Cysteine34 of the Cytoplasmic Tail of the Cation-dependent Mannose 6-Phosphate Receptor Is Reversibly Palmitoylated and Required for Normal Trafficking and Lysosomal Enzyme Sorting

Anja Schweizer, Stuart Kornfeld, and Jack Rohrer

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract. We have examined whether the two cysteine residues (Cys30 and Cys34) in the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor are palmitoylated via thioesters and whether these residues influence the biologic function of the receptor. To do this, mouse L cells expressing wild-type and mutant receptors were analyzed by metabolic labeling with [3H]palmitate, immunoprecipitation, and SDS-PAGE. Both Cys30 and Cys34 were found to be sites of palmitoylation and together they accounted for the total palmitoylation of the receptor. The palmitate rapidly turned over with a half-life of ~2 h compared to a half-life of greater than 40 h for the protein. Mutation of Cys34 to Ala resulted in the gradual accumulation of the receptor in dense lysosomes and the total loss of cathepsin D sorting function in the Golgi. A Cys30 to Ala mutation had no biologic consequences, showing the importance of Cys34. Mutation of amino acids 35-39 to alanines impaired palmitoylation of Cys30 and Cys34 and resulted in abnormal receptor trafficking to lysosomes and loss of cathepsin D sorting.

These data suggest that palmitoylation of Cys30 and Cys34 leads to anchoring of this region of the cytoplasmic tail to the lipid bilayer. Anchoring via Cys34 is essential for the normal trafficking and lysosomal enzyme sorting function of the receptor.

The cation-dependent mannose 6-phosphate receptor (CD-MPR)1 is a type I integral membrane protein that functions to transport newly synthesized acid hydrolases from the trans-Golgi network (TGN) to an acidified endosomal (prelysosomal) compartment (Kornfeld and Mellman, 1989; Ludwig et al., 1995; Hille-Rehfeld, 1995). After discharging its ligand, the receptor either returns to the Golgi to repeat the process or moves to the plasma membrane where it is rapidly internalized via clathrin-coated vesicles. This trafficking between the TGN, endosomes, and the plasma membrane is directed by signals located in the receptor's 67 amino acid cytoplasmic tail. A di-leucine containing sequence near the carboxyl terminus of the cytoplasmic tail is required for efficient entry into Golgi clathrin-coated pits while two signals mediate the rapid internalization at the plasma membrane (Johnson et al., 1990; Johnson and Kornfeld, 1992). One of these signals includes Phe 13 and Phe 18 while the second signal involves Tyr 45.

Recently, we reported that the cytoplasmic tail of the CD-MPR contains a third signal which functions to prevent the receptor from trafficking from endosomal compartments to lysosomes (Rohrer et al., 1995). Analysis of a series of truncation and alanine scanning mutants implicated amino acids 34-39 of the cytoplasmic tail (CysArgSerLysProArg) as being necessary for avoidance of lysosomal degradation. In addition, the transmembrane domain of the CD-MPR contributed to this function. Our data did not allow us to distinguish whether amino acids 34-39 constituted part or all of this signal or if these amino acids determined a critical conformation of the cytoplasmic tail that is required for the expression of a sorting signal located elsewhere in the cytoplasmic tail.

The cytoplasmic tail of the CD-MPR contains two cysteine residues which are located at positions 30 and 34. Thus Cys34 is part of the amino acid sequence that is necessary to prevent receptor trafficking to lysosomes while Cys30 is located close to this critical region. When a construct (MPR C30C34A) containing alanine residues in place of Cys30 and Cys34 was expressed in mouse L cells, the mutant receptor was found to accumulate in dense lysosomes to the same extent as a receptor with amino acids 34-39 changed to alanines (MPR 34-39A) (Rohrer et al.,

1Abbreviations used in this paper: CD-MPR, cation-dependent mannose 6-phosphate receptor; HB, homogenization buffer; Man-6-PIGF-II receptor, mannose 6-phosphate/insulin-like growth factor II receptor.

Please address all correspondence to S. Kornfeld, Washington University School of Medicine, Division of Hematology/Oncology, Box 8125, 660 S. Euclid Avenue, St. Louis, MO 63110. Tel.: (314) 362-8803. Fax: (314) 362-8826.
1995). This result indicated that Cys34 and perhaps Cys30 were involved in preventing the receptor from trafficking to lysosomes.

