Identification of Two Sox17 Messenger RNA Isoforms, with and without the High Mobility Group Box Region, and Their Differential Expression in Mouse Spermatogenesis

Yoshiakira Kanai,* Masami Kanai-Azuma,* Toshiaki Noce,§ Takaomi C. Saido,‡ Toshihiko Shiroishi,‖ Yoshihiro Hayashi,‖ and Kazumori Yazaki*

*Department of Ultrastructural Research and †Department of Molecular Biology, the Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113; §Department of Molecular Reproduction and Development, Mitsubishi Kagaku Institute of Life Sciences, Machida-shi, Tokyo 194; ‡Department of Cell Genetics, National Institute of Genetics, Yata, Mishima 411; and ‖Department of Veterinary Anatomy, the University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract. Two different mRNA isoforms of the mouse Sox17 gene were isolated from adult mouse testis cDNAs. One form (referred to as form Sox17) encodes an Sry-related protein of 419 amino acids containing a single high mobility group box near the NH2 terminus, while the other form (referred to as form t-Sox17) shows a unique mRNA isoform of the Sox17 gene with a partial deletion of the HMG box region. Analysis of genomic DNA revealed that these two isoforms were produced at least by alternative splicing of the exon corresponding to the 5′ untranslated region and NH2-terminal 102 amino acids. RNA analyses in the testis revealed that form Sox17 is expressed in spermatogonia, and the expression clearly declines from the early pachytene spermatocyte stage onward. In contrast, expression of form t-Sox17 began at the pachytene spermatocyte stage and was highly accumulated in round spermatids. Protein analyses revealed that t-Soxl7 isoforms, as well as Sox17 isoforms, were translated into the protein products in the testis, although the amount of t-Sox17 products is lower in comparison to the high accumulation of t-Sox17 mRNA. By the electrophoretic mobility-shift assay and the random selection assay using recombinant Sox17 and t-Sox17 proteins, Sox17 protein is a DNA-binding protein with a similar sequence specificity to Sry and the other members of Sox family proteins, while t-Sox17 shows no apparent DNA-binding activity. Moreover, by a cotransfection experiment using a luciferase reporter gene, Sox17 could stimulate transcription through its binding site, but t-Sox17 had little effect on reporter gene expression. Thus, these findings suggest that Sox17 may function as a transcriptional activator in the premeiotic germ cells, and that a splicing switch into t-Sox17 may lead to the loss of its function in the postmeiotic germ cells.

The Sry gene on human and mouse Y chromosomes is the testis-determining gene that induces differentiation of the genital ridge into the testicular pathway (Sinclair et al., 1990; Gubbay et al., 1990; Koopman et al., 1991). It potentially encodes a DNA-binding protein containing the high mobility group (HMG) box that is present in several transcription factors such as T cell-specific factor TCF-1 (van de Wetering et al., 1991) and RNA polymerase I transcription factor UBF (Jantzen et al., 1990). Because the Sry protein synthesized in vitro binds to double-stranded DNA in a sequence-dependent manner (Harley et al., 1992, 1994), it is believed to function in testis determination by regulating the expression of other specific genes. Until now, several genes encoding Sry-related HMG box (termed as Sox gene) have been identified in mouse and human cDNA, and a member of this family has also been isolated in a number of other vertebrate and invertebrate species (Denny et al., 1992a,b; Chardard et al., 1993; Wright et al., 1993; Gozé et al., 1993). The amino acid sequences of Sox family genes are known to be highly conserved from humans to Drosophila (Denny et al., 1992a), and such strong evolutionary conservation suggests that Sox family genes may play important roles in the differentiation and development of the testis and the other cell types and tissues in many species. For example, Sox1, Sox2, Sox3, and Sox11 are known to

1. Abbreviations used in this paper: DIG, digoxigenin; EMSA, electrophoretic mobility-shift assay; GST, glutathione S-transferase; HMG, high mobility group; ORF, open reading frame; RT, reverse transcription; UTR, untranslated region.
be expressed in the developmental nervous system (Stevanović et al., 1993; Uwanogh et al., 1995; Jay et al., 1995; Kamachi et al., 1995). Sox4 is expressed in T lymphocytes and in some pre-B lymphocytes, and Sox4 protein mediates the enhancer effects of the AACAAG motif in lymphocytes (van de Wetering et al., 1996). Recently, the human SOX9 gene was isolated from a translocation chromosome breakpoint of a sex-reversed patient with cam-

mosome breakpoint of a sex-reversed patient with cam-

phocytes (van de Wetering et al., 1993). As a result, two independent positive clones that coded a novel iso-

form of Sox17 cDNA (referred to as form t-Soxl7) were isolated. Because these two clones encoded a unique isoform of the Sox17 gene with a par-

tially deleted HMG box region, we further isolated the Sox17 cDNA (re-

ferred to as form Sox17) encoding an intact HMG box from testis cDNAs using an LA-PCR kit (Takara Biomedicals, Kyoto, Japan) in combination with two sets of primers (forward primer: 5'-AGTGGCCACTCACACCT-GCTGGCCGGT-3' +375 to +400) × reverse primer: 5'-CCAAAC-CGCTTGGTGTGCCTTGGC-3' +884 to +908; forward primer: 5'AGGCTAGCTTCGAGTCCCTGCTC-3' +564 to +587) × reverse primer: 5'-GCTTCGCCCCCTAGTCCGGTGCGCA-3' +1931 to +1940). Moreover, the mouse genomic library constructed with λ FIX II (Stratagene, La Jolla, CA) was screened, and three independent clones were isolated. Inserted or amplified DNA fragments were subeloned into pBluescript KS+ (Stratagene).

Materials and Methods

Isolation of Sox17 cDNAs and Genomic DNA and Sequencing

To isolate Sry-related cDNA expressed in the testis, a mouse testis cDNA library constructed with λ gt11 (Clontech Laboratories, Palo Alto, CA) was screened at high stringency with a Sox9 HMG box probe. The Sox9 HMG box fragments were isolated from testis cDNAs by the degenerate PCR approach, as previously described (Denny et al., 1996; Wright et al., 1993). As a result, two independent positive clones that coded a novel iso-

form of Sox17 cDNA (referred to as form t-Soxl7) were isolated. Because these two clones encoded a unique isoform of the Sox17 gene with a par-

tially deleted HMG box region, we further isolated the Sox17 cDNA (re-

ferred to as form Sox17) encoding an intact HMG box from testis cDNAs using an LA-PCR kit (Takara Biomedicals, Kyoto, Japan) in combination with two sets of primers (forward primer: 5'-AGTGGCCACTCACACCT-GCTGGCCGGT-3' +375 to +400) × reverse primer: 5'-CCAAAC-CGCTTGGTGTGCCTTGGC-3' +884 to +908; forward primer: 5'AGGCTAGCTTCGAGTCCCTGCTC-3' +564 to +587) × reverse primer: 5'-GCTTCGCCCCCTAGTCCGGTGCGCA-3' +1931 to +1940). Moreover, the mouse genomic library constructed with λ FIX II (Stratagene, La Jolla, CA) was screened, and three independent clones were isolated. Inserted or amplified DNA fragments were subeloned into pBluescript KS+ (Stratagene).

