Cysteine34 of the Cytoplasmic Tail of the Cation-dependent Mannose 6-Phosphate Receptor Is Reversibly Palmitoylated and Required for Normal Trafficking and Lysosomal Enzyme Sorting

Anja Schweizer, Stuart Kornfeld, and Jack Rohrer
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract. We have examined whether the two cysteine residues (Cys30 and Cys34) in the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor are palmitoylated via thioesters and whether these residues influence the biologic function of the receptor. To do this, mouse L cells expressing wild-type and mutant receptors were analyzed by metabolic labeling with $[^3]$H]palmitate, immunoprecipitation, and SDS-PAGE. Both Cys30 and Cys34 were found to be sites of palmitoylation and together they accounted for the total palmitoylation of the receptor. The palmitate rapidly turned over with a half-life of ~2 h compared to a half-life of greater than 40 h for the protein. Mutation of Cys34 to Ala resulted in the gradual accumulation of the receptor in dense lysosomes and the total loss of cathepsin D sorting function in the Golgi. A Cys30 to Ala mutation had no biologic consequences, showing the importance of Cys34. Mutation of amino acids 35-39 to alamines impaired palmitoylation of Cys30 and Cys34 and resulted in abnormal receptor trafficking to lysosomes and loss of cathepsin D sorting.

These data suggest that palmitoylation of Cys30 and Cys34 leads to anchoring of this region of the cytoplasmic tail to the lipid bilayer. Anchoring via Cys34 is essential for the normal trafficking and lysosomal enzyme sorting function of the receptor.

The cation-dependent mannose 6-phosphate receptor (CD-MPR) is a type I integral membrane protein that functions to transport newly synthesized acid hydrolases from the trans-Golgi network (TGN) to an acidified endosomal (prelysosomal) compartment (Kornfeld and Mellman, 1989; Ludwig et al., 1995; Hille-Rehfeld, 1995). After discharging its ligand, the receptor either returns to the Golgi to repeat the process or moves to the plasma membrane where it is rapidly internalized via clathrin-coated vesicles. This trafficking between the TGN, endosomes, and the plasma membrane is directed by signals located in the receptor's 67 amino acid cytoplasmic tail. A di-leucine containing sequence near the carboxyl terminus of the cytoplasmic tail is required for efficient entry into Golgi clathrin-coated pits while two signals mediate the rapid internalization at the plasma membrane (Johnson et al., 1990; Johnson and Kornfeld, 1992). One of these signals includes Phe 13 and Phe 18 while the second signal involves Tyr 45.

Recently, we reported that the cytoplasmic tail of the CD-MPR contains a third signal which functions to prevent the receptor from trafficking from endosomal compartments to lysosomes (Rohrer et al., 1995). Analysis of a series of truncation and alanine scanning mutants implicated amino acids 34-39 of the cytoplasmic tail (CysArgSerLysProArg) as being necessary for avoidance of lysosomal degradation. In addition, the transmembrane domain of the CD-MPR contributed to this function. Our data did not allow us to distinguish whether amino acids 34-39 constituted part or all of this signal or if these amino acids determined a critical conformation of the cytoplasmic tail that is required for the expression of a sorting signal located elsewhere in the cytoplasmic tail.

The cytoplasmic tail of the CD-MPR contains two cysteine residues which are located at positions 30 and 34. Thus Cys34 is part of the amino acid sequence that is necessary to prevent receptor trafficking to lysosomes while Cys30 is located close to this critical region. When a construct (MPR C30C34A) containing alanine residues in place of Cys30 and Cys34 was expressed in mouse L cells, the mutant receptor was found to accumulate in dense lysosomes to the same extent as a receptor with amino acids 34-39 changed to alamines (MPR 34-39A) (Rohrer et al.,...
1995). This result indicated that Cys34 and perhaps Cys30 were involved in preventing the receptor from trafficking to lysosomes.