In the present study, we demonstrate that both Cys30 and Cys34 are reversibly palmitoylated and that the extent of palmitoylation is influenced by amino acids 35-39 of the cytoplasmic tail. A mutant receptor with Cys34 changed to Ala (MPR C34A) has the same phenotype as the MPR 34-39A construct whereas a receptor with Cys30 mutated to Ala (MPR C30A) behaves like the wild-type receptor. Further, we show that MPR C34A, MPR 34-39A and MPR 35-39A, are greatly impaired in their ability to sort cathepsin D in the Golgi, implying that mutations in this region of the cytoplasmic tail have generalized effects on receptor function.

Materials and Methods

Materials

Enzymes used in molecular cloning were obtained from Boehringer Mannheim Biochemicals (Indianapolis, IN), New England Biolabs (Beverly, MA), or Promega Corp. (Madison, WI); α-MEM, FCS, and lipofectin were from Gibco BRL (Gaithersburg, MD); Percoll from Pharmacia Diagnostics AB (Upsala, Sweden); [3H]Palmitate, Amplify, and enhanced chemiluminescence Western blotting reagents from Amersham Corp. (Arlington Heights, IL); Expre35S35S label from New England Nuclear (DuPont Co., Wilmington, DE); protein A-Sepharose beads from Repligen Corp. (Cambridge, MA); rabbit anti-mouse IgG from Zymed Labs (San Francisco, CA); protease inhibitors, hydroxyamine, and palmitate from Sigma Chem. Co. (St. Louis, MO), nitrocellulose from Schleicher & Schuell, Inc. (Keene, NH); and cell culture dishes from Falcon Labware (Becton Dickinson Co., Lincoln Park, NJ).

Oligonucleotides were synthesized with a solid-phase synthesizer (380A; Applied Biosystems, Inc., Foster City, CA) by the Protein Chemistry Facility of Washington University.

Recombinant DNA

All basic DNA procedures were as described (Sambrook et al., 1989). The PCR procedure of Ho et al. (1989) was used to generate the MPR C30A and MPR C34A constructs with pBSK-MPR7MDm (Rohrer et al., 1995) serving as a template together with bp 170-193 and 1260-1241 of pBSK as the downstream and upstream primers. Appropriate partial comple-

Materials

The Journal of Cell Biology, Volume 132, 1996 578

were expanded for further study and maintained in selective medium. Selection for resistance to neomycin was screened for expression by immunoblotting. Selected clones to the manufacturer's directions. Selection for resistance to neomycin was screened for expression by immunoblotting. Selected clones to the manufacturer's directions.

Hydroxylation Treatment

CD-MPR protein labeled with [3H]palmitate or [35S]methionine/cysteine was electrophoresed in duplicate lanes on 10% SDS-polyacrylamide gels. The gels were fixed with 25% methanol, 10% acidic acid for 90 min, and subsequently rinsed in water three times for 10 min to remove the acidic acid. One gel was treated for 14 h with 1.0 M Tris, pH 7.0, as a control while the other gel was soaked for 14 h in 1.0 M hydroxylamine, pH 7.0. The gels were then rinsed in water and prepared for fluorography.

Percol Gradient Fractionation

Confluent cells grown in a 100-mm petri dish were incubated for 24 h in growth medium supplemented with 100 µM each of peptatin A and leu-

Metabolic Labeling with [3H]Palmitate and [35S]Methionine/Cysteine

Cells were grown in 60-mm dishes. For labeling with [3H]palmitate, the cells were washed twice with serum-free α-MEM and labeled in 1.5 ml α-MEM containing 5% FCS, 20 mM Hepes, pH 7.4, and 600 µCi of [3H]palmitate for 3 h at 37°C. For labeling with [35S]methionine/cysteine, the cells were rinsed twice with PBS, preincubated in 1.5 ml of methio-

Materials

were expanded for further study and maintained in selective medium.