Generation of Probes

For Northern and Southern blot hybridization, Apal-digested (+1249 to +1482; probe A in Fig. 2 a) and EcoRI-digested (+1750 to +2257; probe B) fragments of t-Soxl7 were used as probes that recognize both isoforms. DNA fragments corresponding to the spliced exon (+564 to +563; probe C), which were isolated by PCR, were used as the probe specific for the Sox17 form. For the reverse transcription (RT) PCR analysis, the frag-

ment digested with SacI and Apal (+336 to +1248 of t-Soxl7) was used for detection of both Sox17 and t-Soxl7 cDNAs. The isolated DNA frag-

ments were labeled with [α-32P]dCTP (3,000 C/mmold) by a Megaprime DNA labeling system (Amersham, Buckinghamshire, UK). For in situ hy-

bridization analysis, the DNA fragments corresponding to probe B or C were subeloned into pBluescript. Each clone was linearized with the ap-

priate restriction enzyme, and the sense and antisense RNA probes were generated by in vitro transcription using digoxigenin (DIG)-UTP with T3 and T7 RNA polymerase (Boehringer Mannheim Biochemica, Mannheim, Germany). The resulting sense and antisense DIG-labeled RNA probes were reduced to ~150-bp fragments by limited alkaline hy-

drolysis before hybridization to tissue sections.

Southern Blot Hybridization

Genomic DNAs were prepared from the liver of adult male mice and di-

genic strains Balb/c, C57BI/6, EcoRI, HindIII, or PstI. 10 μg of each DNA prepara-

tion were electrophoresed in 0.6% agarose-TE buffer gels and transferred to a nylon membrane (Hybond N; Amersham). Blots were hybridized with ap-

propriate 32P-labeled DNA probes in a solution containing 50% forma-

mide, 5× SSC, 5× Denhardt's, 1% SDS, 0.2 M sodium phosphate (pH 6.8), and 200 μg/ml denatured salmon sperm DNA (dsDNA) at 42°C for 12-14 h. Filters were finally washed with 0.1× SSC-0.1% SDS at 65°C for 1 h. The autoradiographs were analyzed with an x-ray film (X-Omat-AR; Eastman Kodak, Rochester, NY).

Chromosomal Mapping of Sox17 Gene

Interspecific F1 hybrids of C3H/HeJ and a Mus spretus-derived strain, SEG, were back-crossed to C3H/HeJ. 50 interspecific back-cross progeny were scored for the segregation of RFLP of the Sox17 gene and microsat-

etile markers, D1Mit1, D1Mit4, D1MitMit11, D1Mit12, D1Mit14, and D1Mit17. Map manager v2.5 was used to analyze the data generated in this study.

Northern Blot Hybridization and RT-PCR Analyses

Total RNAs were extracted from various tissues by the guanidinium thiocyanate method (Chirgwin et al., 1979). 25 μg of each extract were dena-
tured in formamide-formaldehyde buffer, electrophoresed in 1% formaldehyde buffer, and then sonicated for 30 rain, the supernatants containing 9-11 mg of proteins were applied to a DEAE ion exchange column (Toyo SEIKO-Toyopearl 650S, 0.5 × 5 cm) equilibrated with buffer A. After the column was washed with buffer A, the bound proteins were eluted by a linear gradient from 0 to 400 mM NaCl (0.5 ml/min, 0.5 ml/fraction). The chromatographic procedures were carried out at 4°C in columns connected to and controlled by an FPLC system (Pharmacia Biotech, Uppsala, Sweden). Each column fraction was also subjected to SDS-PAGE (12.5%) and immunoblotting.

For immunohistochemical staining, we used the methanol-fixed testes and methanol-fixed frozen sections (5-μm thickness) of adult mouse testes. They were first incubated with 1% BSA-5% normal goat serum–PBS for 10 min, and then incubated with an anti-recombinant Sox17 antisera (a dilution to 1:500) for 1 h. After a rinse in PBS, they were incubated with rhodamine-conjugated goat anti-rabbit IgG (diluted to 1:100; Tago, Burlingame, CA) for 45 min, washed again with PBS, and mounted in 90% glycerol–PBS. Specimens were observed with an Axiosphoto photomicroscope equipped with an epifluorescence system (Carl Zeiss, Oberkochen, Germany). To check the specificity of the antibody for immunofluorescence, the sections or cells were incubated with the anti-recombinant Sox17 antisera in the presence of GST-Sox17-agarose beads (10 μg/ml). Nonspecific staining was also checked by the incubation of the sections or cells with rhodamine-conjugated goat anti-rabbit IgG alone.

Preparation of GST Fusion Proteins of Sox17 and t-Sox17, EMSA, and Random Selection Protocol

Sox17 (+719 to +1750) and t-Sox17 (+1043 to +1750) DNA fragments were isolated by PCR from each cDNA clone and were inserted into the EcoRI site of pGEX-4T2 expression vector (Pharmacia Biotech). Each recombinant protein was produced in BL21 (DE3) host bacteria by IPTG induction and purified using glutathione-agarose beads (Smith and Johnson, 1988). The isolation of each recombinant protein was checked by Coomassie blue staining of SDS-polyacrylamide gels. 50 or 250 ng of each purified GST fusion protein was incubated with [32P]-labeled oligonucleotides (100 fmol) in 10 μl binding buffer (10 mM Hepes [pH 7.9], 60 mM KCl, 1 mM DTT, 1 mM EDTA, 1 μl/mgl poly(dI-dC), and 12% glycerol) in the presence or absence of an appropriate competitor DNA for 30 min at room temperature. Then, the reactions were electrophoresed through a nondenaturing 5% acrylamide gel run in 1× TBE at 160 V for 1 h. The gels were dried and autoradiographed. The following oligonucleotides containing self-complementary regions were used as probes (Fujita et al., 1992): SCS4, 5’-GCGAACACAAGGGCCT-TAGGCTGCGCTTGTTCGTCG, 5’-SCS6, 5’-GCCGAACTTGCGCTTGTTCGTCG

In Vitro Translation

RNA was synthesized from linearized pBluescript/Sox17 (+564 to +1940) and pBluescript/t-Sox17 (+1 to +2375 t-Sox17 cDNA) by in vitro transcription with T3 and T7 RNA polymerase. After DNase I treatment, each 1 μg RNA was translated in a 50-μl reaction in the presence of 1 μM [35S]methionine (1,200 Ci/mmol) in a rabbit reticulocyte lysate system according to the instructions of the manufacturer (Amersham). Each protein sample was analyzed by SDS-PAGE and autoradiographed.