In the present study, we demonstrate that both Cys30 and Cys34 are reversibly palmitoylated and that the extent of palmitoylation is influenced by amino acids 35-39 of the cytoplasmic tail. A mutant receptor with Cys34 changed to Ala (MPR C34A) has the same phenotype as the MPR 34-39A construct whereas a receptor with Cys30 mutated to Ala (MPR C30A) behaves like the wild-type receptor. Further, we show that MPR C34A, MPR 34-39A and MPR 35-39A, are greatly impaired in their ability to sort cathepsin D in the Golgi, implying that mutations in this region of the cytoplasmic tail have generalized effects on receptor function.

Materials and Methods

Materials

Enzymes used in molecular cloning were obtained from Boehringer Mannheim Biochemicals (Indianapolis, IN), New England Biolabs (Beverly, MA), or Promega Corp. (Madison, WI); α-MEM, FCS, and lipofectin were from Gibco BRL (Gaithersburg, MD); Percoll from Pharmacia Diagnostics AB (Upplands Väsby, Sweden); [H]35S}Palmitate, Amplify, and enhanced chemiluminescence Western blotting reagents from Amersham Corp. (Arlington Heights, IL); Expre35S35S label from New England Nuclear (DuPont Co., Wilmington, DE); rabbit anti-mouse IgG from Zymed Laboratories, Inc. (San Francisco, CA); protease inhibitors, hydroxyamine, and nuclease from Sigma Chem. Co. (St. Louis, MO); nuclease from Schleicher and Schuell, Inc. (Keele, NH); and cell culture dishes from Falcon Labware (Becton Dickinson Co., Lincoln Park, NJ). Oligonucleotides were synthesized with a solid phase synthesizer (380A; Applied Biosystems, Inc., Foster City, CA) by the Protein Chemistry Facility of Washington University.

Recombinant DNA

All basic DNA procedures were as described (Sambrook et al., 1989). The PCR procedure of Ho et al. (1989) was used to generate the MPR C30A and MPR C34A constructs with pBSK-MPRMDom (Roher et al., 1995) serving as a template together with bp 170-193 and 1260-1241 of pBSK, as the down- and upstream primers. Appropriate partial complementary sequences of oligonucleotides in which the desired alanine replacement had been incorporated were chosen as internal primers. The PCR products were digested with BglII and MluI, and the purified fragments were assembled with the EcoRI-BglII fragment of pBSK (B-H-) MPR (BglII-) (Roher et al., 1995) and the EcoRI-MluI fragment of pSFFVNeo in a three part ligation.

The generation of all other constructs used in this study has been described previously (Roher et al., 1995).

Cell Culture and Transfection

A Man-6-P/IGF-II receptor-deficient mouse L cell line designated D9 (LRe-) was maintained in α-MEM containing 10% heat-inactivated FCS, 100 U/ml penicillin, and 100 μg/ml streptomycin at 37°C in a 5% humidified CO$_2$ atmosphere (Gabel et al., 1983). The cells were transfected with 20 μg of XbaI-linearized DNA using lipofectin (Gibco BRL) according to the manufacturer’s directions. Selection for resistance to neomycin (G418) was as described previously (Roher et al., 1995). Resistant colonies were screened for expression by immunoblotting. Selected clones were expanded for further study and maintained in selective medium.

Antibodies

mAb 2D4 specific for the bovine CD-MPR has been described (Messner, 1993). For the detection of cathepsin D, rabbit anti-human cathepsin D antiserum (provided by Walter Greytak of this laboratory) (Johnson and Kornfeld, 1992; Faust et al., 1987) was used.

Metabolic Labeling with $^{[3]H}$Palmitate and $^{[35]S}$Methionine/Cysteine

Cells were grown in 60-mm dishes. For labeling with [H]35S}Palmitate, the cells were washed twice with serum-free α-MEM and labeled in 1.5 ml α-MEM containing 5% FCS, 20 mM Hepes, pH 7.4, and 600 μCi of [H]35S}Palmitate for 3 h at 37°C. For labeling with [35S]methionine/cysteine, the cells were rinsed twice with PBS, incubated in 1.5 ml of methionine- and cysteine-free growth medium containing 10% dialyzed FCS and 20 mM Hepes, pH 7.4, for 20 min, and pulsed for 3 h with 150 μCi of [35S]methionine/cysteine protein labeling mixture in 1.5 ml of preincubation medium. For pulse chase experiments cells were labeled with [H]35S}Palmitate for 90 min at 37°C as described above, and then chased in 2 ml of normal culture medium supplemented with 20 mM Hepes, pH 7.4, and 100 μM unlabeled palmitic acid for 0-12 h. Proteins were immunoprecipitated from Triton X-100-solubilized cells as described in Roher et al. (1995). The immunocomplexes were released from the beads by boiling for 3 min in electrophoresis sample buffer containing 62.5 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, and 0.001% bromophenol blue.

