Biochemical Requirements for the Targeting and Fusion of ER-derived Transport Vesicles with Purified Yeast Golgi Membranes

Vladimir V. Lupashin, Susan Hamamoto, and Randy W. Schekman
Department of Molecular and Cell Biology and Howard Hughes Medical Institute, Barker Hall, University of California, Berkeley, California 94720

Abstract. In order for secretion to progress, ER-derived transport vesicles must target to, and fuse with the cis-Golgi compartment. These processes have been reconstituted using highly enriched membrane fractions and partially purified soluble components. The functionally active yeast Golgi membranes that have been purified are highly enriched in the cis-Golgi marker enzymes α,6 mannosyltransferase and GDPase. Fusion of transport vesicles with these membranes requires both GTP and ATP hydrolysis, and depends on cytosolic and peripheral membrane proteins. At least two protein fractions from yeast cytosol are required for the reconstitution of ER-derived vesicle fusion. Soluble fractions prepared from temperature-sensitive mutants revealed requirements for the Ypt1p, Sec19p, Sly1p, Sec7p, and Uso1p proteins. A model for the sequential involvement of these components in the targeting and fusion reaction is proposed.

Transport of proteins between membrane-bound compartments of the secretory pathway is a process common to all eucaryotic cells. Transport is believed to involve the production of coated vesicle intermediates from a donor compartment and the subsequent uncoating, targeting, and fusion of these vesicles with an acceptor compartment (for reviews see Pryer et al., 1992; Rothman and Orci, 1992; Barlowe et al., 1994). The general mechanism of vesicle budding, targeting and fusion and the principal protein players involved in these reactions appears to be conserved from yeast to human cells (for review see Rothman, 1994).

We have developed a cell-free assay that measures the transit of the soluble precursor of the yeast mating pheromone α-factor from the ER to the cis-compartment of the Golgi apparatus in yeast (Rexach and Schekman, 1991; Wuestehube and Schekman, 1992). The nucleotide and protein requirements for the production of ER-derived vesicles, as well as the polypeptide composition of purified vesicle intermediates have recently been characterized in detail (Barlowe et al., 1994; Rexach et al., 1994). Sec proteins act upon ER membranes to form transport vesicles shaped by cytoplasmic coat molecules consisting of Sar1p, Sec13p, Sec23p, Sec24p, and Sec31p. Vesicles formed under these conditions contain a specific set of luminal and membrane proteins that include core-glycosylated pro-α-factor, Bet1p, Sec22p, and Bos1p, but are depleted of ER-resident proteins Kar2p, Sec12p, and Sec61p. Transport vesicles derived from the ER rapidly fuse with the cis-Golgi via a vesicle targeting mechanism that is apparently both selective and efficient. The soluble N-ethylmaleimide-sensitive fusion (NSF) attachment protein (SNAP) receptor (SNARE) hypothesis was postulated to explain this selective targeting (Söllner et al., 1993; Rothman, 1994). According to this hypothesis all eukaryotic cells have families of organelle-specific receptor molecules (v- and t-SNAREs) whose members form highly specific pairs that are essential for vesicle docking. ER-derived vesicles carry an ER v-SNARE, which presumably has a cognate t-SNARE on cis-Golgi membranes. Furthermore, after vesicle targeting mediated by the v/t-SNARE mechanism is achieved, additional cytosolic proteins such as NSF-like and SNAP-like proteins bind to the SNARE complex and facilitate the membrane fusion process.

The details of the proteins involved in targeting and fusion of transport vesicles with the Golgi apparatus, as well as when and how they act, are poorly understood. Yeast offers a powerful system for addressing these questions, especially since the purified ER-derived vesicles described above are competent for fusion with cis-Golgi membranes (Rexach et al., 1994). Through a combined genetic and

1. Abbreviations used in this paper: CPY, carboxypeptidase; LSF, low salt fraction; HSF, high salt fraction; MSS, medium speed supernatant; NSF, N-ethylmaleimide-sensitive fusion protein; PGK, phosphoglycerate kinase; SNAP, soluble NSF attachment protein; SNARE, SNAP receptor.
Materials and Methods

Materials

The Saccharomyces cerevisiae strains used in these experiments are listed in Table I. Strains were grown in YPD medium containing 1% Bacto yeast extract, 2% Bacto peptone (Difco Laboratories Inc., Detroit, MI) and 2% glucose. Other reagents were obtained as described by Baker et al. (1990).

Antibodies used were directed against Och1p (Nakayama et al., 1992), Sec7p (Franzusoff et al., 1992), Sec12p (Barlowe and Schekman, 1993), Sec17p (Griff et al., 1992), Sec18p (Eakle et al., 1994), Mnn1p (Graham et al., 1994), Kex2p (Fuller et al., 1989), Sed5p (Hardwick and Pelham, 1992), Ypt1p (Segev et al., 1988), Sly1p (Dascher et al., 1991), GPDase (Abejon et al., 1989), Art1p (kindly provided by R. Kahn), Sec21p (Hosobuchi et al., 1992), Sec15p (Sterling et al., 1992), and Sec25p (Hicke and Schekman, 1989). Standard methods for yeast genetic manipulations (Sherman et al., 1974), SDS-PAGE (Laemmli, 1970), immunoblotting (Towbin et al., 1979), and immunodetection by enhanced chemiluminescence (Amersham Corp., Arlington Heights, IL) were used. Deuterium oxide, Nycodenz, GTP, GDP, GTPγS, and ATPγS were purchased from Sigma Chemical Co. (St. Louis, MO).