Antibody Production, Immunoblotting, and Immunofluorescence

Synthetic peptides corresponding to amino acids 25–39 of the predicted Sox17 NH2-terminal region (AGLGPCPWAESPLSL) or to amino acids 403–419 of the predicted Sox17 COOH-terminal region (VVSSDASA-VYVYCNYPD) were conjugated to KLH (Calbiochem, La Jolla, CA) with a heterobifunctional cross-linker, m-maleimidobenzoyl-N-hydroxysuccinimide ester (Pierce Chemical Co., Rockford, IL), as previously described (Saio et al., 1992, 1995). Rabbits were immunized with antigen conjugates (0.5–1 mg/animal) six times at 2–3-wk intervals. Specific antibodies were affinity-purified on the haptenic peptide immobilized on Affigel 10 (Bio-Rad Laboratories, Hercules, CA). We also raised antiserum to recombinant GST-Sox17 protein (see below). Rabbits were immunized with 0.2-0.4 mg protein/animal six times at 2–3-wk intervals. Antibodies to glutathione S-transferase (GST) were removed by absorption with GST-agarose beads before use.

The COS cells were transfected with pCDM, pCDM/Sox17, or pCDM/t-Sox17 (each 30 μg/6-cm dish, described below) and, after 48 h, the cells were washed with PBS several times. The cells were dissolved in the sample buffer, and each protein sample (30 μg/lane) was used for SDS-PAGE (12.5%) and immunoblotting, as described previously (Noce et al., 1992b). Moreover, 20 tests were collected from mature male mice. After a removal of tunica albuginea, the seminiferous tubules were gently loosened and washed with buffer A (10 mM Tris-HCl, 5 mM EDTA, pH 7.5) containing 250 mM sucrose. The masses of the seminiferous tubules were homogenized in 10 ml buffer A containing 0.5 mM FMSF, 1 ng/ml leupeptin, 5 ng/ml aprotinin, 1 mM benzamidine, and 1 ng/ml pepstatin A, and were then sonicated for 30 s. After the extracts were centrifuged at 100,000 × for 30 min, the supernatants containing 9–11 mg of proteins were applied to a DEAE ion exchange column (Toyo SEIKO-Toyopearl 650S, 0.5 × 5 cm) equilibrated with buffer A. After the column was washed with buffer A, the bound proteins were eluted by a linear gradient from 0 to 400 mM NaCl (0.5 ml/min, 0.5 ml/fraction). The chromatographic procedures were carried out at 4°C in columns connected to and controlled by an FPLC system (Pharmacia Biotech, Uppsala, Sweden). Each column fraction was also subjected to SDS-PAGE (12.5%) and immunoblotting.
for d343-419, 5'-GCTCTAGAGCCCATCGCGCCCTAGTACAGGTG-
CAGAGC-3' [+1517 to +1554] for d295-419, and 5'-GCTCTAGAC-
TAGGGCTCGACGAGAGCGTGCAGGA-3' [+1113 to +1146] for
XbaI and then inserted into pCDM8. As for pCDM/Sox17[d286-346],
fragment corresponding to amino acid residues 347 to 419 (forward
otide +1497) in the Soxl7 cDNA and XbaI in the downstream of cDNA,
pBluescript/Soxl7 (+564 to +1940) was digested with BamHI (at nucle-
BamHI or XbaI site is indicated by underline, respectively). The inserted
and the larger fragment was ligated with the PCR-generated DNA
The Journal of Cell Biology, Volume 133, 1996 670
GTGTAACACTGCTGTCAGATCTAGAA-3' [+1932 to +1954], in which the
DNA was isolated by the digestion with HindIII and XbaI, and then sub-
Downloaded from jcb.rupress.org on January 8, 2018

Downloaded from jcb.rupress.org on January 8, 2018
cDNA in each effector plasmid and the number of H4 sites in the reporter plasmid were confirmed by sequencing. pEF-LacZ is used for the internal control of the transfection efficiency (gift from DRS. H. Hamada and Y. Sajiho, Tokyo Metropolitan Institute of Medical Science).

L929 cells were seeded 1 d before transfection. Transfection was performed by the DOTAP reagent (Boehringer Mannheim Biochemica) following the manufacturer’s instructions. pCDM8 effector plasmid (0.5 μg), luciferase reporter plasmid (0.1 μg), and pEF-LacZ (0.1 μg) were transfected into 0.5 × 10^5 cells on 1-cm dishes. After 48 h, the culture medium was removed, and the cells were washed with cold PBS several times. After addition of the lysis buffer (Toyo Ink MFG, Tokyo, Japan), a part of the cell extract was separately reacted with luciferase (Luciferase Assay System; Promega) or β-galactosidase substrate (LumiGAL Detection Kit; Clontech), and then each activity was measured by the TD-4000 Lumiphootometer (Futaba Medical, Tokyo, Japan). Each luciferase level was normalized to β-galactosidase level, and the relative luciferase level for the cell extract was separately reacted with luciferase (Luciferase Assay System; Promega) or β-galactosidase substrate (LumiGAL Detection Kit; Clontech), and then each activity was measured by the TD-4000 Lumiphootometer (Futaba Medical, Tokyo, Japan). Each luciferase level was normalized to β-galactosidase level, and the relative luciferase level for pCDM8 transfected with pH4×4-Luci was set at 1 as basal activity.

