Targeting of Protein Kinase Cα to Caveolae

Chieko Mineo,∗ Yun-Shu Ying,∗ Christine Chapline,† Susan Jaken,‡ and Richard G.W. Anderson∗

*Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039; and †Adirondack Biomedical Research Institute, Lake Placid, New York 12946

Abstract. Previously, we showed caveolae contain a population of protein kinase Cα (PKCα) that appears to regulate membrane invagination. We now report that multiple PKC isoenzymes are enriched in caveolae of unstimulated fibroblasts. To understand the mechanism of PKC targeting, we prepared caveolae lacking PKCα and measured the interaction of recombinant PKCα with these membranes. PKCα bound with high affinity and specificity to caveolae membranes. Binding was calcium dependent, did not require the addition of factors that activate the enzyme, and involved the regulatory domain of the molecule. A 68-kD PKCα-binding protein identified as sdr (serum deprivation response) was isolated by interaction cloning and localized to caveolae. Antibodies against sdr inhibited PKCα binding. A 100–amino acid sequence from the middle of sdr competitively blocked PKCα binding while flanking sequences were inactive. Caveolae appear to be a membrane site where PKC enzymes are organized to carry out essential regulatory functions as well as to modulate signal transduction at the cell surface.

Materials and Methods

Materials

Fetal calf serum was from Hazleton Research Products, Inc. (Lenexa, KS). DME, trypsin-EDTA, penicillin/streptomycin, and OptiPrep were
Supernatant fraction was obtained, layered on top of 23 ml of 30% Percoll. The mixture was then washed, and the bands were visualized by enhanced chemiluminescence.

Methods

Cell Culture. Rat-1 cells (6 × 10⁶) were seeded in 100-mm-diam dishes and grown in 10 ml of DME supplemented with 10% (vol/vol) fetal calf serum. Cells were then incubated for 24-48 h in DME without serum before each experiment. Normal human fibroblasts were cultured on coverslips as previously described (6).

Isolation of Caveolae Fractions. Detergent-free caveolae fractions were prepared by the method of Smart et al. (26). All steps were carried out at 4°C. Cells were collected by scraping in 5 ml of ice-cold buffer A (0.25 M sucrose, 1 mM EDTA, 20 mM tricine, pH 7.8, with or without 1 mM CaCl₂). Reactions were incubated for 45 min at 37°C. After SDS precipitation according to the manufacturer's instructions. The purified sequences corresponding to polypeptides containing amino acids 1-168, 145-250, and 250-417 were purified by nickel-nitrilotriacetic acid chromatography according to the manufacturer's instructions. The purified proteins were used to raise antiserum in rabbits. Antiserum was purified by affinity chromatography using the expressed sequences coupled to Sepharose.

ELISA Assay. Fragments of clone 34/sdr containing residues 1-168, 145-250, and 250-417 (2.8 μg/ml) were included in the buffer. Wells were washed with buffer E and incubated with either PKCoa-specific mAb 4 or anti-MBP polyclonal IgG for 1 h (New England Biolabs, Boston, MA) followed by the appropriate secondary antibody conjugated to alkaline phosphatase.

Radioimmunoassay. Protein concentrations were determined using Bio-Rad protein assay. The isolated PKCoa fractions were incubated for 30 min at the indicated temperature. The wells were washed rapidly seven times at 4°C with 250 μl of buffer D plus 1 mg/ml heat-denatured BSA. The indicated PKC mixtures (100 μl) were added and incubated for 30 min at the indicated temperature. The wells were washed and the bands were visualized by enhanced chemiluminescence.

PKC Binding to Caveolae. PKCoa binding to caveolae was carried out using either a solid phase or a solution assay. The solid phase radioimmunoassay was modified from the method of Zhang et al. (28). Immunoassay protocols were purchased from Dynatech Laboratories (Chantilly, VA). Immobilon transfer nylon was from Millipore (Bedford, MA). Crystalline bovine serum albumin and phorbol-12-myristate-13-acetate (PMA) were from Sigma Chemical Co. (St. Louis, MO). Tricine was from Organon Teknika (West Chester, PA); biotinylated goat anti–mouse IgG and peroxidase-conjugated anti–rabbit IgG were from Vector Laboratories (Burlingame, CA); and TRITC-goat anti–mouse IgG (H+L) and FITC-goat anti–rabbit IgG (H+L) were from Zymed Laboratories Inc. (San Francisco, CA). Polyclonal anti-sdr (a gift from the laboratory of Calbiochem, La Jolla, CA) or RDα (a gift from the laboratory of Carlsbad, CA) was added to the membrane (pellet). The pellet was rinsed gently with buffer A, and 30 μl of Laemmli sample buffer was added. The sample was heated at 95°C for 3 min and loaded onto 12.5% SDS polyacrylamide gels. PKCoa was detected by immunoblotting using mAb anti-PKCoa IgG.