Purification of Golgi-enriched Membranes

RSY919 cells were grown at 25°C in 11 YPD medium to early exponential phase (OD600 about 1). Cells (1,200 OD600 units) were harvested by centrifugation and washed twice with buffer A (20 mM Hepes, pH 6.5, 0.5 mM KCl, 1 mM ATP in D2O, 5% glycerol). All subsequent steps were performed at 4°C. Cell pellets were resuspended in a Corex 30-ml glass tube in 3 ml buffer A containing 1 mM DTT, 1 mM ATP, 0.1 mM MnCl2 and 10 μl of a proteinase inhibitor cocktail (pepsin, aprotinin, leupeptin, antipain (1 mg/ml each), 100 mM phenylmethylsulphonyl fluoride, and 100 mM benzamidine). Glass beads (4 g) were added and cells were lysed by 4-min periods of agitation in a VWR vortex at full speed. The homogenate was cleared by centrifugation at 500 g for 5 min. The supernatant fraction was adjusted to 10,000 g for 10 min to yield a postmitochondrial supernatant fraction, S10, which was then centrifuged at 50,000 g for 15 min in a TL100 rotor (Beckman Instruments, Inc., USA) to yield a pellet, P50, and a supernatant, S50. The S50 fraction was loaded on top of a sucrose gradient made in buffer B (20 mM Hepes, pH 6.5, 1 mM ATP in D2O), consisting of 1 ml 60% sucrose (wt/wt), 3 ml 20% sucrose (wt/wt), and 3 ml 7% sucrose. The gradient was centrifuged for 2 h at 150,000 g in a SW41 rotor (Beckman Instruments, Inc., Palo Alto, CA). Membranes were collected from the sample/7% sucrose interface (fraction B1), the 7%/20% sucrose interface (fraction B2), and the 20%/60% sucrose interface (fraction B3). Fraction B2, containing the main portion of cis-Golgi membranes, was mixed with 1 ml of 60% sucrose in D2O, placed in a centrifuge tube, and overlaid with 1 ml each of 30, 25, and 10% sucrose in D2O. This gradient was centrifuged for 3 h at 150,000 g in a SW55 rotor (Beckman Instruments, Inc.). Golgi enriched membranes (fraction FB2) were collected from the interface between the 10% and 25% sucrose layers and frozen in liquid nitrogen in 100-μl aliquots for storage at −80°C.

Preparation of Membrane-free Cytosol and ER-derived Transport Vesicles

Membrane-free cytosol was prepared as described previously (Rechav and Schekman, 1991) with some modifications. A postmitochondrial supernatant was prepared by centrifugation of a cleared total homogenate at 100,000 g for 30 min. An equal volume of 60% Nycodenz (Sigma Chemical Co.) in buffer B was added, and the mixture (3 ml) was loaded in a 5 ml centrifuge tube (SW55 rotor) and overlaid with 1 ml of 30% Nycodenz in buffer B followed by 1 ml buffer B. The gradient was centrifuged for 100,000 g for 3 h to allow light membranes to float. Membrane-free cytosol (2.8 ml) was collected from the bottom of the tube and diluted by filtration on a Sephadex G25 column (15 ml) equilibrated in 88% (Baker et al., 1988) containing 1 mM ATP. The eluted protein peak was pooled and 100-μl aliquots were frozen in liquid nitrogen for storage at −80°C. The preparation of ER-enriched microsomal membranes and the loading of these membranes with [35S]methionine-labeled prepro-factor by in vitro translocation was described by Wuestehube and Schekman (1992). ER-derived vesicles were purified either from a Ypt1p-dependent transport reaction (Rechav et al., 1994) or from a vesicle formation reaction utilizing purified protein components (Barlowe et al., 1994). In the latter case the reaction mixture contained 100 μl washed microsomes (120 μg protein), an ATP regenerating system (Baker et al., 1988), 0.1 mM GTP, Sarl1p (3 μg), Sec23p/Sec24p complex (20 μg), and Sec13p/Sec17p complex (5 μg) in a total volume fo 500 μl. Reactions were incubated for 30 min at 30°C. A medium speed supernatant (MSS) fraction, prepared by centrifugation for 5 min at 13,000 g in a TOMY refrigerated microcentrifuge (Tomy Seiko, Tokyo, Japan) at 4°C, was mixed with 500 μl 50% Nycodenz in D2O (wt/wt) and placed on the bottom of a 2.3 ml centrifuge tube (TL55 rotor). A discontinuous gradient was prepared by overlaying the sample with 0.5 ml each of 27 and 10% sucrose in D2O/buffer A. The gradient was centrifuged for 4 h at 150,000 g. Pooled vesicles (300 μl) were collected at the 27%/10% sucrose interface and frozen in liquid nitrogen in 100-μl aliquots for storage at −80°C. Vesicle release was quantified by determining the amount of protease-protected, C-precipitable [35S]pre-
In Vitro Targeting and Fusion of ER-derived Vesicles with Golgi Membranes

Vesicle chase reactions were performed using floated ER-derived vesicles, containing a cargo of core-glycosylated [3SS]methionine-labeled α-factor, as donor membranes. Vesicles (5 μl) were mixed on ice with 0.8 μg of Golgi membranes, 60 μg cytosolic protein, an ATP regeneration system (Baker et al., 1988) and 0.5 mM GTP in a total volume of 30 μl and incubated for 60 min at 20°C. After incubation the mixture was processed for anti-α,1,6-mannose immunoprecipitation or for Con A-Sepharose precipitation (Rexach and Schekman, 1991). The percentage of transport was calculated as the anti-α,1,6-mannose immunoprecipitable c.p.m divided by the total Con A-Sepharose precipitable c.p.m multiplied by 100. Other additions or treatments included: 1 μg per reaction anti-Yptlp Fab fragments, 1 μg per reaction yeast Yptlp isolated from Escherichia coli (Baker et al., 1990), 100 μM GTP-S ± 1 mM GTP, 200 μM GMPNP ± 1 mM GTP, 1 mM ATP-S, or 5 mM EGTA/600 μM MnCl₂ ± 500 μM CaCl₂.