Hydroxylamine Treatment

CD-MPR protein labeled with [H]35S}Palmitate or [35S]methionine/cysteine was electrophoresed in duplicate lanes on 10% SDS-polyacrylamide gels. The gels were fixed with 25% methanol, 10% acetic acid for 90 min, and subsequently rinsed in water three times for 10 min to remove the acetic acid. One gel was treated for 14 h with 1.0 M Tris, pH 7.0, as a control while the other gel was soaked for 14 h in 1.0 M hydroxylamine, pH 7.0. The gels were then rinsed in water and prepared for fluorography.

Percoll Gradient Fractionation

Confluent cells grown in a 100-mm petri dish were incubated for 24 h in growth medium supplemented with 100 μM each of pepstatin A and leupeptin. After two washes with PBS, the cells were scraped into 2 ml of homogenization buffer (HB) (0.25 M sucrose, 1 mM EDTA, pH 7.5) and centrifuged for 10 min at 140 g. The cells were resuspended in 850 μl of HB, and passed 12 times through a ball-bearing homogenizer (Balch and Rothman, 1985) with a clearance of 51.2 μm. The homogenate was diluted with an additional 850 μl HB and centrifuged for 10 min at 400 g. The resulting postnuclear supernatant was layered over a discontinuous gradient consisting of a 1.2-ml cushion of 10 × HB and 8.5 ml of an 18% Percoll solution in 1 × HB. The gradient was centrifuged for 30 min at 20,000 rpm in a Ti 50 rotor (Beckman Instruments Inc., Palo Alto, CA). The cushion followed by nine fractions of 1.2 ml were collected from the bottom of the tube. The gradient fractions were then combined as follows: fractions 1-3 (pool I, containing 70-80% of lysosomal enzyme activity), fractions 4-6 (pool II, containing intermediate density membranes), and fractions 7-9 (pool III, containing low density membranes including endosomes, the Golgi complex, plasma membranes, and the endoplasmic reticulum). The Percoll was removed by centrifugation twice for 30 min at 85,000 rpm in a TLC 100.3 rotor (Beckman Instruments Inc.). The pelleted membranes were transferred into 1.5-ml ultracentrifuge tubes, diluted with HB to a final volume of 1 ml and centrifuged for an additional 30 min at 70,000 rpm in the TLC 100.3 rotor to remove the remaining Percoll. The sedimented membranes were transferred into 1.5-ml tubes and mixed with HB to a final volume of 300 μl. The samples were adjusted to 0.5% TX-100, passed five times through a 25-gauge needle connected to a 1-ml syringe, and solubilized on ice for 30 min. An aliquot corresponding to 1:10 of the total volume was removed for the β-hexosaminidase assay. 300 μl of 3% nonreducing electrophoresis sample buffer was added to the remaining sample and the mixture was boiled for 3 min. Aliquots corresponding to 1:15 of the final sample volume were analyzed by SDS-PAGE and immunoblotting.

Cathepsin D Sorting Assay

Confluent cell monolayers in 6-well tissue culture dishes were labeled for 30 min at 37°C with 300 μCi of Expre35S35S protein labeling mixture in a total volume of 1 ml as described above, and then chased in 1 ml of normal culture medium in the presence of 10 mM unlabeled methionine and 20 mM Hepes, pH 7.4, for 4 h. At the end of the chase, the efficiency of sorting was determined by immunoprecipitating the cellular and secreted cathepsin D. The media were clarified by centrifugation at 20,000 rpm for 30 min in a JA-20 rotor. The cells were chilled on ice, washed twice with 2
Assays and Miscellaneous Methods

