Fig. 7 B, right panel). This demonstrates that contact-induced surface expression of RPTPμ is regulated independently of its catalytic activity.

Discussion

Recent studies have shown that RPTPμ and a closely related receptor PTP, termed RPTPKx, can mediate homophilic but not heterophilic interactions when expressed in non-adhesive insect cells (Gebbink et al., 1993a; Brady-Kalnay et al., 1993; Sap et al., 1994; Zondag et al., 1995). This strongly suggests that these receptor PTPs play a role in cell recognition and subsequent cell–cell signaling. However, although the homophilic binding properties have been assessed in insect cell expression systems, very little experimental data are available on the cell biological aspects of RPTPμ function (and that of related receptor PTPs) in mammalian cells.

In this study, we have addressed the possible biological
Figure 5. (A) RPTPα expression in transfected 3T3 cells analyzed by indirect immunofluorescence using anti-RPTPα mAb 3D7 and confocal microscopy. Note that RPTPα localization is restricted to sites of close cell-cell contact (arrows). (B) Analysis of RPTPα cell surface expression. Transfected 3T3 cells expressing the truncated form of RPTPα (ExJ) were surface labeled with 125I and then monitored for the indicated time periods. Cells were lysed and RPTPα precipitated with mAb 3D7 followed by SDS-PAGE analysis and autoradiography. Arrows indicate the unprocessed (140 kD) and the proteolytically cleaved forms (100 and 40 kD, respectively).

RPTPα Biosynthesis and Processing

During intracellular biosynthesis, RPTPα can undergo posttranslational cleavage into two subunits, which apparently remain associated in a noncovalent manner. RPTPα proteolysis was also reported in a recent study by Brady-Kalnay and Tonks (1994). Precisely how the two subunits are cleaved and held together remains to be elucidated. A similar cleavage has been described for the related receptors PTPs LAR and RPTPα, and also for Ng-CAM (Burgeron et al., 1991; Streuli et al., 1992; Yu et al., 1992; Jiang et al., 1993). Our results indicate, however, that both the full-length and cleaved forms of RPTPα are present on the cell surface.

It is noteworthy that the NH2-terminal subunit of RPTPα, which comprises almost the entire ectodomain, is shed from the surface of exponentially growing cells. Shedding of the homophilic binding domain may serve to downregulate the function of RPTPα as a cell contact receptor. If one assumes that full-length RPTPα promotes growth inhibition through homophilic binding, then shedding of the ectodomain might be advantageous (and perhaps even necessary) for normal cell growth. An alternative or additional possibility is that the shedded ectodomain may function as a competitive inhibitor of RPTPα-mediated homophilic interactions and thereby modulate growth behavior. Whatever the precise physiological function, it will be interesting to investigate whether RPTPα shedding can be induced by growth factors. In this regard, it should be mentioned that shedding of the NH2-terminal domain of another receptor PTP, LAR, is enhanced by protein kinase C-activating phorbol ester (Serra-Pages et al., 1994).

It appears that the half-life of RPTPα is relatively short (3-4 h) as inferred from [35S]methionine pulse-chase analysis. Furthermore, RPTPα is rather difficult to radioiodinate in intact cells, suggesting that surface expression levels are relatively low. Taken together, these results support the notion that newly synthesized RPTPα is rapidly internalized and degraded after being disposed at the cell surface.

RPTPα as a Cell Contact Receptor

The finding that RPTPα in mammalian cells is strictly localized to regions of intercellular contact (Fig. 5 A), rather than showing a uniform surface distribution as in insect cells (Gebbink et al., 1993a), provides direct support for the view that RPTPα functions as a cell contact receptor mediating cell-cell signaling. Importantly, the 125I-labeling experiments of Fig. 5 B indicate that RPTPα expressed at the cell surface (i.e., the subpopulation concentrated at cell-cell contact regions) is quite stable when compared with the relatively short half-life of the total population of newly synthesized RPTPα. Furthermore, we find that RPTPα cell surface expression increases with cell density, that is, when there are more intercellular contacts. This density-dependent expression profile is observed not only in endogenously expressing RPTPα fibroblasts but also in transfected 3T3 cells, where RPTPα transcription is driven by a constitutive promoter. From these results we conclude that density-induced upregulation of RPTPα surface expression occurs at the posttranscriptional level.