In "two stage" transport experiments vesicles and Golgi membranes were first incubated (20 min, 20°C) in the presence of 60 μg of cytosol, prepared from the cells of different mutant strains (stage 1). Then samples were chilled for 5 min before addition of 20 μg of wild type cytosol (with or without various inhibitors). Samples were then incubated for 40 min at 20°C and processed as above.

Enzyme Assays

The standard assay (20 μl) for α,1,6mannosyltransferase contained 0.1 μCi GDP-[3H]mannose (New England Nuclear, Boston, MA), 1 mM GDP-mannose, 1 mM ATP, 1 mM MnCl₂, BSÁ, and was initiated by addition of membranes. After a 10-min incubation at 20°C, the reaction was stopped by the addition of 20 μl 2% SDS. The sample was then incubated for 5 min at 100°C and processed for immunoprecipitation using anti-α,1,6-mannose antibodies. The incorporation of [3H]mannose into α,1,6-mannose proteins was linear with respect to the incubation time (0-15 min) and membrane concentration (0.1-20 μg of protein). Enzyme activity is expressed as incorporation of [3H]mannose into α,1,6-mannose per min and μg protein. All other enzymes were measured using standard assays for guanosine diphosphatase (Abeijon et al., 1989), α-mannosidase (Opheim, 1978), and cytochrome c oxidase (Mason et al., 1973), vanadate-sensitive Mg²⁺-ATPase (Willisky, 1979). Total protein was measured with the Dc protein assay (Bio-Rad Laboratories, Richmond, CA) according to the manufacturer's instructions.

Electron Microscopy and Immunolocalization

For routine electron microscopy, the sample fractions were pre-fixed with 1% glutaraldehyde, and then centrifuged to obtain pellets. The samples were fixed in 2% glutaraldehyde in cacodylate buffer, washed, post-fixed in 1% osmium tetroxide, followed by 0.5% tannic acid. En bloc staining with 2% uranyl acetate was done before ethanol dehydration and embedding in epoxy resin. Thin sections contrasted with uranyl acetate and lead citrate were viewed in the Phillips 301 electron microscope.

Samples for immunoelectronmicroscopy were fixed in 3% formaldehyde—0.2% glutaraldehyde, washed, dehydrated, and embedded in London Resin White. Thin sections were incubated first with affinity-purified antibody to Yptlp, washed, and then incubated with goat anti-rabbit Fab fragments conjugated to 5 nm colloidal gold. As a control, similar sections were incubated without the primary antibody.

Results

Isolation of Golgi-enriched Membranes

The first step in reconstruction of the targeting/fusion reaction involved obtaining highly enriched donor (ER vesicles) and acceptor (Golgi) membrane fractions. We developed a method for the rapid isolation of yeast Golgi membranes that are enriched for specific marker proteins and highly active as an acceptor compartment in our in vitro transport reaction. As a marker for Golgi membranes we used α,1,6-mannosyltransferase activity (α,1,6-MT), measured by incorporation of [3H]mannose from GDP-[3H]mannose into the outer chains of endogenous yeast glycoproteins. We found that lysates produced by glass bead agitation of intact yeast cells, rather than by homogenization of yeast spheroplasts, produced a higher activity Golgi membrane fraction. We also found that functional Golgi membranes were labile; acceptor activity (see below) was lost with a half-time of 6 h at 0°C. Therefore the purification was designed to be completed in one day so that Golgi membranes could be frozen in aliquots. Acceptor activity remained active in samples stored at −80°C. As diagrammed in Fig. 1 Golgi membranes were isolated from strain RSY919 which carries the mnn1 and mnn2 mutations. This mutant has wild-type secretory properties, but does not contain α,1,2- or α,1,3-mannosyltransferases whose activity would interfere with the α,1,6MT assay. Differential centrifugation of a total yeast lysate revealed that more than 80% of α,1,6MT activity was present in the S50 fraction (Fig. 2 a). After density centrifugation on a sucrose/D2O gradient the majority (65%) of α,1,6MT activity was found in the B2 fraction (Fig. 2 b). Most of this activity (95%) floated in a sucrose gradient as a single peak (Fig. 2 c).

Table II is a purification table for a typical Golgi membrane isolation. The specific activity of the Golgi marker enzyme α,1,6MT increased after sedimentation in the sucrose/D2O gradient 17-fold over the activity in the total cell lysate. Overall enrichment of α,1,6MT after flotation was 518-fold with a 19% yield.

Biochemical and Morphological Characterization of Golgi-enriched Membrane Fraction

We used biochemical and immunoelectron-microscopical criteria to document the enrichment of Golgi membranes
in our preparations. Characteristic proteins and enzyme activities are associated with the different cellular organelles and may be used to assess the purity of fractions. The result of marker protein assays from a typical fractionation are shown in Table III and Fig. 3. The markers used are as follows: cytochrome c oxidase as a marker for the inner membrane of mitochondria (Mason et al., 1973); Sec61p and Sec12p as ER markers; the membrane-bound enzyme α-mannosidase as a vacuole marker (Opheim, 1978); vanadate-sensitive Mg²⁺-ATPase as an integral membrane protein of the plasma membrane (Willsky, 1979); and phosphoglycerate kinase (PGK) as a soluble cytosolic protein. As markers for the cis, medial- and trans-Golgi compartments we used the α,1,6MT structural protein (Ochlp), GDPase, α,1,3-mannosyltransferase structural protein (Mnnlp) and endoproteinase Kex2p (Nakayama et al., 1992; Graham et al., 1994; Redding et al., 1991). The specific activities of cytochrome c oxidase, α-mannosidase, Mg²⁺-ATPase, GDPase and α,1,6MT were determined from enzyme and protein assays. Other proteins were detected by immunoblotting as indicated in Table III.