Materials

were expanded for further study and maintained in selective medium.
ml ice-cold PBS, scraped into 2 ml ice-cold PBS, and centrifuged for 10 min at 140 g. The resulting pellets were resuspended in 1 ml of homogenization buffer (PBS, containing 10 mM EDTA, 0.5% Triton X-100, and a 1:500 dilution of a protease inhibitor cocktail [5 mg/ml benzamidine, and 1 μg/ml of peptatin A, leupeptin, antipain, and chymostatin in 40% dimethylsulfoxide-60% ethanol]), passed five times through a 25-gauge needle connected to a 1-ml syringe, and then sonicated on ice for 10 s at 120 W with a probe sonicator. After incubating for 30 min on ice, the cell lysates were centrifuged for 60 min at 39,000 rpm in a Ti50 rotor. The cell and media high speed supernatants were then adjusted to 0.1 M Tris-HCl, pH 8.0, 0.1 M KCl, 5 mM MgCl₂, 1% Triton X-100, 0.5% Na deoxycholate, 0.3% SDS, 40 μg/ml phenylmethylsulfonyl fluoride and 1× of the above described protein inhibitor cocktail. Rabbit antiserum to cathepsin D was added, and the samples were incubated overnight at 4°C. The protein A-Sepharose beads were pelleted, washed four times with 1 ml 0.1 M Tris-HCl, pH 8.0, 0.1 M NaCl, 1% Triton X-100, and twice with 1 ml 0.1 M Tris-HCl, pH 8.0. Immunoprecipitates were eluted by boiling for 3 min in nonreducing SDS sample buffer as described above.

SDS-PAGE, Fluorography, and Immunoblotting

Proteins were separated on 10% SDS-polyacrylamide minigels (BioRad Laboratories) using the Laemmli (1970) system. After electrophoresis, gels were either treated with Amplify, dried, and exposed to film (Xomat AR; Eastman Kodak Co., Rochester, NY) (metabolic labeling experiments; cathepsin D sorting assays) or transferred onto nitrocellulose membranes according to the method of Towbin et al. (1979) (Percoll density fractionation). The nitrocellulose sheet was blocked with 3% nonfat dry milk powder (Schnuck Markets, Inc., St. Louis, MO) in PBS. The blot was subsequently incubated with mAb 22D4 (diluted 1:500 in PBS:3%-powdered milk) followed by HRP-conjugated anti-mouse secondary antibody (Amer sham Corp.). Immunoreactive proteins were visualized using the enhanced chemiluminescence detection system according to the manufacturer’s directions. The fluoro- and autoradiographs were quantitated using a Personal Densitometer (Molecular Dynamics, Inc., Sunnyvale, CA).

Assays and Miscellaneous Methods

β-Hexosaminidase activity was determined as described (Rohrer et al., 1995). Protein was determined with the BioRad (Richmond, CA) protein assay kit using protein standard 1, or with the Micro BCA protein assay (Pierce, Rockford, IL).

Results

CD-MPR Is Reversibly Palmitoylated

Since a mutant CD-MPR containing alanines at positions 30 and 34 of the cytoplasmic tail instead of the normal cysteines accumulated in dense lysosomes, we were interested in determining whether the cysteines were palmitoylated under normal conditions. To do this, a mouse L cell line (ML4) stably expressing the wild-type bovine CD-MPR was labeled with either [3H]palmitate or [35S]methionine/cysteine for 3 h. The expressed CD-MPR was then immunoprecipitated and subjected to SDS-PAGE. As shown in Fig. 1, the receptor incorporated both labels. As expected for a thioester linkage (Schlessinger et al., 1980; Kaufman et al., 1984), the [3H] label bound to the CD-MPR was mostly released by treatment with hydroxylamine at neutral pH (lane 2). This treatment had no effect on the amount of [35S]methionine/cysteine incorporated into the protein (lane 4). It is also apparent from Fig. 1 that there is no [3H]palmitate incorporated in the “ER-form” of the CD-MPR (the lower molecular weight band in the [35S]methionine/cysteine lane). This is an indication that the palmitate is added in a late-Golgi or post-Golgi compartment.

When the ML4 cells were labeled with [3H]palmitate for 90 min and chased for up to 12 h followed by immunoprecipitation of the CD-MPR and SDS-PAGE, it was apparent that the covalently bound [3H]palmitate was rapidly turning over (Fig. 2). A plot of these data gave rise to a biphasic curve, with the initial T1/2 being ~2 h followed by a second, slower decay (T1/2 of ~20 h). The second phase of the curve is most likely the result of reutilization of the [3H]palmitate (Magee et al., 1987; Staufenbiel, 1987). The T1/2 of 2 h is much shorter than the T1/2 of the protein (>40 h) as determined by [35S]methionine/cysteine labeling (Fig. 2 B). These data establish that the CD-MPR is reversibly palmitoylated.