munoprecipitates were eluted by boiling for 3 min in nonreducing SDS sample buffer as described above. NaCl, 1% Triton X-100, and twice with 1 ml 0.1 M Tris-HCl, pH 8.0. Im-

tion continued for another 2 h at 4°C. The protein A-Sepharose beads mixing. 25 μl of protein A-Sepharose beads was added, and the incuba-

ed, and the samples were incubated overnight at 4°C with constant

0.1 M KCl, 5 mM MgCl₂, 1% Triton X-100, 0.5% Na deoxycholate, 0.3%

SDS, 40 μg/ml phenylmethylsulfonyl fluoride and 1X of the above de-

described protein inhibitor cocktail. Rabbit antiserum to cathepsin D was added, and the samples were incubated overnight at 4°C with constant mixing. 25 μl of protein A-Sepharose beads was added, and the incuba-

tion continued for another 2 h at 4°C. The protein A–Sepharose beads were pelleted, washed four times with 1 ml 0.1 M Tris-HCl, pH 8.0, 0.1 M

NaCl, 1% Triton X-100, and twice with 1 ml 0.1 M Tris-HCl, pH 8.0. Immuno-

precipitates were eluted by boiling for 3 min in nonreducing SDS sample buffer as described above.

SDS-PAGE, Fluorography, and Immunoblotting

Proteins were separated on 10% SDS-polyacrylamide minigels (BioRad Laboratories) using the Laemmli (1970) system. After electrophoresis, gels were either treated with Amplify, dried, and exposed to film (XOmat AR; Eastman Kodak Co., Rochester, NY) (metabolic labeling experimen-
tals; cathepsin D sorting assays) or transferred onto nitrocellulose

membranes according to the method of Towbin et al. (1979) (Percoll den-

sity fractionation). The nitrocellulose sheet was blocked with 3% nonfat

milk powder (Schneck Markets, Inc., St. Louis, MO) in PBS. The blot was

subsequently incubated with mAb 22D4 (diluted 1:500 in PBS-3%

AR; Eastman Kodak Co., Rochester, NY) (metabolic labeling exper-

iment); cathepsin D sorting assays) or transferred onto nitrocellulose

membranes according to the method of Towbin et al. (1979) (Percoll den-

sity fractionation). The nitrocellulose sheet was blocked with 3% nonfat

milk powder (Schneck Markets, Inc., St. Louis, MO) in PBS. The blot was

subsequently incubated with mAb 22D4 (diluted 1:500 in PBS-3% powedered milk) followed by HRP-conjugated anti–mouse secondary anti-

body (Amersham Corp.). Immuno-reactive proteins were visualized using the enhanced chemiluminescence detection system according to the man-

ufacturer's directions. The fluoro- and autoradiographs were quantitated us-

ing a Personal Densitometer (Molecular Dynamics, Inc., Sunnyvale, CA).

Assays and Miscellaneous Methods

β-Hexosaminidase activity was determined as described (Rohrer et al., 1995). Protein was determined with the BioRad (Richmond, CA) protein assay kit using protein standard 1, or with the Micro BCA protein assay (Pierce, Rockford, IL).

Results

CD-MPR Is Reversibly Palmitoylated

Since a mutant CD-MPR containing alanines at positions 30 and 34 of the cytoplasmic tail instead of the normal cysteines accumulated in dense lysosomes, we were interested in determining whether the cysteines were palmitoylated under normal conditions. To do this, a mouse L cell line (ML4) stably expressing the wild-type bovine CD-MPR had either one or the other cysteine mutated to alanine. The other two constructs (MPR C30A and MPR C34A) had either one or the other cysteine mutated to alanine. Cells expressing these mutant receptors were labeled with [3H]palmitate and analyzed as before. As shown in Fig. 3 B, there was no detectable incorporation of [3H]palmitate into MPR C30C34A while both MPR C30A and MPR C34A were labeled. When the [3H]palmitate incorporation was expressed as a function of receptor content, as determined by quantitative Western blotting (Fig. 3 C), it could be calculated that MPR C30C34A, MPR C30A, and MPR C34A contained 0.90, and 56% as much [3H]palmitate as the wild-type receptor (Fig. 3 D).