Less than 1% of the total cell lysate content of the markers for plasma membrane, ER, mitochondria, and cytosol were found in the Golgi pool. Markers for the different Golgi compartments (Franzusoff et al., 1989) were enriched to different extents: Kex2p, a marker for trans-Golgi, was enriched 60-fold; Mnnlp, a marker for the medial Golgi, was enriched 94-fold; and Ochlp, a marker for the cis-Golgi, was enriched more than 800-fold. Another Golgi marker, GDPase, was enriched 205-fold which reflects the broad distribution of this enzyme among different Golgi sub-compartments (Witters et al., 1994). Among the tested peripheral membrane proteins we found greater than 30-fold enrichment for the small GTP-binding protein, Ypt1p, and Sec17p in the Golgi pool (data not shown). Detectable amounts of Sec18p, Sed5p, Bet1p, Syl1p, Sec7p, Sec22p, Bos1p, and Sec21p (γ-subunit of yeast coatomer complex; Hosobuchi et al., 1992) were also found to be tightly associated with the purified membranes (Fig. 3).

To assess the purity of the Golgi membranes morphologically, the enriched Golgi pool was examined by thin section and immunoelectron microscopy. Membranes in the Golgi-enriched fraction (Fig. 4, a and b) appeared mainly as an array of spherical to discoid vesicles and tubules, 50–300 nm in diameter or length. Most of the larger tubular structures (arrowheads, Fig. 4 b) resemble cross-sectional views of Golgi cisternae as observed in the intact

| Table II. α,1,6-Mannosyltransferase Distribution during Golgi Purification |
-----------------------------	-----------------contention				
Fraction	Total protein	Total activity*	Specific activity	Fold purification	Yield
mg	%				
Lysate	200.1	46	231	1.0	100
SS50	170.2	42	251	1.1	92
Pool 1	15.1	20	1,900	8.2	43
Fl. Golgi	0.09	11	130,000	562	25

*α,1,6-Mannosyltransferase activity is expressed as cpm [3H]mannose × 10⁶ incorporated into mannoproteins per minute.

Figure 2. Purification of α,1,6MT-containing membranes. (A) Crude yeast lysate was fractionated as in Materials and Methods and the amount of the 1,6MT activity in the original lysate and early fractions was determined. (B) S50 was loaded on top of a sucrose/D₂O step gradient. Membranes were sedimented for 2 h at 150,000 g and 23 × 0.4 ml fractions were collected from the top. Protein concentration (filled circles), enzyme activity (open circles), and sucrose concentration (dashed line) were measured in every fraction. The peak of 1,6MT activity (fractions 13–16) was pooled. (C) The sample density was adjusted to 35% sucrose, loaded on the bottom of sucrose/D₂O step gradient, and membranes were floated for 3 h at 150,000 g. Fractions (11 × 0.5 ml) were collected from the top. The Golgi peak was pooled as before and analyzed. The arrows in the top x axis point to the direction of membrane movement during sedimentation and flotation.

Table III. Distribution of Marker Enzymes and Proteins in the Total Yeast Lysate and Enriched Golgi Fraction

<table>
<thead>
<tr>
<th>Marker protein</th>
<th>Organelle</th>
<th>Lysate (specific activity)</th>
<th>Golgi fraction (fold enrichment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ochlp*</td>
<td>cis-Golgi</td>
<td>0.14</td>
<td>112.5</td>
</tr>
<tr>
<td>GDPase (units)</td>
<td>Golgi</td>
<td>0.47</td>
<td>96.3</td>
</tr>
<tr>
<td>Mnnlp*</td>
<td>med-Golgi</td>
<td>7.0</td>
<td>655.6</td>
</tr>
<tr>
<td>Sec12p*</td>
<td>ER</td>
<td>29.3</td>
<td>64.5</td>
</tr>
<tr>
<td>α-Mannosidase (milliunits)</td>
<td>vacuole</td>
<td>1.4</td>
<td>8.4</td>
</tr>
<tr>
<td>PM ATPase (units)</td>
<td>PM</td>
<td>0.27</td>
<td>0.8</td>
</tr>
<tr>
<td>Cyt c oxidase (units)</td>
<td>mitochondria</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>PGK*</td>
<td>cytosol</td>
<td>53.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*Aliquots of total lysate and enriched Golgi fractions were subjected to SDS-PAGE, and immunoblotted with different antibodies. Immuno-complexes were detected by 125I-protein A and quantified using a PhosphoImager.
Published February 1, 1996

Figure 3. Polypeptide and antigenic composition of cis-Golgi enriched membranes. Samples of total yeast lysate and floated Golgi membranes were solubilized in sample buffer and separated on an SDS-polyacrylamide (10%) gel. The right panel shows the silver stain (equal protein amount loaded), and the left panel shows the blot immunostaining for the different marker proteins (protein concentration in the total lysate sample was 10 times higher than in the Golgi membrane sample).

Enriched Membranes Reconstitute Sec Protein-dependent Targeting/Fusion

Because our goal was to use isolated Golgi membranes for the identification and characterization of components that mediate ER–Golgi vesicular transport, we tested the specific activity of enriched Golgi membranes in an in vitro transport assay. Specific activity was expressed as the ability of Golgi membranes to allow purified ER-derived vesicles loaded with [35S]glyco-pro-α-factor to target and fuse. After fusion [35S]gp-α-factor acquires specific α,6-mannose residues (Rexach and Schekman, 1991). We showed before that the isolated ER-derived transport vesicle fraction is devoid of ER marker proteins (Barlowe et al., 1994; Rexach et al., 1994). Furthermore, the transport vesicles fuse with cis-Golgi membranes, but not with ER membranes. Thus, no new ER vesicles form, and the isolated Golgi membranes are the only potential target in the course of the fusion reaction. Conversion of the [35S]gp-α-factor contained in the vesicle fraction to the α,6-mannose modified form required the addition of both cytosol and an acceptor membrane fraction (Fig. 5). Minimal (<10%) vesicle chase was observed when cytosol or GTP was omitted from the reaction. Purified Golgi-enriched membranes contained about 100 times more acceptor activity compared to total yeast membranes (maximum activity for the transport in 30 µl reaction required 0.8 µg purified Golgi membranes and about 80–100 µg of total membranes). The transport activity was linear with respect to the membrane concentration and about 30 µg/ml Golgi membranes was sufficient to convert 47% of the [35S]gp-α-factor to the outer-chain modified form (data not shown). We showed previously that a late stage in the total ER to Golgi transport reaction requires ATP hydrolysis and Ca2+ (Rexach and Schekman, 1989). Transport with purified membrane components required GTP and ATP hydrolysis and was inhibited by 74% in the presence of 100 µM GTPγS or 200 µM GMPPNP and by 51% in the presence of 2 mM ATPγS (Fig. 6). As in an overall ER–Golgi transport reaction in the crude cell lysate the targeting/fusion reaction with enriched membranes was Ca2+-dependent, and inhibited 80% by the chelators 5 mM EGTA or 1 mM BAPTA.