Cys³⁰ and Cys³⁴ Are the Sites of Palmitoylation in CD-MPR

Cys³⁰ and Cys³⁴ are the only cysteines in the 67-amino acid cytoplasmic tail of the CD-MPR and none are present in the transmembrane domain (Fig. 3 A). Thus, Cys³⁰ and Cys³⁴ were the likely candidates to undergo palmitoylation via thioester linkages (Sefton and Buss, 1987). To pursue this, three constructs were analyzed. One construct (MPR C30C34A) had both cysteines changed to alanines while the other two constructs (MPR C30A and MPR C34A) had either one or the other cysteine mutated to alanine. Cells expressing these mutant receptors were labeled with [3H]palmitate and analyzed as before. As shown in Fig. 3 B, there was no detectable incorporation of [3H]palmitate into MPR C30C34A while both MPR C30A and MPR C34A were labeled. When the [3H]palmitate incorporation was expressed as a function of receptor content, as determined by quantitative Western blotting (Fig. 3 C), it could be calculated that MPR C30C34A, MPR C30A, and MPR C34A contained 0, 90, and 56% as much [3H]palmitate as the wild-type receptor (Fig. 3 D).

These data demonstrate that both Cys³⁰ and Cys³⁴ are palmitoylated and together they account for all the palmitoylation that occurs in the CD-MPR. The loss of palmitoylation at Cys³⁰ appears to be compensated by increased palmitoylation at Cys³⁴.
Effect of the Amino Acids Surrounding Cys30 and Cys34 on Palmitoylation

We next tested whether the amino acids near the palmitoylation sites influenced the extent of this modification. For this purpose, we used a series of constructs in which amino acids 28-50 of the cytoplasmic tail were substituted with stretches of alanines. The results are summarized in Fig. 4. MPR 28-33A was palmitoylated 65% as well as the wild-type CD-MPR, somewhat less than the 90% value obtained with MPR C30A. Thus the residues surrounding Cys30 do not influence palmitoylation in a major way. By contrast, MPR 34-39A was only palmitoylated to 10% of the level of the wild-type receptor, compared to 56% for MPR C34A. This suggests that amino acid residues 35-39 of the cytoplasmic tail are required for optimal palmitoylation. Consistent with this notion was the finding that MPR 35-39A was only palmitoylated 42% as well as the wild-type receptor in spite of containing both Cys30 and Cys34. MPR 40-45A and MPR 46-50A were palmitoylated to about the same extent as the wild-type receptor indicating that these residues do not influence palmitoylation.

Figure 3. Cys30 and Cys34 in the cytoplasmic tail of CD-MPR are palmitoylated. (A) Schematic illustration of the cytoplasmic tail of CD-MPR. Selected amino acids of the tail are shown; the half box represents the terminus of the single transmembrane domain of CD-MPR. (B) Mouse L cells stably expressing wt CD-MPR, MPR C30C34A, MPR C30A, and MPR C34A were labeled with [3H]palmitate. CD-MPR was immunoprecipitated with mAb 22D4 and analyzed by SDS-PAGE (10% gel). For each sample the total amount of protein subjected to immunoprecipitation is shown underneath the fluorograph. (C) Level of CD-MPR expression in the individual transfected cell lines. 20 ~g of protein from the cell homogenates from duplicate plates to the ones labeled with [3H]palmitate were subjected to SDS-PAGE and Western blotting with mAb 22D4. (D) Quantitation of [3H]palmitate incorporation into CD-MPR cysteine mutants. Fluorograph and immunoblot shown in B and C, respectively, and those from additional experiments was quantitated by densitometric scanning. In each experiment the values obtained for the [3H]palmitate incorporation were corrected for the different amounts of protein used for immunoprecipitation, and for the differences in expression levels. The value obtained with the CD-MPR was set to 100%.