When this article was in preparation, Östman et al.

function of RPTPα as a cell contact receptor in mink lung epithelial cells and transfected 3T3 fibroblasts. Our major new findings can be summarized as follows: (a) Part of newly synthesized RPTPα is proteolytically cleaved into two subunits; the NH2-terminal subunit can undergo shedding from the cell surface; (b) RPTPα has a relatively short half-life; (c) RPTPα is highly concentrated at regions of close membrane apposition; (d) RPTPα surface expression increases significantly with increasing cell density (whereas EGF receptor expression shows inverse correlation with cell density); and (e) density-dependent surface expression is regulated at a posttranscriptional level and is independent of RPTPα catalytic activity. Based on these findings, we propose a model of how RPTPα surface expression and biological activity is regulated by cell–cell contact, as will be discussed below.
(1994) reported that expression of a newly cloned receptor PTP (termed DEP-1) is also enhanced with increasing cell density through an unknown mechanism; however, it remains to be seen whether this receptor PTP mediates cell-cell interactions.

The findings discussed here, together with our previous results, support the following model for the regulated expression of RPTP\(\mu\) (Fig. 8). In sparse cultures without intercellular contacts, RPTP\(\mu\) is nonfunctional: its surface expression levels are low because of rapid internalization and, furthermore, part of the surface-disposed RPTP\(\mu\) molecules shed their ectodomain into the medium. Upon cell–cell contact, RPTP\(\mu\) molecules on apposing cells recognize and bind each other in a homophilic manner, thereby preventing RPTP\(\mu\) from being internalized. As a consequence, more and more RPTP\(\mu\) molecules accumulate at regions of cell–cell contact, which then ultimately leads to local clustering of many RPTP\(\mu\) molecules. Although all our results are consistent with surface-disposed RPTP\(\mu\) being trapped at the cell surface through homophilic binding, we cannot rule out the possibility that increased RPTP\(\mu\) biosynthesis may play a role as well.

Whatever the precise underlying mechanism, locally concentrated RPTP\(\mu\) will promote net tyrosine dephosphorylation of as-yet-undefined substrates at sites of cell–cell contact. It is important to note that in this model, cell–cell contact and subsequent clustering do not affect the basal activity of RPTP\(\mu\), which is already very high (at least in vitro; Gebbink et al., 1993b). Instead, contact-induced clustering of RPTP\(\mu\) is thought to bring the cata-
This, in turn, will then trigger intracellular signaling. In high-density cultures, we do detect decreased tyrosine phosphorylation of one or more protein(s) in the 110–130-kD region, whose identity is currently unknown (Fig. 6 C). However, it remains to be investigated whether this net tyrosine dephosphorylation is causally related to upregulation of RPTPα.

In conclusion, we propose that RPTPα functions as a receptor that signals homophilic cell–cell contact and thereby may regulate, either directly or indirectly, contact-mediated cellular responses such as growth inhibition, differentiation, and/or morphogenesis. As such, RPTPα and related adhesive receptor PTPs may act in parallel, and perhaps in synergy, with other homophilic cell–cell adhesion molecules like the cadherins. Further understanding of the biological function(s) of RPTPα awaits the identification and characterization of its physiological substrates.

We thank L. Oomen for assistance with confocal microscopy and E. Nootboom for help with FACS® analysis.

This work was supported by the Dutch Cancer Society.

Received for publication 21 February 1995 and in revised form 5 May 1995.

References

Figure 7. Regulation of RPTPα cell surface expression by cell–cell contact in transfected 3T3 cells. Stably transfected 3T3[FL] and 3T3[XJ] cells were grown to low, medium, and high densities, and RPTPα expression was examined. (A) Cell surface expression as determined by FACS® analysis on low (I), medium (II), and high (III) density cell cultures. Cells were stained using anti-RPTPα mAb 3D7. Numbers represent arbitrary units of fluorescence. (B) Expression of RPTPα analyzed by immunoprecipitation with mAb 3D7 followed by immunoblotting (mAb 3G4). Left panel, wild-type RPTPα from 3T3[FL] cells. Right panel, truncated RPTPα from 3T3[XJ] cells.

Figure 8. Proposed model of RPTPα regulation by cell–cell contact. Cells that do not make contact with neighboring cells express low levels of RPTPα on their cell surface due to rapid internalization. Cell–cell contact causes RPTPα to be trapped at the cell surface through homophilic binding, which leads to local accumulation of RPTPα at intercellular contact sites. Clustering of RPTPα then triggers signaling. Ectodomain shedding has not been included in this figure. For details see Discussion.