These data demonstrate that both Cys30 and Cys34 are palmitoylated and together they account for all the palmitoylation that occurs in the CD-MPR. The loss of palmitoylation at Cys30 appears to be compensated by increased palmitoylation at Cys34.

When the ML4 cells were labeled with [3H]palmitate for 90 min and chased for up to 12 h followed by immunoprecipitation of the CD-MPR and SDS-PAGE, it was apparent that the covalently bound [3H]palmitate was rapidly turning over (Fig. 2). A plot of these data gave rise to a bi- phasic curve, with the initial 1/2 being ~2 h followed by a second, slower decay (∼20 h). The second phase of the curve is most likely the result of reutilization of the [3H]palmitate (Magee et al., 1987; Staufenbiel, 1987). The 1/2 of 2 h is much shorter than the 1/2 of the protein (>40 h) as determined by [35S]methionine/cysteine labeling (Fig. 2 B). These data establish that the CD-MPR is reversibly palmitoylated.

Cys30 and Cys34 Are the Sites of Palmitoylation in CD-MPR

Cys30 and Cys34 are the only cysteines in the 67–amino acid cytoplasmic tail of the CD-MPR and none are present in the transmembrane domain (Fig. 3 A). Thus, Cys30 and Cys34 were the likely candidates to undergo palmitoylation via thioester linkages (Sefton and Buss, 1987). To pursue this, three constructs were analyzed. One construct (MPR C30C34A) had both cysteines changed to alanines while the other two constructs (MPR C30A and MPR C34A) had either one or the other cysteine mutated to alanine. Cells expressing these mutant receptors were labeled with [3H]palmitate and analyzed as before. As shown in Fig. 3 B, there was no detectable incorporation of [3H]palmitate into MPR C30C34A while both MPR C30A and MPR C34A were labeled. When the [3H]palmitate incorporation was expressed as a function of receptor content, as determined by quantitative Western blotting (Fig. 3 C), it could be calculated that MPR C30C34A, MPR C30A, and MPR C34A contained 0.90, and 56% as much [3H]palmitate as the wild-type receptor (Fig. 3 D).

These data demonstrate that both Cys30 and Cys34 are palmitoylated and together they account for all the palmitoylation that occurs in the CD-MPR. The loss of palmitoylation at Cys30 appears to be compensated by increased palmitoylation at Cys34.

Figure 1. [3H]Palmitate labeling of CD-MPR. Mouse L cells stably expressing wt CD-MPR were labeled with [3H]palmitate or [35S]methionine/cysteine for 3 h. Duplicate samples of CD-MPR immunoprecipitates were separated on 10% SDS polyacrylamide gels. One gel was subsequently soaked for 14 h in 1 M Tris, pH 7.0, as a control, whereas the other gel was treated for 14 h with 1 M NH₄OH, pH 7.0, followed by fluorography. The upper band at ~90 kD is the dimeric form of the receptor. The numbers at the left margin of the gel indicate the migration of molecular mass standards in kilodaltons.

When the ML4 cells were labeled with [3H]palmitate for 90 min and chased for up to 12 h followed by immunoprecipitation of the CD-MPR and SDS-PAGE, it was apparent that the covalently bound [3H]palmitate was rapidly turning over (Fig. 2). A plot of these data gave rise to a bi- phasic curve, with the initial 1/2 being ~2 h followed by a second, slower decay (∼20 h). The second phase of the curve is most likely the result of reutilization of the [3H]palmitate (Magee et al., 1987; Staufenbiel, 1987). The 1/2 of 2 h is much shorter than the 1/2 of the protein (>40 h) as determined by [35S]methionine/cysteine labeling (Fig. 2 B). These data establish that the CD-MPR is reversibly palmitoylated.
Figure 2. Kinetics of palmitate turnover on CD-MPR. (A) Mouse L cells stably expressing wt CD-MPR were labeled with [3H]palmitate and chased for the indicated time intervals. CD-MPR was then immunoprecipitated with mAb 22D4 and analyzed by SDS-PAGE (10% gel). (B) The fluorograph shown in A and those from additional experiments were quantitated by scanning densitometry. At each time point the amount of [3H]palmitoylated receptor (●) detected is plotted as the percentage of the value obtained at the 0-h chase point. The turnover rate of [35S]methionine-labeled CD-MPR (▲) is shown for comparison (Rohrer et al., 1995).