In vitro targeting and fusion of purified vesicles with Golgi membranes required the addition of yeast cytosol. We used our reconstituted system and temperature sensitive yeast mutants to determine the role of the different soluble proteins facilitating targeting and fusion. We found that cytosols prepared from sec7-1, sec7-4, sec8-1, usol-1, sly1p, sec19-1, ypl1-3, and ypt10 mutant cells grown at permissive (24°C) temperature supported transport. However, a short pre-incubation of mutant cytosols at 30°C inactivated their ability to support transport (Fig. 7 and data not shown). Cytosols prepared from wild type cells or strains defective in ER-vesicle budding (sec12-1 and sec23-1) did not show any defect before or after pre-incubation at elevated temperatures. Purified Golgi membranes from sec7-4, sec8-1, usol-1, sly1p, sec19-1, and ypt10 mutant cells grown at the permissive (24°C) temperature had wild-type acceptor activity in the presence of cytosol and donor vesicles prepared from wild type yeast (data not shown). Unfortunately, pre-treatment of wild type or mutant Golgi membranes at elevated temperature resulted in a dramatic loss of acceptor activity. Inactivation of Sec18p by NEM treatment was used before in the ER–Golgi in vitro transport reaction (Rexach and Schekman, 1991). However, with purified Golgi membranes such treatment resulted in a dramatic inactivation of glycosylation machinery (or GDP-mannose transport system), as measured by incorporation of [3H]mannose from
Figure 4. Electron micrographs of enriched cis-Golgi membranes. (A) A representative view of the pooled Golgi fraction from the sucrose flotation gradient. (B) Higher magnification of the enriched Golgi membranes showing several cisternae resembling that seen in the intact yeast (arrowheads). (C) Control for immunolocalization of Ypt1p where primary antibody was omitted and no gold label is seen. (D) Immunolocalization of Golgi marker, Ypt1p, shows gold label on many membranes of the Golgi-enriched fraction. Small arrowheads note linear display of gold particles over cisternae-like structures. Bars: (A) 0.6 μm; (B–D) 0.2 μm.
Figure 5. Transport reaction with purified donor (ER-derived vesicles) and acceptor (cis-Golgi membranes) components. Aliquots of floated transport vesicles (5 μl) were mixed with fresh membrane-free cytosol (60 μg), purified Golgi membranes (0.8 μg), an ATP regeneration mix, and 0.2 mM GTP as indicated. Samples were incubated for 1 h at 20°C, and reactions terminated by addition of 2% SDS and heated to 95°C. Samples were processed for precipitation with Con A and anti-outer chain antibodies as described in Materials and Methods. The average of four experiments and standard error are indicated.

Figure 7. Transport-stimulating activity in the cytosol, prepared from ts-mutant cells is sensitive to a 15 min pre-incubation at 30°C. Membrane-free cytosol was prepared from the mutant cells grown at 24°C as described in Materials and Methods. Portions of cytosol were pre-incubated for 15 min either on ice (dark bars) or at 30°C (light bars) and the aliquots (60 μg of protein) were added to the transport reaction. Samples were processed as in Fig. 5.

This rescue was inefficient in the case of sec18-1, sec19-1 and ypt10 cytosols, probably because of a “dominant-negative” behavior of the mutant protein in the in vitro reaction.

Fractionation of Soluble Components on Mono Q Column

To resolve the cytosolic requirement for ER-derived vesicle targeting and fusion, we applied desalted yeast cytosol on an FPLC Mono Q anion exchanger. Protein was eluted with a step gradient of 0.9 and 2.0 M of KOAc, and pooled fractions were tested for transport-stimulating activity (Fig. 9). No significant activity was detected in the flow.
Figure 9. Transport-stimulating activity requires two MonoQ fractions. Membrane-free cytosol (20 mg) prepared from Saccharomyces cerevisiae RSY607 cells was dialyzed against B88 and loaded on a FPLC MonoQ 5/5 column equilibrated with the same buffer. Proteins were eluted by 0.9 M KOAc and then by 2.0 M KOAc in B88. The flow through pool (FT), 0.9 M eluate (Q 0.9), and 2.0 M eluate (Q 2.0) were collected, dialyzed against B88, and concentrated to 1 ml using Centricon-10 (Amicon Corp.) concentrators. Samples (5 µl) of each fraction (8-60 µg of protein) were added to the transport assay in the absence of cytosol. Control, no cytosol; cytosol, whole cytosol (60 µg protein) added.