Results

Isolation of Sox17 cDNAs and Genomic DNA

To isolate the Sry-related gene expressed in the adult testis, a mouse testis cDNA library was screened at high stringency with a Sox9 HMG box probe, and two independent clones that encode a novel mRNA isoform of the Sox17 gene were isolated. Sequence analysis by a GenBank DNA database search revealed that these clones were identical to mouse Sox17 cDNA in a partial sequence of the Sox17 HMG box region (Dunn et al., 1995), but they lacked the sequences corresponding to the upper half of the HMG box region. This unique clone contained a single open reading frame (ORF) of 873 bp after an initiation methionine located within the HMG box region, and it predicted a truncated 291-amino-acid protein with a predicted molecular mass of 30.7 kD which lacked most of the DNA-binding domain (Fig. 1 and 2 a). To examine whether the clone without the HMG box region was a unique mRNA isoform of the Sox17 gene, we isolated the genomic clones of the Sox17 gene and the cDNA clones containing a complete ORF with an intact Sox17 HMG box from testis cDNAs, and compared their sequences with those of the clones without the HMG box region. The Sox17 cDNAs showed a 1,257-bp ORF encoding an Sry-related 419-amino-acid protein with a predicted molecular mass of 44.6 kD which contained a single intact HMG box near the NH2 terminus (Figs. 1 and 2 a), and they showed 100% identity at the nucleotide level to those of the two cDNAs revealed that the Sox17 gene contains at least one intron in the center of the HMG box region and two introns in the 5′ untranslated region (UTR), and the inserted 391-bp segment of Sox17 cDNAs forms a single exon in the mouse Sox17 gene (Fig. 2, b and c). By genomic Southern blot analysis using probes A and B (indicated in Fig. 2 a), which can hybridize both intact Sox17 cDNA and the unique cDNA without the HMG box region, a single band was found in all samples digested with various restriction enzymes (Fig. 3). Moreover, both of these probes detected the same 8.6-kb HindIII and 4.6-kb PstI bands in genomic mouse DNA as expected because the Sox17 cDNA sequences between the positions of probes A and B have no restriction sites of these enzymes.

In the DNA samples digested with BamHI or EcoRI, of which restriction site is included in the sequences, probe A or B hybridized the 5-kb BamHI and 9.3-kb EcoRI fragments or the 6-kb BamHI and 1.5-kb EcoRI fragments, respectively. Such fragments coincide exactly with the restriction map in our genomic clones (Fig. 2 b). Therefore, this result proves that the clone without the HMG box region is an isoform of the Sox17 transcript produced at least by splicing out the 391-bp exon containing the upper half of the Sox17 HMG box. Since the clone without the HMG

![Figure 2](https://i.imgur.com/2.png)

Figure 2. (a) Schematic representation of Sox17 and t-Sox17 cDNAs. The box indicates the ORF (black box, HMG box; dashed box, proline/glutamine-rich region), and the bars indicate the noncoding regions in each isoform. Three bold lines indicate the position of each probe; probes A and B recognize both forms, and probe C is specific for form Sox17. A dashed bold line indicates the 391-bp segment that is deleted in form t-Soxl7. (b) Genomic organization of the Sox17 gene. The box indicates the ORF (hatched box, HMG box), and the solid bars indicate the noncoding regions of Sox17 cDNA. B, BamHI; E, EcoRI; N, NotI. (c) Schematic representation of the genomic structure corresponding to the HMG box region of the Sox17 gene. The boxes indicate exons, and bars indicate introns. Form t-Sox17 is produced by at least splicing out the exon containing the initiation methionine and the upper half of the HMG box region.
Figure 3. Southern blot analysis of genomic DNA hybridized with probe B (3' UTR probe; a) and probe A (coding probe; b) of the Sox17 gene, which can recognize both forms Sox17 and t-Sox17. DNA was digested with (from left to right) BamHI, EcoRI, HindIII, and PstI. Molecular weight markers are shown in the center.

box region is a unique mRNA isoform encoding a truncated Sox17 protein, we termed it as form t-Sox17 (a truncated Sox17). In this paper, we also referred to the Sox17 cDNA with an intact HMG box region as form Sox17. Moreover, the genotype of the back-cross progeny for Sox17 was determined by Southern analysis using the probe B. BamHI digestion gave RFLP between C3H/HeJ and SEG strains. Linkage analysis with 50 interspecific back-cross progeny mapped the Sox17 gene to chromosome 1. It is located in the region proximal to D1Mit1 with 2% recombination.

The sequences of the Sox17 HMG box region obtained in this study showed 90.6% and 74.3% similarity with mouse Sox18 HMG box (Dunn et al., 1995) and Sox9 HMG box (Wright et al., 1995) at the amino acid level, respectively. The sequences of the region outside the HMG box showed no significant homology. The COOH-terminal half of the predicted Sox17 protein, however, had a high proportion of proline residues, and a proline- and glutamine-rich region was observed near the COOH terminus, which is commonly found in human SOX9 (Foster et al., 1994) and mouse Sox9 (Wright et al., 1995). In addition, a stretch of nine amino acids, SDASSAVYY, at positions 7–15 from the COOH terminus was also found in the same positions of mouse Sox18 cDNA.

Northern Blot and RT-PCR Analyses of the Expression of Sox17 and t-Sox17 Isoforms

Northern blot analysis using probe B (3’ UTR probe) revealed that three kinds of transcripts (~1.8, 2.8, and 3.1 kb) were expressed mainly in the lung and testes (Fig. 4 a). The 1.8- and 2.8-kb transcripts were observed at low levels in the lung, while the 3.1-kb transcript was expressed abundantly in the testes. Moreover, expression of the 3.1-kb transcript in the testis was regulated during postnatal development. The 3.1-kb transcript was not expressed in the immature testis on day 7 postpartum (p.p.), but it clearly appeared in the testis during days 14–28 p.p., and increased in the mature adult testis (Adult). The positions of rRNAs are marked by arrowheads. The lower panels show the 28S rRNA bands stained with acridine orange.

Figure 4. Northern blot analysis showing Sox17 expression in various tissues of adult mice (a) and in the testes of prepubertal mice of different ages (b). Filters were hybridized with probe B (3’ UTR probe), which recognizes both Sox17 and t-Sox17 isoforms. (a) Three transcripts (~1.8 kb, 2.8 kb and 3.1 kb) are expressed in the lung and testis. The 1.8- and 2.8-kb transcripts (small arrows) are mainly observed at low levels in the lung, while the 3.1-kb transcript (large arrow) is abundantly expressed in the testis. (b) Expression of the 3.1-kb transcript (large arrow) in the testis is regulated during postnatal development. Expression of the 3.1-kb transcript is not detected in the immature testis on day 7 p.p. (7 days), but it clearly appears in the testis during days 14–28 (28 days) p.p. and increases in the mature adult testis (Adult). The positions of rRNAs are marked by arrowheads. The lower panels show the 28S rRNA bands stained with acridine orange.
forms, as described in Materials and Methods. (a) At the adult stage, both forms can be detected, but the t-Sox17 form is expressed at a low level. In contrast, the Sox17 form was expressed throughout postnatal development (Fig. 5 b). These findings therefore indicate that the Sox17 form is expressed at a low level in the testsis throughout postnatal development, while the t-Sox17 form is expressed abundantly in the testsis, predominantly in postmeiotic germ cells.