MPR C34A, but Not MPR C30A, Accumulates in Dense Lysosomes

In our previous study, we demonstrated that MPR C30C34A
Figure 4. Determination of [3H]palmitate incorporation into CD-MPR alanine scanning mutants. Mouse L cells stably expressing CD-MPR, MPR 28-33A, MPR 34-39A, MPR 40-45A, MPR 46-50A, MPR 35-39A, MPR 34-36A, and MPR 37-39A were labeled with [3H]palmitate. CD-MPR was immunoprecipitated with mAb 22D4 and analyzed by SDS-PAGE. The quantitation of several experiments is shown. The values were calculated as described in Fig. 3.

accumulates in dense lysosomes whereas the wild-type receptor is excluded from that organelle (Rohrer et al., 1995). It was therefore of interest to determine whether MPR C30A and MPR C34A, which have only one cysteine mutated, retain the ability to avoid trafficking to lysosomes. For this purpose, cell lines expressing these mutant receptors were first preincubated for 24 h in the presence of pepstatin A and leupeptin in order to inhibit degradation of receptors that had entered lysosomes. The cells were then harvested, homogenized with a ball-bearing homogenizer, and subjected to Percoll density gradient centrifugation. Under these conditions, dense lysosomes are recovered at the bottom of the gradient (pool I) whereas low density membranes including endosomes, the Golgi complex, plasma membranes, and the endoplasmic reticulum are found near the top of the gradient (pool III). Intermediate density membranes are recovered in pool II (Green et al., 1987).

The distribution of the various receptors was determined by electrophoresis of the Percoll density fractions followed by Western blotting (Fig. 5, A and B for quantitation). As reported previously, the CD-MPR was almost completely excluded from dense lysosomes (4% recovered in pool I) whereas 30% of MPR C30C34A was recovered in pool I (Rohrer et al., 1995). MPR C30A behaved the same as the wild-type receptor (4% in pool I) whereas MPR C34A had a distribution similar to that of MPR C30C34A (26% in pool I). These data indicate that Cys34 is essential for avoiding receptor trafficking to dense lysosomes while Cys30 is not sufficient to prevent the receptor from entering this organelle.

Mutation of Cys34 of the Cytoplasmic Tail Abolishes the Cathepsin D Sorting Function

We next tested whether mutation of Cys30 and Cys34 altered the ability of the receptor to sort cathepsin D to lysosomes. This function requires the receptor to recycle to the Golgi where it must bind cathepsin D and enter Golgi clathrin-coated vesicles which transport the receptor-ligand complex to endosomal compartments. Cells expressing the various receptors were incubated with $[^{35}S]$methionine/cysteine for 30 min and chased for 4 h to allow the newly synthesized cathepsin D to be phosphorylated and either targeted to lysosomes or secreted. Equivalent aliquots of cell homogenates and media were immunoprecipitated and the immunoprecipitates were analyzed by...
Spectral and fluorography. The positions of the unprocessed and the proteolytically processed mature cathepsin D (CD) are indicated.

Discussion

The results presented in this paper demonstrate that both Cys34 and Cys30 of the cytoplasmic tail of the CD-MPR are palmitoylated in a reversible manner and that Cys34, but not Cys30, is required for proper trafficking and lysosomal enzyme sorting. Several aspects of the palmitoylation of the CD-MPR are of particular interest. Among the transmembrane proteins known to acquire this covalent modification, the palmitoylation sites are either localized within the transmembrane domain of the polypeptide or in the cytoplasmic tail relatively close to the transmembrane junctions. For instance, the transferrin receptor (Jing and Trowbridge, 1987, 1990) and the cell surface glycoprotein CD4 (Crise and Rose, 1992) contain palmitoylated cysteines in their transmembrane domains. CD4 has a second palmitoylation site located one amino acid from the transmembrane domain whereas this distance is two amino acids in the HLA-D-associated invariant chain (Koch and Hämmerling, 1986), six amino acids in vesicular stomatitis virus hemagglutinin (Veit et al., 1991), and 15–16 amino acids in the luteinizing hormone/human chorionadotropin receptor (Kawate and Menon, 1994). The finding of palmitoylated cysteines located 29 and 33 amino acids in the cytoplasmic tail of the CD-MPR expands the possibilities for this covalent modification, and has interesting implications for the structure of the cytoplasmic tail of this receptor.