through (unbound) nor in individual eluted fractions when assayed alone, indicating that multiple components had been separated. When the 0.9 M pool was mixed with the 2.0 M pool, the activity of whole cytosol was restored, indicating that the unbound fraction contained no transport-stimulating activity. Further fractionation of the 0.9 M pool was achieved using an FPLC MonoQ column, eluted with a KOAc gradient (Fig. 10 a). Fractions were combined with the 2.0 M pool and tested for activity in the in vitro assay. The highest activity was detected in fractions 13 (approximately four times background) and fraction 14 (approximately two times background). These fractions were pooled and are referred to as the low salt fraction (LSF). Fractions (7–25) from the same gradient were analyzed for Yptlp, Slylp, Sec7p, Sec18p, Sec21p, Sec24p, and Arfl protein distribution by immunoblotting (Fig. 10 b). Only two of these proteins, Yptlp and Slylp co-eluted with the transport-stimulating activity. Attempts to separate LSF further, by ion-exchange and gel-filtration chromatography yielded no significant activity in any resulting fraction when assayed alone or mixed with the 2.0 M pool, indicating that either a component was inactivated or multiple components were separated (data not shown). We next examined the fractionation behavior of the 2.0 M pool. This fraction was reapplied to an FPLC MonoQ column, and protein was eluted with a 0.9–2.0 M KOAc gradient, and fractions were tested in our assay (Fig. 11 a). When LSF was included in the assay mix one peak of activity (~2.5 times background) was detected, eluting at 1.4 M KOAc. We termed this pool high salt fraction (HSF). All fractions after the MonoQ column were analyzed by immunoblotting for the same set of proteins as described above (Fig. 11 b). Sec7p, Sec18p, and Sec21p were detected in the active 2.0 M pool. However only Sec7p completely co-eluted with the active fractions. After an additional separation of HSF by gel-filtration chromatography on an FPLC Superose 6 column only 20% of the original activity was recovered. Again all the transport-stimulating activity co-eluted with Sec7p and the peak of activity was separated from Sec18p (not shown). The activity peak and Sec7p eluted as a high molecular weight (700–800 kD) protein complex. Separation of the activity from Sec21p and thus yeast coatamer (COP I) was achieved by velocity sedimentation in a glycerol gradient. HSF was loaded on the gradient and all activity (~30% from original) co-sedimented with Sec7p with a sedimentation coefficient of about 10S (data not shown).

The combination of LSF and HSF supported transport in our assay to the same level as whole cytosol indicating that all necessary transport-stimulating proteins have been recovered.

The ability of the HSF and the LSF to rescue the activity of mutant cytosols was also examined (Fig. 12 a). Addition of the HSF to the assay rescued only the defect in sec7-4

Figure 10. Mono Q chromatography of LSF activity. Dialyzed 0.9 M eluate (as in Fig. 9) was loaded on a FPLC Mono Q column and fractionated with a 0.15–0.9 M KOAc gradient. Fractions (1 ml) were collected, dialyzed against B88, and assayed in the transport reaction in the presence of 5 µl of 2.0 M eluate (A); - and + cytosols as in Fig. 9. Aliquots of each fraction were loaded on 12.5% SDS-PAGE and various proteins were detected by immunoblots (B).
components of HSF. The HSF, prepared from the presence of wt LSF (not shown). Addition of the LSF to the in

sol and partially rescued the defect in the cytosol prepared from mutant strain was unable to support transport in the pres-

sure of 0.9 M eluate (4 μl) (A); − and + cytosols as in Fig. 9. Aliquots of each fraction were separated on 12.5% SDS-PAGE and various proteins were detected by immuno-blotting (B).

cytosol, supporting the idea that Sec7p is one of the active components of HSF. The HSF, prepared from the sec7-4 mutant strain was unable to support transport in the presence of wt LSF (not shown). Addition of the LSF to the in vitro reaction completely rescued the defect in sly1° cytosol and partially rescued the defect in the cytosol prepared from usol-1 mutant cells (Fig. 12 b). Soluble Sec17p (yeast α-SNAP), Sec18p (yeast NSF), Sec21p (a component of yeast coatomer [COPI] complex) or Sec24p (a component of COPII protein complex) were not required to drive the targeting and fusion reactions reconstituted in our in vitro assay. Because the membranes used in our assay were not salt-treated, a large portion of Sec17p, Sec18p, and Sec21p was tightly associated with the Golgi membranes; this pool may be sufficient to stimulate the targeting/fusion reaction.

Sequential Intermediates in the Targeting/Fusion Reaction

We used two-stage incubation experiments to study the order of involvement of different factors during targeting and fusion of ER-derived vesicles with Golgi membranes. In the first stage of the reaction membranes were pre-incubated for 20 min in the presence of 60 μg of heat-inacti-

vated mutant cytosol and an ATP-regeneration system. In the second stage, 20 μg of wt cytosol was added to the reaction in combination with different inhibitors (Fig. 13). This addition of wt cytosol (20 μg of protein) was sufficient to support only 25% of targeting and fusion activity when mutant cytosol was omitted from the first stage. When GTPαS, ATPαS, EGTA, or Ypt1 Fab were added in the first stage, significant inhibition of transport was observed (Fig. 13, stage 1). Similar results were obtained when sly1° cytosol was present during the first stage of the reaction and the different inhibitors were added together with wt cytosol during the second stage. The second stage of the reaction was not inhibited by GTPαS and Ypt1 Fab when usol-1 or sec7-4 cytosol was present during the first stage, but transport reaction remained sensitive to ATPαS and EGTA (Fig. 13, stage 2). None of the inhibitors were effective at the second stage of the reaction if wt cytosol was used at the first stage.

Fig. 14 summarizes the results of the inhibitor studies. Sly1p, a GTPαS-sensitive step and Ypt1p (the function likely to be inhibited by GTPαS) may act at an early stage in the reaction; Uso1p and Sec7p appear to act in a subsequent or a parallel step. The last step is inhibited by ATPαS, probably due to the involvement of the Sec17p and Sec18p. We showed previously that a Sec18p-dependent step is followed by a Ca²⁺-dependent step in the vesicle–Golgi fusion reaction (Rexach and Schekman, 1991). The biochemical complementation assay developed here could not be exploited to refine this assignment because cytosol from ypt1°, and sec18-1 mutant cells were inhibitory in a mixed incubation.