The expression patterns in the testses during the postnatal development clearly indicate that the 3.1-kb transcript or the 1.8- and 2.8-kb transcripts may be identical to form t-Sox17 or Sox17, respectively. The t-Sox17 transcript is longer than the Sox17 transcript probably because of the difference in the length of their noncoding sequences. This leads us to the suggestion that form t-Sox17 may be produced, not only by splicing out of the 391-bp exon corresponding to the NH2-terminal coding region, but also by the use of the different noncoding region(s), e.g., the use of the alternative transcriptional start or polyadenylation site and/or the alternative splicing of the other exon(s).

In addition, all RT-PCR products of forms Sox17 and t-Sox17 actually represent true mRNA products because the genomic DNA regions corresponding to the amplified Sox17 or t-Sox17 cDNAs contained one or more intron(s), and no amplification product was detected in samples where reverse transcriptase had been omitted from the reactions (Fig. 5 a, RT "-"). Moreover, each PCR product was confirmed by sequence analysis as the Sox17 or t-Sox17 cDNAs, and the t-Sox17 PCR products corresponding to the two different minor bands (one small band and another larger band that were weakly detected in the t-Sox17 sample [Fig. 5, a and b]) were produced by deletion of the segment (+474 to +565) and an insertion at the +474 position. These minor bands most likely resulted from the splice variants in the 5' UTR of the t-Sox17 form.

In Situ Hybridization Analysis

As described above, the testicular expression of each isoform was regulated differently during postnatal development. Moreover, we examined the localization of each isoform in the adult testis by in situ hybridization. When using probe B (the 3' UTR probe, which recognizes both forms Sox17 and t-Sox17), positive signals were mainly observed in the inner cell layer of seminiferous tubules of adult testis (Fig. 6, a and c). Late pachytene spermatocytes and the round, elongated spermatids were positive for hybridization with this probe, and more intense positive signals were notably restricted to early round spermatids (stages I–VII) (Fig. 6 d). On the other hand, with probe C (the probe specific for the Sox17 form), the distribution of the signals showed a different pattern from probe B. Signals were detected mainly in the basal layer of seminiferous tubules (Fig. 6, e and g), showing that the Sox17 form was expressed in spermatogonia, and such expression was clearly reduced from the early pachytene spermatocyte stage and onward (Fig. 6 h). These results suggest that positive signals of probe B in meiotic and postmeiotic germ cells reflect localization of form t-Sox17, and that t-Sox17 form is expressed in spermatogenic cells, from the late pachytene spermatocyte to the elongated spermatid stages, especially in round spermatids at a high level. Expression patterns of forms Sox17 and t-Sox17 by in situ hybridization were clearly consistent with the results by Northern hybridization and RT-PCR analyses using testis RNA from prepubertal mice of different ages (Figs. 4 b and 5 b). In addition, no appreciable positive signals were detected in Sertoli or Leydig cells in the cases using these antisense probes, although some positive somatic cells are located in the testicular interstitium (Fig. 6 h). Moreover, sense probes showed no positive signals throughout any sections of the testsis (Fig. 6, b and f).

Analyses of Protein Products of Sox17 and t-Sox17 Isoforms

To test whether each RNA isoform is translated into the protein product, we first carried out in vitro transcription and translation analysis using Sox17 (+564 to +1940) and t-Sox17 (+1 to +2375 of t-Sox17) cDNAs. By SDS-PAGE analysis, a doublet of the translated proteins was detected in both samples from Sox17 and t-Sox17 cDNAs. One band was ~0.4 kD smaller than another protein (Fig. 7 a),

![Figure 5. RT-PCR analysis showing the expression of Sox17 and t-Sox17 isoforms in the testis and lung of the adult mice (a) and in the testis of prepubertal mice of different ages (b). The PCR products were hybridized with the probe that recognizes both forms, as described in Materials and Methods. (a) At the adult stage, both Sox17 (small arrow) and t-Sox17 (large arrow) isoforms are detected in the testis. In the lung, the expression of both forms can be detected, but the t-Sox17 form is expressed at a low level. (b) In prepubertal mice of different ages, the t-Sox17 form (large arrow) cannot be detected in the immature testis on day 7 p.p. (7 days). The expression of form t-Sox17 is detected in the testes on day 14 p.p. (14 days), and it clearly increased in the testes on day 28 p.p. (28 days) and at the adult stage (Adult). In contrast, the Sox17 form (small arrow) is expressed throughout postnatal development. RT + or - in each lane of a indicates that RT was added or omitted, respectively, to the PCR reaction sample.](https://jcb.rupress.org/content/121/6/671.full.pdf)
Figure 6. In situ hybridization analysis showing the localization of the Sox17 and t-Sox17 isoforms in the adult testis by using probe B (3' UTR probe, a–d) and probe C (the probe specific for form Sox17, e–h). In the case of using probe B, which recognizes both forms Sox17 and t-Sox17, positive signals are observed mainly in the inner cell layer of seminiferous tubules of the adult testis (a and c). Late pachytene spermatocytes, and round, elongated spermatids are positive for hybridization with this probe, and more intense positive sig-
which may be caused by the translation from the second methionine in each ORF (position 24 in Sox17 ORF or position 20 in t-Sox17 ORF). Moreover, the larger t-Sox17 protein was ~14 kD smaller than the larger Sox17 protein, which may be caused by the translation from the second methionine in each ORF (position 24 in Sox17 ORF or position 20 in t-Sox17 ORF). Moreover, the larger t-Sox17 protein was ~14 kD smaller than the larger Sox17 protein, and was immunoblotted by using anti-N15 (15-residue peptide [amino acid residues 25-39] of the Sox17 NH2-terminal region) or anti-C17 (17-residue peptide [amino acid residues 403-419] of the Sox17 COOH-terminal region) antibody or anti-recombinant Sox17 antiserum. Anti-N15 antibody detects only the Sox17 protein product, while anti-recombinant Sox17 antiserum or anti-C17 antibody recognized both Sox17 and t-Sox17 proteins. Both Sox17 and t-Sox17 proteins migrate slower than expected, possibly because of their high proline content. Molecular weight size standards are shown in the center.

On the immunoblots of the testicular crude extracts, we could not detect a specific band of both Sox17 and t-Sox17 proteins. To confirm the existence of both isoform products in the testis, the testicular extracts were analyzed by ion exchange HPLC. They were applied to a DEAE exchange column, and each eluted fraction was subjected to SDS-PAGE (12.5%) and immunoblotting (Fig. 8, a and b). As a result, the Sox17- and t-Sox17-specific bands were detected in the fractions eluted from 250 to 400 mM NaCl (Fig. 8 b). Sox17 products were eluted at the lower salt concentration (270-315 mM) in comparison with t-Sox17 products, which may reflect a deficiency of the HMG box region enriched with basic amino acids in the t-Sox17 isoform. These findings suggest that both Sox17 and t-Sox17 mRNAs isoforms are translated into the protein products, although the amount of t-Sox17 products in the testis appeared lower in comparison to the high accumulation of t-Sox17 mRNAs.