Isolation of sdr. Interaction cloning (4) was used to isolate a 68-kD PKCoa-binding protein designated as clone 34. Analysis of the sequence showed that clone 34 was identical to a previously cloned protein known as sdr (7). Clones 34/sdr cDNA was ligated in frame into the pTrc (InVitrogen, Carlsbad, CA) or pOE (Qiagen, Chatsworth, CA) bacterial expression vector to produce recombinant His-tagged fusion proteins. The expressed proteins corresponding to polypeptides containing amino acids 1-168, 145-250, and 250-417 were purified by nickel-nitrilotriacetic acid chromatography according to the manufacturer’s instructions. The purified proteins were used to raise antiserum in rabbits. Antiserum was purified by affinity chromatography using the expressed sequences coupled to Sepharose.

Indirect Immunofluorescence. Normal human fibroblasts and Rat-1 cells grown on glass coverslips were washed quickly with buffer F (100 mM sodium phosphate, pH 7.6, containing 3 mM KCl and 3 mM MgCl₂) and then fixed in methanol/acetone (1:1) for 10 min on ice, washed three times with buffer F containing 20 μg/ml goat anti-mouse IgG conjugated to TRITC and 20 μg/ml goat anti-rabbit IgG conjugated to FITC. After incubation, cells were washed and mounted in a 2.5% solution of 1,4-diabicyclo-(2,2,2)octane. All incubations were at room temperature. Samples were photographed using a Zeiss Photomicroscope III (Thornwood, NY).

Other Assays. Protein concentrations were determined using Bio-Rad Bradford assay (Hercules, CA).

Results. Previously, we localized PKCoa to caveolae of MA104 cells using a cell fractionation scheme that depends on the partial insolubility of caveolae in Triton X-100 at 4°C (25). To avoid potential artifacts associated with the use of detergents, in the current studies we isolated caveolae from purified plasma membranes by flotation on OptiPrep gradient.
Association of PKC with Caveolae

To determine if the EGTA had stripped away PKCα from caveolae during the isolation, we prepared cell fractions using the same buffer with 1 mM Ca\(^{2+}\) added (Fig. 1 B). Under these conditions, the caveolin-rich fractions contained much higher concentration of PKCα. Since all the protein in each fraction was loaded on the gel, the majority of the PKCα we detected was in these fractions (compare lanes 1–7 with lanes 8–14). The protein profile (Fig. 1 D, diamonds) as well as the distribution of caveolin-1 and integrin β3 were unchanged. If the cells were preincubated in the presence of PMA for 20 min before fractionation, the light membrane fractions had similar levels of PKCα, even though calcium was not in the isolation buffer (fractions 1–7, compare Fig. 1, B and C, PKCα). PKCα was not detected in the bulk membrane fractions under either condition (Fig. 1, B and C, lanes 10–14). These results suggest PKCα is normally bound to caveolae through a calcium-sensitive interaction with resident molecules.

Other PKC isoenzymes were also found to be enriched in caveolae fractions (Fig. 2). PKCa was concentrated in caveolae, but unlike PKCα, enrichment was stimulated by a lack of Ca\(^{2+}\) in the isolation buffer (compare lanes 1 and 2). This isomer was also enriched when cells were pretreated with PMA for 20 min (lane 3). PKCe was enriched in the absence of Ca\(^{2+}\) (lane 1), but the presence of Ca\(^{2+}\) slightly reduced the concentration (lane 2). Pretreatment of cells with PMA increased the amount of PKCe in the caveolae fraction relative to other treatments (lane 3). Thus, PKC isoenzyme types differ in the amount of calcium required to remain bound to caveolae membrane during isolation but share the ability to remain bound independently of calcium after cells are pretreated with PMA.

We used immunoblotting to measure the relative amount of PKCa in the cytosol, nonspecific (NSCM), and caveolae membrane (CM) fractions after various isolation conditions (Fig. 3). When Ca\(^{2+}\) was in the isolation buffer, PKCa was enriched in caveolae (compare lane 12 with 11) but not nonspecific fractions (compare lane 7 with 6). The slight increase in PKCa concentration seen in the cytosol fraction under these conditions was within experimental variability (compare lane 1 with 2). Both caveolae (lane 13) and nonspecific (lane 8) fractions had similar low levels of PKCa when Mg\(^{2+}\) was substituted for Ca\(^{2+}\). Exposing cells to PMA for 20 min caused an apparent increase in the amount of PKCa in the

Figure 1. Effects of EGTA (A), calcium (B), and PMA pretreatment (C) on the presence of PKCa in caveolae membrane fractions. Rat-1 cells grown 24 h in the absence of serum were incubated in the presence (C) or absence (A and B) of 100 nM PMA for 20 min at 37°C before fractionating sonicated plasma membranes in the presence (B) or absence (A) of 1 mM CaCl\(_2\) on an Optiprep 1 gradient. Equal volume fractions were taken from the top (fraction 1) to bottom (fraction 14), separated by electrophoresis, and immunoblotted with either monoclonal anti-PKCa IgG, anti-integrin β3 IgG, or anti-caveolin-1 IgG. The protein profiles (D) for each gradient (squares, gradient A; diamonds, gradient B; circles, gradient C) were similar.
caveolae fraction relative to isolation in the absence of Ca++ (compare lane I4 with I1) without changing the amount in either the cytosol (lane 4) or the noncaveolae (lane 9) fractions. By contrast, extended exposure of cells to PMA caused a reduction in the cytosolic level of PKCα (compare lane 5 with I) and completely eliminated the protein from the caveolae fractions (compare lane I5 with I4).