Genetic Interactions of Soluble and Membrane Components of the Targeting/Fusion Apparatus

To corroborate the biochemical data on the involvement of specific soluble proteins in targeting/fusion of ER-derived vesicles with Golgi membranes we also tested genetic interactions between the genes encoding Ypt1p, Bet2p, Sly1p, Uso1p, and Sec7p. We crossed pairs of temperature-sensitive mutants, dissected tetrads from the resulting diploid strains, tested spore growth at permissive (24°C) and sub-restrictive (30°C) temperatures and confirmed our results by complementation analysis in a search for synthetic lethal interactions between these mutations. When sec7-4 was crossed to ypt1°, the majority of tetrads had only three viable spores. This is the expected result if the double mutant is inviable. The same results were obtained with the ypt1-3 mutant. When sec7-4 was crossed to bet2-1 the double mutant grew at 24°C but, unlike the parental strains, failed to grow at 30°C. In contrast, in all other crosses to sec7-4, the majority of tetrads had four viable spores at 30°C. These data, together with our biochemical data on an involvement of Ypt1p and Sec7p in the same process, support the idea that the SEC7 and YPT1 gene products interact functionally, and possibly physically, and suggest that the BET2 gene product may also be involved in this interaction.

YPT1 showed synthetical lethal interactions not only with SEC7 but also with SLY1 and USO1 (Sapperstein et al., 1996). In all cases double mutants of the genotype ypt1°sly1° and ypt1°usol-1 were inviable. We did not de-
Figure 12. Mutant cytosol rescue by LSF and HSF fractions. Cytosol prepared from mutant cells was heat inactivated (15 min at 30°C) and added to the transport reaction (dark bars). (a) 5 μl of LSF pool (Fig. 10, fractions 12–14, 5 mg protein/ml) was added to the reaction (light bars). (b) 5 μl of HSF pool (Fig. 11, fractions 22–26, 0.9 mg protein/ml) was added to the reaction (light bars). After incubation (1 h, 20°C) samples were processed as above.

Detect any synthetically lethal interactions between SEC7 and SLY1 or any of the genes encoding membrane components of targeting/fusion complex (SEC22, BET1, and BOS1).

Discussion

We have purified functionally active yeast Golgi membranes and used them to better define the biochemical requirements for the targeting and fusion of transport vesicles budded from the ER. Current biochemical and genetic data suggest that the yeast Golgi complex is organized into three distinct functional compartments: cis, containing α1,6 mannosyltransferases; medial, containing α1,2 and α1,3 mannosyltransferases; and trans, populated by the late Golgi enzymes Kex1p, Kex2p, and dipeptidylaminopeptidase A (reviewed by Franzusoff, 1992). The Golgi purification procedure was designed to be rapid because we found that transport acceptor activity in crude or purified membranes decayed rapidly. The Golgi membrane fraction purified in this study is operationally defined as an early Golgi compartment, and had the highest enrichment (600-fold) for the cis-Golgi membrane marker, α1,6 MT. The purified Golgi membrane fraction was also enriched, to a lesser degree, for the late Golgi marker, Kex2p (Red-
Yeast coatomer co-purified with fraction. We also found that Sed5p, Sec7p, Sec18p, and the ER, plasma membrane, the vacuole, and mitochondria. Membranes were free of the ER peripheral proteins Sec13p and Sec24p. Two peripheral proteins, the small GTP-binding protein, Ypt1p, and the yeast α-SNAP homolog, Sec17p, were significantly enriched in the Golgi fraction. We also found that Sed5p, Sec7p, Sec18p, and yeast coatomer co-purified with cis-Golgi membranes, but to a lesser extent than Ypt1p and Sec17p. After treatment of isolated membranes with high salt (1 M KOAc) some peripheral proteins (Sec17p, Sec18p, coatomer) were removed whereas the majority of Ypt1p and Sec7p remained tightly associated with the Golgi membranes (Fig. 4 d and data not shown). Analysis of untreated and salt-treated purified membranes by thin-section electron microscopy revealed that the purified Golgi consists mainly of a mixed population of vesicular and tubular membranes ranging from 50 to 300 nm in diameter and length. About 40% of these structures were densely labeled with antibodies to Ypt1p on thin sections prepared for immunoelectron microscopy. These results are similar to immunoelectron microscopic observations by Preuss et al. (1992), who found morphologically similar structures labeled with anti-Ypt1p IgG and anti α-1,6-mannose antibodies in wild type yeast cells.

We found that vesicle targeting and fusion with the purified Golgi membranes required ATP, GTP, Ca2+, and cytosol. Nonhydrolyzable nucleotide analogs ATPγS and GTPγS specifically blocked vesicle consumption in the reconstituted in vitro reaction. The primary target for the GTPγS inhibition is most probably the Ypt1 protein. Novick and Brennwald (1993) proposed that Ypt1p can load on the surface of the transport vesicles in the GTP-bound form and be released to the cytoplasm in the GDP-bound form by the action of GDI (guanine nucleotide dissociation inhibitor). Thus GTP hydrolysis appears to be required for the proper function and recycling of Ypt1p. It is notable that GTP hydrolysis is required at least twice during one round of ER to Golgi transport, first for transport vesicle uncoating mediated by Sar1p (Barlowe et al., 1994) and later during the targeting/fusion step, probably for the formation of the targeting complex (Söllner et al., 1993; Søgaard et al., 1994) involving Ypt1p. ATP hydrolysis, which is inhibited by ATPγS, is probably required for Sec18p function during the maturation of a targeting complex (Wilson et al., 1992; Rothman, 1994). In the presence of ATPγS a specific 20S complex can form in vitro in a mammalian transport assay (Söllner et al., 1993). The 20S particle contains SNAREs, SNAP-25, NSF, and α-SNAP and is disassembled when ATP is hydrolyzed (Wilson et al., 1992).