By immunofluorescence staining using anti-recombinant Sox17 antiserum, positive reactions are restricted to the nucleus of L929 cells transfected with pCDM/Sox17, suggesting that Sox17 is a nuclear protein like Sry and other Sox proteins (Fig. 9 a). In the L929 cells transfected with pCDM/t-Sox17, positive reactions were observed both in the cytoplasm and nucleus (Fig. 9 b). Similar patterns were also obtained in the COS cells transfected with pCDM/Sox17 or pCDM/t-Sox17 (Fig. 9, c and d). Moreover, all of the L929 cells transfected with the COOH-terminal deletion constructs of pCDM/Sox17 (see Fig. 12 a) exhibited a nuclear localization of each product (figure not shown). Such intracellular localization patterns in the transfection experiment clearly agree with a previous report showing that the NH2-terminal part of the HMG box domain functions as a nuclear localization signal in diverse HMG box proteins (Poulat et al., 1995). Thus, t-Sox17 is a truncated Sox17 protein lacking both the DNA-binding domain and nuclear localization signal, although a part of t-Sox17 protein can be transported into the nucleus. In the testicular sections stained with anti-recombinant Sox17 antiserum, positive reactions were detected in the nucleus of the spermatogonia and the round spermatids (Fig. 9 e). Moreover, some positive somatic cells are located in the testicular interstitium. The spermatocytes, however, showed which are especially restricted to early round spermatids (d). On the other hand, with probe C, the distribution of the signals shows a different pattern from probe B, and signals are mainly detected in the basal layer of the seminiferous tubules (e and g). The Sox17 form is expressed in spermatogonia, and this expression is clearly reduced from the early pachytene spermatocyte stage and onward (h). No appreciable positive signals were detected in Sertoli or Leydig cells with these antisense probes, although some positive somatic cells were located in the testicular interstitium (h, arrowhead). Moreover, sense probes show no appreciable positive signals in any sections of the testis (b and f). L, lumen of seminiferous tubules; Sg, spermatogonium; Sc, spermatocyte; St, spermatid; Ser, Sertoli cell; Ley, Leydig cell. a, b, e, and f, bar = 1 mm; c, d, g, and h, bar = 100 μm.
a weak or no apparent positive for anti-Soxl7 staining. We could not distinguish Soxl7 from t-Sox17 proteins on the sections because the anti-N15 antibody was disqualified due to histochemistry. Such staining patterns in the testis by anti–recombinant Soxl7 antisemur, however, are in agreement with the mRNA expression patterns by in situ hybridization analysis. Thus, it suggests that the immunohistochemical reactions in the spermatogonia or those in the spermatids may reflect the localization of Soxl7 or t-Sox17 proteins, respectively. It further suggests that a switch from Soxl7 into t-Sox17 may occur both at protein and RNA levels.

In addition, no positive reaction of anti–recombinant Soxl7 was detected in L929 and COS cells transfected with pCDM8. The cytochemical control using the primary antiserum preincubated with GST-Soxl7 beads showed no specific positive reaction in the testis (Fig. 9 d) or in the L929 and COS cells transfected with pCDM/Soxl7 or pCDM/t-Soxl7 (not shown).

DNA-binding Activity of Soxl7 or t-Soxl7

It was shown previously that Sry and several Sox proteins have a sequence-specific DNA-binding activity to the AACAAT or AACAAAG motif (Denny et al., 1992b; van de Wetering et al., 1993; Harley et al., 1994). To test functional differences between Soxl7 and t-Soxl7 protein products, we first examined the DNA-binding activity of recombinant GST-Soxl7 or t-Soxl7 protein by EMSA. The probes used were 32P-labeled oligonucleotides with partially self-complementary sequences that form a stem-loop structure and provide a 13-bp double-stranded region containing each motif (the oligonucleotides containing the motifs AACAAT and AACAAAG are named SCS6 and SCS4, respectively). Both GST alone and GST–t-Soxl7 protein showed no detectable DNA binding to these oligonucleotides (Fig. 10 a). In contrast, GST-Soxl7 protein clearly showed DNA-binding activity to both SCS6 and SCS4, and its binding activity to SCS6 seemed to show a higher level compared with that of SCS4 (Fig. 10 a). The binding of Soxl7 to SCS6 was inhibited by the addition of unlabeled SCS6 oligonucleotides, while a set of different target sequences of other known transcription factors were unable to successfully compete this binding (Fig. 10 b). No appreciable competition with these nonspecific target oligonucleotides was observed in the case of Soxl7 protein and SCS4 binding (figure not shown). Thus, these data indicate that the Soxl7 protein is a DNA-binding protein with a sequence specificity similar to other members of the Sox family proteins.

Moreover, we selected the sequences binding to GST-Soxl7 or GST–t-Soxl7 from a pool of random DNA sequences using each recombinant protein. The 32P-labeled PCR products from alternate cycles of selection were analyzed by EMSA (Fig. 10 a). In the selection using GST-Soxl7, an appreciable enrichment for Soxl7-binding oligonucleotides was found by the third cycle of selection, and a large part of the PCR products from the fifth cycle of selection formed protein–DNA complexes. On the other hand, no DNA-protein complex was observed when using t-Soxl7 protein, even in the fifth cycle of selection, suggesting that t-Soxl7 protein shows no sequence-specific DNA-binding activity. The PCR products binding to GST-Soxl7 were sequenced after seven cycles of selection. As a result, all individual clones recovered were AT rich, and AACAAT occurred in 19 of 31 clones (Fig 11 b), which confirms the results of the DNA binding of Soxl7 protein to SCS6 oligonucleotides (Fig. 10 a). Interestingly, in 29 of 31 clones, two copies of AACAAT or its minor variants were found within the random 18-bp region of the original random oligonucleotide, which forms palindrome-like sequences composed of two inverted AACAAT or its variant sites separated by three to five nucleotides. This result leads us to the possibility that the Soxl7 protein binds DNA cooperatively or as a dimer. However, the EMSA and immunoprecipitation analysis using in vitro–translated proteins could demonstrate neither a cooperative binding to DNA nor a direct interaction at present (data not shown).
Figure 9. Immunofluorescence analysis of Sox17 and t-Sox17 isoform protein products using anti-recombinant Sox17 antiserum, showing the intracellular localization in the transfected mammalian cells and distribution in the adult testis. a–d show the intracellular localization of Sox17 or t-Sox17 in L929 cells (a and b) and COS cells (c and d). In the cells transfected with pCDM/Sox17, positive reactions are restricted to their nucleus (a and c), while reactions are found both in the cytoplasm and nucleus in those with pCDM/t-Sox17 (b and d). e shows the distribution of positive reactions for anti-recombinant Sox17 antiserum in the adult testis, while f exhibits a cytochemical control in the testicular section. In the testis, positive reactions are detected in the nucleus of the spermatogonia and the round spermatids (e). Moreover, some positive somatic cells are located in the testicular interstitium. Such positive reactions have disappeared by the use of the primary antiserum preincubated with GST-Sox17 (f). L, lumen of seminiferous tubules; L, lumen of seminiferous tubules. Bar, 100 μm.