Effect of the Amino Acids Surrounding Cys30 and Cys34 on Palmitoylation

We next tested whether the amino acids near the palmitoylation sites influenced the extent of this modification. For this purpose, we used a series of constructs in which amino acids 28-50 of the cytoplasmic tail were substituted with stretches of alanines. The results are summarized in Fig. 4. MPR 28-33A was palmitoylated 65% as well as the wild-type CD-MPR, somewhat less than the 90% value obtained with MPR C30A. Thus the residues surrounding Cys30 do not influence palmitoylation in a major way. By contrast, MPR 34-39A was only palmitoylated to 10% of the level of the wild-type receptor, compared to 56% for MPR C34A. This suggests that amino acid residues 35-39 of the cytoplasmic tail are required for optimal palmitoylation. Consistent with this notion was the finding that MPR 35-39A was only palmitoylated 42% as well as the wild-type receptor in spite of containing both Cys30 and Cys34. MPR 40-45A and MPR 46-50A were palmitoylated to about the same extent as the wild-type receptor indicating that these residues do not influence palmitoylation.

MPR C34A, but Not MPR C30A, Accumulates in Dense Lysosomes

In our previous study, we demonstrated that MPR C30C34A...
accumulates in dense lysosomes whereas the wild-type receptor is excluded from that organelle (Rohrer et al., 1995). It was therefore of interest to determine whether MPR C30A and MPR C34A, which have only one cysteine mutated, retain the ability to avoid trafficking to lysosomes. For this purpose, cell lines expressing these mutant receptors were first preincubated for 24 h in the presence of pepstatin A and leupeptin in order to inhibit degradation of receptors that had entered lysosomes. The cells were then harvested, homogenized with a ball-bearing homogenizer, and subjected to Percoll density gradient centrifugation. Under these conditions, dense lysosomes are recovered at the bottom of the gradient (pool I) whereas low density membranes including endosomes, the Golgi complex, plasma membranes, and the endoplasmic reticulum are found near the top of the gradient (pool III). Intermediate density membranes are recovered in pool II (Green et al., 1987).

The distribution of the various receptors was determined by electrophoresis of the Percoll density fractions followed by Western blotting (Fig. 5, A and B for quantitation). As reported previously, the CD-MPR was almost completely excluded from dense lysosomes (4% recovered in pool I) whereas 30% of MPR C30C34A was recovered in pool I (Rohrer et al., 1995). MPR C30A behaved the same as the wild-type receptor (4% in pool I) whereas MPR C34A had a distribution similar to that of MPR C30C34A (26% in pool I). These data indicate that Cys34 is essential for avoiding receptor trafficking to dense lysosomes while Cys30 is not sufficient to prevent the receptor from entering this organelle.

Mutation of Cys34 of the Cytoplasmic Tail Abolishes the Cathepsin D Sorting Function

We next tested whether mutation of Cys30 and Cys34 altered the ability of the receptor to sort cathepsin D to lysosomes. This function requires the receptor to recycle to the Golgi where it must bind cathepsin D and enter Golgi clathrin-coated vesicles which transport the receptor-ligand complex to endosomal compartments. Cells expressing the various receptors were incubated with $[^{35}S]$methionine/cysteine for 30 min and chased for 4 h to allow the newly synthesized cathepsin D to be phosphorylated and either targeted to lysosomes or secreted. Equivalent aliquots of cell homogenates and media were immunoprecipitated and the immunoprecipitates were analyzed by
SDS-PAGE. Typical results are shown in Fig. 6. The cellular form of cathepsin D migrates faster than the secreted form because of proteolytic processing of the proform to give rise to the mature species. This processing indicates that the cathepsin D has reached the lysosomes. The results of these and additional sorting assays are summarized in Table I. The D9 cell line which expresses only endogenous mouse CD-MPR sorted 25 ± 6% of the newly synthesized cathepsin D to lysosomes ("basal level") and secreted the rest into the media. In contrast, the ML4 cell line which expresses the wild-type bovine CD-MPR, sorted 51 ± 8% of this acid protease to lysosomes whereas Cc2 cells, which express the Man-6-P/IGF-II receptor, sorted the cathepsin D very efficiently (87 ± 3%). These values are similar to those reported previously (Johnson and Kornfeld, 1992). As shown in Table I, MPR C30A and MPR C30C34A sorted cathepsin D at the basal level (29 ± 3% and 25 ± 5%, respectively) whereas MPR C30A sorted 48 ± 4% of cathepsin D, similar to the value obtained with the wild-type CD-MPR. Thus, it is apparent that mutation of Cys34, but not Cys30, abolishes sorting.