Specific protein requirements for ER-derived transport vesicle targeting and fusion with cis-Golgi membranes were revealed by inhibition of Sec protein function in mutant cells. Cytosol prepared from temperature-sensitive mutant cells was inactivated by brief incubation at an elevated temperature; in some cases transport activity was rescued by the addition of a small amount (20 μg) of wild type cytosol. These studies showed that Sec7p, a peripheral membrane protein (Achstetter et al., 1988), Ypt1p, a peripheral and cytosolic GTP-binding protein (Segev et al., 1988), Sec19p, a cytosolic protein (Garrett et al., 1994), Sly1p, a peripheral membrane protein (Dascher et al., 1991), Usolp, a peripheral membrane protein (Nakajima et al., 1994; Seog et al., 1994), and Sec18p, yeast NSF homolog (Eakle et al., 1988) are required for vesicle targeting and fusion.

Most of the targeting Sec proteins are highly enriched in the transport stimulating fractions purified from yeast cytosol on the FPLC MonoQ column. We found that the cytosolic requirement for the transport reaction was satisfied by a mixture of two protein fractions eluted from FPLC MonoQ columns; one at low (0.2–0.3 M KOAc) salt, termed LSF, and one eluted in high (1.4 M KOAc) salt, termed HSF. LSF is enriched for Ypt1p and Sly1p. Soluble Sec17p was not required to drive the transport reaction in vitro, but like Sec18p, the bulk of Sec17p was found already associated with Golgi membranes. The most likely active components of LSF are Ypt1p and Sly1p. It is possible that this fraction also contains Sec19p. We found that the LSF, but not HSF, prepared from sec19-1 cytosol was defective in our transport assay (data not shown). Addition of wild type LSF to the transport reaction rescued sly1p and usol-1 mutant cytosols. We could not determine the fractionation properties of Sec19p or Usolp due to the lack of specific antibodies. The precise biochemical function of Usolp or its mammalian homolog pl15 (Sapperstein et al., 1996) is currently unknown. pl15 is required for the docking or fusion step in intra-Golgi transport (Waters et al., 1992) and for binding of transcytotic vesicles to plasma membrane (Barroso et al., 1995). Usol is required for the assembly of the ER to Golgi SNARE complex (Sapperstein et al., 1996).

HSF was enriched for Sec7p, and also contained some coatomer complex and Sec18p. Additional purification of HSF by gel-filtration and glycerol velocity sedimentation revealed that the activity co-purified only with Sec7p and that coatomer and Sec18p were not functional components of HSF activity.

The main candidate for the active component of HSF is Sec7 protein (and possibly Sec7p-associated proteins). Sec7 immunoreactive material co-purified with HSF activity on every ion-exchange and gel-filtration column used, as well as on a glycerol velocity gradient. It appears that Sec7p forms a complex with several other proteins (Fran-
Franzusoff et al. (1992) observed accumulation of a transport vesicle intermediate as a result of an ER to Golgi transport block in vitro induced by addition of anti-Sec7p IgG, which affects cytosolic, but not Golgi-associated Sec7p. These authors proposed a role for Sec7p as a coat protein. However, the Sec7p is not required to form ER-derived transport vesicles (Barlowe et al., 1994), and instead it is mainly found associated with the Golgi membrane surface (Preuss et al., 1992; data not shown). It is possible that Sec7p (and probably other proteins, like Uso1p and Ypt1p) binds to the surface of the transport vesicles in exchange for the COPII-type protein coat just before targeting to the acceptor membrane. Such re-coating could be required to facilitate correct targeting of the vesicles to the acceptor membrane. If this model is correct then it may be possible to reconstitute such a reaction using purified ER-derived transport vesicles.

Alternatively, Sec7p, and probably Ypt1p and Uso1p bind to the cis-Golgi membrane surface prior the vesicle targeting and are required for the docking of uncoated transport vesicles. If this model is correct, then previously described immuno-purified membranes enriched for Sec7p (Franzusoff et al., 1992) and/or Ypt1p (Lian and Ferro-Novick, 1993) were not the ER-derived transport vesicles but rather Golgi fragments. Surprisingly, soluble Sec18p and Sec17p were not required for our in vitro targeting/fusion reaction, although a similar activity (NSF and α-SNAP) is required in the reconstituted mammalian intra-Golgi transport reaction (Wilson et al., 1988; Clary et al., 1990). In the mammalian system this requirement was revealed only when the membrane-bound Sec18p-like protein, NSF, was inactivated by NEM treatment or after salt extraction of the membranes. The significant amounts of Sec17p and Sec18p tightly associated with our purified Golgi membranes were probably sufficient to provide this essential activity during the targeting/fusion reaction. Salt extraction, which removed approximately 80% of the membrane bound Sec17p and Sec18p from our enriched Golgi membranes (data not shown), may be sufficient to reveal a requirement for these and other peripheral proteins in our targeting/fusion reaction.

We used two-step transport reactions to study the biochemical sequence of involvement of different soluble activities in the targeting/fusion reaction. Sly1p, Ypt1p, and GTP hydrolysis are required during the early stages of the reaction. Sec7p and Uso1p are involved in a parallel or in a later step possibly after Ypt1p has already been loaded with GTP. We suggest that all these proteins are recruited to the surface of uncoated ER-derived vesicles as a prelude to recognition of the acceptor membrane and formation of a pre-fusion complex. The biochemical complementation assay described here allows a functional reconstruction of this targeting process with enriched cytosolic proteins. Further effort is required to achieve a fully resolved system.

We thank Rainer Duden, Tamara Doering, Martin Latterich and Sebastian Bednarek for improving the manuscript; Bob Lesch for help in preparing radiolabeled pPepJ; S. Emr, T. Graham, B. Fuller, H. Pelham, N. Segev, T. Stevens, and K. Yoda for generously providing antisera against different yeast proteins. Special thanks also go to the Schekman lab for providing a stimulating and lively working environment.

This work was supported by the Howard Hughes Medical Research Institute.

Received for publication 5 October 1995 and in revised form 2 November 1995.

References