Transactivation Activities of Sox17 or Derivatives through Its Binding Motif

To test whether Sox17 could regulate transcription through the Sox 17-binding site, the reporter plasmid containing four copies of the two inverted ACAAT motifs...
The number of cycles is shown in each lane (0 indicates the random core. Sequences were aligned about their core-binding case letters denote the common sequences flanking the random selection, while the expression of Sox17 was able to activate transcription of the reporter gene about six- to seven-fold (Fig. 12 b). Moreover, such transactivation by Sox17 was dependent on the presence of the AACAAT sites, since Sox17 failed to promote luciferase expression from a reporter gene lacking this sequence, pGL2-Luci (Fig. 12 c). The similar results were also obtained in the transfection experiments using Hela cells (not shown). To define the domain involved in transactivation, the deletion mutants of Sox17 were constructed (Fig. 12 a) and cotransfected with pH4×4-Luci into L929 cells. As a result, transfection of pCDM/Sox17(d343-419), which lacks the sequence corresponding to amino acid residues 343-419, resulted in a significantly low level of luciferase activity, which shows a similar level to that of pCDM8 (Fig. 12 d). pCDM/Sox17 (d295-419) also exhibited the lack of the activation activity, but the transfection of pCDM/Sox17(d286-346) significantly induced reporter gene expression by ~75% of that of pCDM/Sox17, suggesting that the COOH-terminal region of amino acid residues 347-419 may be involved in the transactivation. In addition, the transfection of pCDM/Sox17 (d174-346) failed to promote luciferase expression. Such a result may be possibly caused by the structural failure of this deletion mutant protein.

In conclusion, Sox17 protein is a transcriptional activator through the AACAAT motif, while t-Sox17 is a truncated protein that contains the activation domain but lacks both the DNA-binding domain and the nuclear localization signal. Thus, Sox17 may function as a transcriptional activator during the early stage of the testicular germ cells, and thereafter, Sox17 may be functionally inactivated by the splicing switch into t-Sox17 during the peri- and postmeiotic stages.

Discussion

In the present study, two types of Sox17 cDNA clones were isolated from an adult mouse testis cDNA library. Genomic structural analysis revealed that the mouse Sox17 gene contains two introns at the positions of the 5' UTR and the HMG box region that forms a 391-bp exon containing the NH2-terminal 102 amino acids (from the initiation methionine to the upper half of HMG box). By alternative splicing of this exon, we showed that the Sox17 gene produces at least two mRNA isoforms: one encodes a protein with a single HMG box domain near the NH2-terminus (Sox17), and another encodes a truncated protein lacking most parts of the HMG box domain (t-Sox17). The Sox17 gene is therefore the first member of Sox gene family that produces multisoforms, one of which encodes a truncated protein that lacks most of the DNA-binding domain.

Sox family genes are divided into two groups, intronless and multiexon genes. It is known that Sry, Sox3, and Sox4 are all intronless genes (Clepét et al., 1993; Stevanović et al., 1993; Schilham et al., 1993), while the Sox9 gene contains at least two introns, one of which is located in the HMG box region (Foster et al., 1994; Wagner et al., 1994;...
The Soxl7 HMG box domain also shows the most similarity than the intronless Sox family genes that contain dures, and they contain proline- and glutamine-rich regions predicted proteins show a high proportion of proline resi-
sides the HMG box, the COOH terminal halves of both
trons positioned at the HMG box region, the
Wright et al., 1995). Although Sox9 and Sox17 show no significant homology in the sequences of the region outside the HMG box, the COOH terminal halves of both predicted proteins show a high proportion of proline residues, and they contain proline- and glutamine-rich regions near the COOH terminus (Foster et al., 1994; Wright et al., 1995). The similarity between these two genes suggests that the Sox17 gene is more closely related to the Sox9 gene than the intronless Sox family genes that contain Sry. The Sox17 HMG box domain also shows the most similarity to Sox18 cDNA (90.6%), and a stretch of nine amino acids, SDASSAVYY, at positions 7-15 from the COOH terminus, is also conserved in these two genes (Dunn et al., 1995). Although we have no information about whether or not the Sox18 gene is a multiexon gene that contains an intron positioned at the HMG box region, the Sox17 gene seems likely to be most closely associated with the Sox18 genes than other Sox family genes. Further information about the Sox18 gene will shed light on the close relationship among the Sox9, Sox17, and Sox18 genes.

The most interesting feature of the Sox17 gene in this study is the expression patterns of each isoform. Our RNA analyses revealed that both Sox17 and t-Sox17 isoforms are expressed in the spermatogenic cell lineage, and the expression of each isoform is differently and developmentally regulated in spermatogenesis. In mammalian spermatogenesis, male germ cells undergo three developmental events: the mitotic proliferation of spermatogonia (mitotic phase), the meiotic division of spermatocytes (meiotic phase), and the subsequent formation of haploid spermatids and their morphogenic changes into sperm (postmeiotic phase). According to the present analysis, the Sox17 form is expressed in spermatogonia, and such expression is clearly reduced at the early pachytene sperma-

tocyte stage and onward; therefore, this leads us to the postulation that the Sox17 form may be associated with the mitotic phase of spermatogenesis. The recombinant Sox17 protein synthesized in vitro exhibits DNA-binding activity with a similar sequence specificity to other members of the Sox gene family. Moreover, by cotransfection experiments using a luciferase reporter gene, Sox17 could stimulate reporter gene expression through its binding site. These results therefore suggest that Sox17 may function as a transcriptional factor, activating (or repressing) the expression of other genes involved in the premeiotic phase of spermatogenesis, such as the spermatogonial proliferation and induction of meiosis.