Since palmitoylation has been shown to enhance membrane binding of some forms of p21N-ras (Hancock et al., 1989), the neuronal growth cone protein GAP (Skene and Virag, 1989; Zuber et al., 1989; Liu et al., 1993), and Gα (Wedegaaertner et al., 1993), it seems reasonable that palmitoylation of Cys30 and Cys34 may anchor this portion of the cytoplasmic tail of CD-MPR to the lipid bilayer. As depicted in the model shown in Fig. 7, this could have dramatic effects on the conformation of the cytoplasmic tail. For instance, one consequence would be to bring the Tyr45 junctions. For instance, the transferrin receptor (Jing and Trowbridge, 1987, 1990) and the cell surface glycoprotein CD4 (Crise and Rose, 1992) contain palmitoylated cysteines in their transmembrane domains. CD4 has a second palmitoylation site located one amino acid from the transmembrane domain whereas this distance is two amino acids in the HLA-D-associated invariant chain (Koch and Hämmerling, 1986), six amino acids in vesicular stomatitis virus hemagglutinin (Veit et al., 1991), and 15–16 amino acids in the luteinizing hormone/human chorionadotropin receptor (Kawate and Menon, 1994). The finding of palmitoylated cysteines located 29 and 33 amino acids in the cytoplasmic tail of the CD-MPR expands the possibilities for this covalent modification, and has interesting implications for the structure of the cytoplasmic tail of this receptor.

Since palmitoylation has been shown to enhance membrane binding of some forms of p21N-ras (Hancock et al., 1989), the neuronal growth cone protein GAP (Skene and Virag, 1989; Zuber et al., 1989; Liu et al., 1993), and Gα (Wedegaaertner et al., 1993), it seems reasonable that palmitoylation of Cys30 and Cys34 may anchor this portion of the cytoplasmic tail of CD-MPR to the lipid bilayer. As depicted in the model shown in Fig. 7, this could have dramatic effects on the conformation of the cytoplasmic tail. For instance, one consequence would be to bring the Tyr45 junctions. For instance, the transferrin receptor (Jing and Trowbridge, 1987, 1990) and the cell surface glycoprotein CD4 (Crise and Rose, 1992) contain palmitoylated cysteines in their transmembrane domains. CD4 has a second palmitoylation site located one amino acid from the transmembrane domain whereas this distance is two amino acids in the HLA-D-associated invariant chain (Koch and Hämmerling, 1986), six amino acids in vesicular stomatitis virus hemagglutinin (Veit et al., 1991), and 15–16 amino acids in the luteinizing hormone/human chorionadotropin receptor (Kawate and Menon, 1994). The finding of palmitoylated cysteines located 29 and 33 amino acids in the cytoplasmic tail of the CD-MPR expands the possibilities for this covalent modification, and has interesting implications for the structure of the cytoplasmic tail of this receptor.

Since palmitoylation has been shown to enhance membrane binding of some forms of p21N-ras (Hancock et al., 1989), the neuronal growth cone protein GAP (Skene and Virag, 1989; Zuber et al., 1989; Liu et al., 1993), and Gα (Wedegaaertner et al., 1993), it seems reasonable that palmitoylation of Cys30 and Cys34 may anchor this portion of the cytoplasmic tail of CD-MPR to the lipid bilayer. As depicted in the model shown in Fig. 7, this could have dramatic effects on the conformation of the cytoplasmic tail. For instance, one consequence would be to bring the Tyr45 junctions. For instance, the transferrin receptor (Jing and Trowbridge, 1987, 1990) and the cell surface glycoprotein CD4 (Crise and Rose, 1992) contain palmitoylated cysteines in their transmembrane domains. CD4 has a second palmitoylation site located one amino acid from the transmembrane domain whereas this distance is two amino acids in the HLA-D-associated invariant chain (Koch and Hämmerling, 1986), six amino acids in vesicular stomatitis virus hemagglutinin (Veit et al., 1991), and 15–16 amino acids in the luteinizing hormone/human chorionadotropin receptor (Kawate and Menon, 1994). The finding of palmitoylated cysteines located 29 and 33 amino acids in the cytoplasmic tail of the CD-MPR expands the possibilities for this covalent modification, and has interesting implications for the structure of the cytoplasmic tail of this receptor.
would be brought closer to the membrane. The three basic residues adjacent to Cys34 could potentially interact with the acidic phospholipid head groups of the lipid bilayer.}