Table I also summarizes the results obtained with the alanine scanning mutants. Cells expressing MPR 34-39A and MPR 35-39A sorted cathepsin D at the basal level (22 ± 6% and 21 ± 6%, respectively) while MPR40-45A sorted at an intermediate level (37 ± 1%) and MPR46-50A sorted almost as well as the wild-type receptor (44 ± 4%). As shown in Table I, each of the mutant receptors that was defective in sorting cathepsin D had a steady-state level of expression comparable to that of the wild-type CD-MPR. Therefore the inability of these mutant receptors to sort cathepsin D is not due to a lack of sufficient receptor molecules. These results indicate that amino acid residues 34-39 of the cytoplasmic tail of the CD-MPR influence the lysosomal enzyme sorting function.

Discussion

The results presented in this paper demonstrate that both Cys30 and Cys34 of the cytoplasmic tail of the CD-MPR are palmitoylated in a reversible manner and that Cys34, but not Cys30, is required for proper trafficking and lysosomal enzyme sorting. Several aspects of the palmitoylation of the CD-MPR are of particular interest. Among the transmembrane proteins known to acquire this covalent modification, the palmitoylation sites are either localized within the transmembrane domain of the polypeptide or in the cytoplasmic tail relatively close to the transmembrane junctions. For instance, the transferrin receptor (Jing and Trowbridge, 1987, 1990) and the cell surface glycoprotein CD4 (Crise and Rose, 1992) contain palmitoylated cysteines in their transmembrane domains. CD4 has a second palmitoylation site located one amino acid from the transmembrane domain whereas this distance is two amino acids in the HLA-D–associated invariant chain (Koch and Hämmerling, 1986), six amino acids in vesicular stomatitis virus G protein (Rose et al., 1984), some subtypes of influenza virus hemagglutinin (Veit et al., 1991), and p63 (Schweizer et al., 1995), between 11 and 13 amino acids in β2-adrenergic receptor (O’Dowd et al., 1989), bovine opsin (Karnik et al., 1992), and bovine rhodopsin (O’Brien et al., 1987; Ovchinnikov et al., 1988; Papac et al., 1992) and 15-16 amino acids in the luteinizing hormone/human chorionicadotropin receptor (Kawate and Menon, 1994). The finding of palmitoylated cysteines located 29 and 33 amino acids from the transmembrane domain of the CD-MPR expands the possibilities for this covalent modification, and has interesting implications for the structure of the cytoplasmic tail of this receptor.

Since palmitoylation has been shown to enhance membrane binding of some forms of p21N-ras (Hancock et al., 1989), the neuronal growth cone protein GAP (Skene and Virag, 1989; Zuber et al., 1989; Liu et al., 1993), and Gα (Wedegaertner et al., 1993), it seems reasonable that palmitoylation of Cys30 and Cys34 may anchor this portion of the cytoplasmic tail of CD-MPR to the lipid bilayer. As depicted in the model shown in Fig. 7, this could have dramatic effects on the conformation of the cytoplasmic tail. For instance, one consequence would be to bring the Tyr45...
containing internalization signal closer to the membrane. This signal, located 11 amino acids from Cys34 would now have a spacing from the membrane that is similar to that of the Phe13-Phe18 containing internalization signal. The precise spacing of this signal from the membrane could, in turn, be an important determinant of its biologic activity. Similarly, the anchoring of the palmitoylated cysteines to the membrane could influence the presentation of the Phe-containing signal and the di-leucine signal. Three of the five residues on the carboxyl side of Cys34 (Arg35 Ser36 Lys37 Pro38 Arg39) have positive charges and could potentially interact with the acidic phospholipid head groups of the lipid bilayer.