On the other hand, form t-Sox17 shows a deletion of the region containing the upper half of HMG box region, and its product shows no appreciable enrichment of t-Sox17-binding sequences in the random selection assay (Fig. 11 a). The functional significance of t-Sox17 form products is elusive at the present time. However, the expression of form t-Sox17 clearly shows a reciprocal proportion to that of form Sox17 in spermatogenesis. The t-Sox17 form begins expression in the pachytene spermatocyte, and its transcripts are highly accumulated in the round spermatids, in contrast with the appreciable reduction in Sox17 isoform expression at the meiotic phase. These findings suggest that Sox17 pre-mRNA is likely to be expressed in the spermatogenic cells from the mitotic through postmeiotic phases, and they further suggest that some changes in the

Figure 12. Transactivation activities of Sox17 and its derivatives through its binding motif in a transient luciferase assay. (a) Schematic representation of reporter and effector plasmids. pH4×4-Luci were constructed by insertion of four copies of the H4 site (two inverted AA-CAAT motifs separated by 4 bp) into pGL2-Luci immediately upstream of the SV40 promoter. Effector plasmids were constructed by cloning the Sox17 or t-Sox17 cDNA or its derivatives into pCDM8 downstream of the cytomegalovirus promoter. (b) pH4×4-Luci (1 µg) was transfected into L929 cells together with the indicated amount of pCDM/Sox17 (○) or pCDM/t-Sox17 (●). Total amounts of plasmid were kept constant by adding the vector without its insert. (c) L929 cells were transfected with a reporter plasmid (pH4×4-Luci or pGL2-Luci, each 1 µg) and effector plasmids (pCDM8, pCDM/Sox17, or pCDM/t-Sox17, 5 µg each). (d) pH4×4-Luci (1 µg) was transfected into L929 cells together with pCDM/Sox17 or its deletion derivatives, pCDM/Sox17[d343-419], pCDM/Sox17[d295-419], pCDM/Sox17[d286-346], pCDM/Sox17[d164-419], or pCDM/Sox17[d174-346] (5 µg each). Transfection efficiency was normalized to β-galactosidase activity. Error bars represent SE from six (a) or four (c and d) independent transfection trials.

Kamii et al. Sox17 Expression in Mouse Spermatogenesis 679

Downloaded from jcb.rupress.org on January 8, 2018.
pre-mRNA-processing machinery at the meiotic phase may induce the switch from the Sox17 isoform into t-Sox17 isoform.

In fact, the meiotic and postmeiotic germ cells are known to express aberrant forms of various substances such as Oct-2, CREB (cAMP-responsive element-binding factor), CREM (cAMP-responsive element modulator), and fer-T by alternative splicing (see review of Erickson, 1990; Eddy et al., 1993). This pattern suggests that mechanisms specific to meiotic and postmeiotic germ cells may alter pre-mRNA processing, which results in the production of a functionally different substance during these phases. For example, it is known that during the meiotic phase, a significant switch in the splicing of CREB transcripts leads to higher levels of the two isoforms that lack the leucine zipper domain and the nuclear translocation signals (Waeber et al., 1991; Ruppert et al., 1992). Moreover, CREM is expressed in the ancestor form in premeiotic germ cells, but an agonist isoform that acquires two glutamine-rich transcriptional activation domains by alternative splicing is produced exclusively at the pachytene spermatocyte stage (Foulkes et al., 1992). It is therefore conceivable that similar mechanisms may lead to a significant switch from Sox17 to the t-Sox17 isoform during the meiotic phase, and this developmental switch may alter the function of Sox17 at the meiotic and postmeiotic phases.

It is most likely that a splicing switch at the meiotic phase leads to the loss of function of Sox17. At the present time, however, we can not rule out a possible role of truncated Sox17 protein, which lacks a DNA-binding domain, in postmeiotic germ cells. Among the HMG box family proteins, there are several reports showing that this family has important regulatory interactions with the other transcriptional factor; for example, the upstream binding factor (UBF) is reported to interact with SL-1 in a way that DNA binding by these factors is cooperative (Jantzen et al., 1992). Moreover, an HMG box protein, SSRP1, interacts specifically with the c-Myc oncoprotein, and SSRP1 affects c-Myc function in transfection experiments (Bunker and Kingston, 1995). The present immunofluorescence analysis, in combination with the transfection experiment, showed that a part of t-Sox17 protein was transported into the nucleus of L929 and COS cells in spite of t-Sox17 cDNA missing the region that corresponds to the nuclear localization signal. Moreover, in the testicular sections positive reactions were detected in the nucleus of the round spermatids by anti-Sox17 staining. These results suggest that t-Sox17 protein may interact with some nuclear proteins, even in the COS and L929 cells, and that t-Sox17 may be transported into the nucleus together with these proteins. Testing this hypothesis would require identifying the nuclear protein(s) that can interact specifically with t-Sox17 by the yeast two-hybrid system and etc.

The Sox17 form is not only expressed in the spermatogenic cell lineage, but in some other somatic cell lines as well. The present Northern and in situ hybridization analyses showed that form Sox17 is expressed in the lung and in some somatic cells located in the testicular interstitium. Moreover, RT-PCR analysis revealed that the t-Sox17 isoform is also expressed in the lung, although its expression level is quite low compared with that of form Sox17. The expression of both isoforms in somatic cell lines also stresses the biological importance of t-Sox17 isoform.

In conclusion, we found that a Sox17 gene is the first member of Sox gene family to encode functionally different mRNA isoforms by alternative splicing, and the expression of each isoform is regulated differently in spermatogenesis. We believe that identification of the Sox17 gene not only provides information about the transcriptional networks in spermatogenesis, but also a novel insight to the functional regulation of Sox family genes at the mRNA-processing level.

The authors wish to thank Dr. Hirokazu Fujimoto (Department of Molecular Reproduction and Development, Mitsubishi Kagaku Institute of Life Sciences) and Associate Professor Dr. Yoshimitsu Kanai (Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo) for their kind and helpful advice and discussions regarding this work; Dr. Peter Koopman for his helpful discussions and suggestions; and Dr. George Muscat for providing information about the Sox18 gene before publication; department director Dr. Hiroshi Hamada, Dr. Yukio Saijo (Department of Developmental Biology and Cancer Prevention, The Tokyo Metropolitan Institute of Medical Science), Associate Professor Dr. Masimichi Kurohmaru, and Dr. Kentaro Tanemura (Department of Veterinary Anatomy, Faculty of Agriculture, University of Tokyo) for their helpful support; Mr. Iwao Tsujiyama (Department of Veterinary Anatomy, University of Tokyo) for his expert care of laboratory mice; and Mrs. Hiroe Hayashi (Department of Ultrastructural Research, The Tokyo Metropolitan Institute of Medical Science) for her secretarial assistance.

This work was supported by financial grants from the Ministry of Education, Science, and Culture of Japan to Y. Kanai (Nos. 06660394 and 07660412), and the Japan Society for the Promotion of Science to M. Kanai-Azuma (No. 2786).

Received for publication 10 March 1995 and in revised form 23 January 1996.

References