containing internalization signal closer to the membrane. This signal, located 11 amino acids from Cys34 would now have a spacing from the membrane that is similar to that of the Phe13-Phe18 containing internalization signal. The precise spacing of this signal from the membrane could, in turn, be an important determinant of its biologic activity. Similarly, the anchoring of the palmitoylated cysteines to the membrane could influence the presentation of the Phe-containing signal and the di-leucine signal. Three of the five residues on the carboxyl side of Cys34 (Arg35 Ser36 Lys37 Pro38 Arg39) have positive charges and could potentially interact with the acidic phospholipid head groups of the lipid bilayer, resulting in additional conformational effects on the cytoplasmic tail. This may explain why mutation of these residues to alanines (MPR 35-39A) results in a 58% decrease in palmitoylation of Cys34 and Cys30. The basic residues may serve to position this portion of the cytoplasmic tail in a manner that is either favorable for palmitoyltransferase to act on Cys30 and Cys34 or unfavorable for the palmitoyltransferase(s) to function.

A striking finding is the fact that the palmitate is rapidly turning over in the CD-MPR, with the $t_{1/2}$ being on the order of 2 h whereas the protein $\tau_{1/2}$ is greater than 40 h. It is well documented that palmitoylation can be either a stable or reversible modification, although the actual $t_{1/2}$ for palmitate turnover has only been determined in a few instances (Omary and Trowbridge, 1981; Magee et al., 1987; Staufenbiel, 1987). Since mutation of Cys34 to an alanine impairs several functions of the receptor, an interesting possibility is that the reversible palmitoylation of this residue serves to modulate various signals in the cytoplasmic tail. Perhaps palmitoylation occurs at one station during the trafficking of the receptor to enhance or inhibit the activity of a particular signal while depalmitoylation occurs at another station, giving rise to the opposite effect. In this regard, it seems highly likely that the wild-type CD-MPR is incompletely palmitoylated at steady state. If palmitoylation were complete, then deletion of one of the two cysteines in the cytoplasmic tail would result in a 50% drop in palmitate incorporation rather than the 10% decrease observed with MPR C30A.

Receptor molecules carrying the Cys34 to Ala mutation have several altered biologic properties. One is a modification in receptor trafficking resulting in the gradual accumulation of the mutant receptor in dense lysosomes. We have suggested that the cytoplasmic tail of the receptor contains a sorting determinant that prevents delivery of the receptor to lysosomes (Rohrer et al., 1995). Cys34 or its palmitoylated form could be a component of this signal along with amino acids 35-39, or else determine a critical conformation of the cytoplasmic tail that is required for the expression of a sorting signal located elsewhere in the cytoplasmic tail. The other alteration in the function of the receptor with the Cys34 to Ala mutation is the loss of ability to sort newly synthesized cathepsin D to lysosomes. This defect in the sorting function could arise in several ways. One possibility is that the mutation impairs the recycling of the receptor to the Golgi where the binding of the cathepsin D occurs. This would be consistent with the abnormal trafficking of the mutant receptor from endosomes to lysosomes. Alternatively, the mutant receptor could return to the Golgi and either fail to bind cathepsin D or not enter the Golgi clathrin-coated vesicles after binding this ligand. If the latter occurred, the CD-MPR-ligand complex would travel to the cell surface where the ligand would probably be discharged since the CD-MPR is known to bind ligands extremely poorly at the cell surface (Stein et al., 1987; Ma et al., 1991). Regardless of the particular site of the defect, it is striking that the change of this single amino acid totally abrogates this sorting function whereas mutation of Cys30 to Ala has no effect on either cathepsin D sorting or receptor trafficking to lysosomes.

The Man-6-P/IGF-II receptor contains a highly conserved Cys34ArgArg sequence at positions 15 to 18 of its cytoplasmic tail. Westcott and Rome (1988) reported that this receptor contains covalently bound fatty acid and we have found that the receptor is palmitoylated via a thioester linkage (Schweizer, A., and J. Rohrer, unpublished data). It will be of considerable interest to determine whether palmitoylation of this receptor influences its trafficking and function in lysosomal enzyme sorting.

A. Schweizer was supported by a W.M. Keck fellowship.

Received for publication 21 November 1995 and in revised form 13 December 1995.

References

Schweizer et al. Palmitoylation of Cation-dependent Man-6-P Receptor

583