A striking finding is the fact that the palmitate is rapidly turning over in the CD-MPR, with the $t_{1/2}$ being on the order of 2 h whereas the protein $t_{1/2}$ is greater than 40 h. It is well documented that palmitoylation can be either a stable or reversible modification, although the actual $t_{1/2}$ for palmitate turnover has only been determined in a few instances (Omary and Trowbridge, 1981; Magee et al., 1987; Staufenbiel, 1987). Since mutation of Cys34 to an alanine (MPR 35-39A) results in a 58% decrease in palmitoylation of Cys30 and Cys34. The basic residues may serve to position this portion of the cytoplasmic tail in a manner that is either favorable for palmitoyltransferase to act on Cys30 and Cys34 or unfavorable for the palmitoyltransferase(s) to function.

Receptor molecules carrying the Cys34 to Ala mutation have several altered biologic properties. One is a modification in receptor trafficking resulting in the gradual accumulation of the mutant receptor in dense lysosomes. We have suggested that the cytoplasmic tail of the receptor contains a sorting determinant that prevents delivery of the receptor to lysosomes (Rohrer et al., 1995). Cys34 or its palmitoylated form could be a component of this signal along with amino acids 35-39, or else determine a critical conformation of the cytoplasmic tail that is required for the expression of a sorting signal located elsewhere in the cytoplasmic tail. The other alteration in the function of the receptor with the Cys34 to Ala mutation is the loss of ability to sort newly synthesized cathepsin D to lysosomes. This defect in the sorting function could arise in several ways. One possibility is that the mutation impairs the recycling of the receptor to the Golgi where the binding of the cathepsin D occurs. This would be consistent with the abnormal trafficking of the mutant receptor from endosomes to lysosomes. Alternatively, the mutant receptor could return to the Golgi and either fail to bind cathepsin D or not enter the Golgi clathrin-coated vesicles after binding this ligand. If the latter occurred, the CD-MPR-ligand complex would travel to the cell surface where the ligand would probably be discharged since the CD-MPR is known to bind ligands extremely poorly at the cell surface (Stein et al., 1987; Ma et al., 1991). Regardless of the particular site of the defect, it is striking that the change of this single amino acid totally abrogates this sorting function whereas mutation of Cys30 to Ala has no effect on either cathepsin D sorting or receptor trafficking to lysosomes.

The Man-6-P/IGF-II receptor contains a highly conserved CysCysArgArg sequence at positions 15 to 18 of its cytoplasmic tail. Westcott and Rome (1988) reported that this receptor contains covalently bound fatty acid and we have found that the receptor is palmitoylated via a thioester linkage (Schweizer, A., and J. Rohrer, unpublished data). It will be of considerable interest to determine whether palmitoylation of this receptor influences its trafficking and function in lysosomal enzyme sorting.

We thank Dr. D. Messner for kindly providing monoclonal antibodies against bovine CD-MPR. Members of the Kornfeld laboratory are acknowledged for critical reading of the manuscript.

This work was supported by United States Public Service grant CA 08759 and by a Monsanto/Washington University biomedical research grant. J. Rohrer was the recipient of a Damon Runyon-Walter Winchell cancer postdoctoral fellowship (DRG 1216). A. Schweizer was supported by a W.M. Keck fellowship.

Received for publication 21 November 1995 and in revised form 15 December 1995.

References

Figure 7. Model of the cytoplasmic tail of the CD-MPR. Palmitoylated Cys30 and Cys34 may be anchored to the lipid bilayer, thereby generating an intracellular loop consisting of residues 1-30 of the cytoplasmic tail. The residues on the carboxyl side of Cys34 would be brought closer to the membrane. The three basic residues adjacent to Cys34 could potentially interact with the acidic phospholipid head groups of the lipid bilayer.

Schweizer et al. Palmitoylation of Cation-dependent Man-6-P Receptor 583

The Journal of Cell Biology, Volume 132, 1996
584