Binding of PKCα to Caveolae

The lack of detectable PKCα in the bulk plasma membrane fractions rich in integrin β3 (Fig. 1 B), even though we loaded the total protein in each fraction (up to 100 μg/lane in fractions I1 and I2) on the gel, suggests PKCα has a specific affinity for caveolae. We used a solid phase assay to determine if caveolae were able to bind PKCα (Fig. 4). Caveolae and noncaveolae membranes were isolated in the absence of Ca++ so that PKCα was not present (see Fig. 2). Equal amounts of caveolae (Fig. 4 A, bars I–6) and noncaveolae (bar 7) membrane protein were air dried on the bottom of 96-well plates and assayed for PKCα binding. When caveolae membranes were incubated in the presence of the complete binding mixture (1.5 nM PKCα, 1 mM Ca++, 30 μM PS, 100 μM ATP) at 37°C for 30 min (bar I), significant amounts of PKCα bound to caveolae membranes. By contrast, very little PKCα bound to noncaveolae membranes (bar 7). Binding to caveolae was prevented by removing either PKCα (bar 2) or Ca++ (bar 3) from the mixture. Mg++ could not substitute for Ca++ (bar 4), and PS was not required (bar 5). Finally, PKCα did not bind to caveolae when the incubation was carried out at 4°C (bar 6).

PKCα binding to caveolae membranes in the solid phase assay was saturable (Fig. 4 B, squares). Half-maximal binding occurred at ~0.5 nM PKCα, suggesting a high-affinity interaction with the membrane. Binding of PKCα to noncaveolae membranes (circles) was no greater than binding to dishes coated with albumin (diamonds).

We could also detect PKCα binding to caveolae using a solution assay (Fig. 4 C). Caveolae and noncaveolae membranes were prepared and incubated in solution with the indicated mixtures. At the end of each incubation, the membranes were recovered by centrifugation, processed for gel electrophoresis, and immunoblotted with either anti-caveolin-1 IgG (caveolin) or anti-PKCα IgG (PKCα).

The association of PKCα with the pelleted caveolae fraction was dependent on the presence of PKCα (compare lanes I and 2), Ca++ (compare lanes 2 and 3), and temperature (compare lanes 2 and 6), but not PS (compare lanes 2 and 5). Binding was not detected if noncaveolae membrane was substituted for caveolae (compare lanes 2 and 7) or if Ca++ was replaced with Mg++ (compare lanes 2 and 4).

The solid phase assay was used to define further the requirements for PKCα binding to caveolae membranes. We showed in Fig. 1 that the calcium requirement for PKCα association with isolated caveolae was lost when cells were incubated in the presence of PMA before caveolae isolation. By contrast, the addition of PMA to the in vitro binding assay mixture had no effect on PKCα binding to isolated caveolae (Fig. 5 A). The amount of PKCα bound was the same in the presence or absence of PMA (compare bars I–3). Furthermore, PMA did not promote PKCα binding to caveolae when calcium was removed from the incubation mixture (compare bars 4 and 5 with 2 and 3). No binding was detected when noncaveolae membranes (bar 6) or albumin (bar 7) were substituted for caveolae. In other experiments, we found that PMA did not stimulate PKCα binding to noncaveolae membranes (data not shown).

We originally added ATP to the incubation mixture because PKCα contains an ATP-binding domain that might be required for interacting with caveolae. Fig. 5 B shows, however, that ATP was not required for PKCα binding (compare bars I and 2). GTP also had no effect on binding (data not shown). We still did not detect binding to caveolae prepared in the continuous presence of EGTA with either 1 mM CaCl₂ (lanes 2, 7, and I2), 2.5 mM MgCl₂ (lanes 3, 8, and I3), or nothing (lanes I, 4–6, 9–11, 14, and I5) added to the buffer. Samples of cytosol (50 μg), noncaveolae membrane (NCM, 5 μg), and caveolae membrane (CM, 5 μg) were separated by gel electrophoresis and immunoblotted with antibodies directed against PKCα and caveolin-1.
lae at 4°C (compare bars 3 and 4) or to noncaveolae membranes (compare bars 5 and 6) when ATP was removed from the incubation buffer. Also, the lack of PKCα binding to caveolae at 4°C did not change if PS was removed from the incubation mixture (data not shown).

Since Ca++ is required for PKCα binding but not ATP, the regulatory domain (RDα) of the molecule may mediate binding to caveolae. We compared the binding to caveolae membranes of recombinant forms of PKCα and RDα (amino acids 1–312). Caveolae (Fig. 6 A, bars I–4) and noncaveolae (bars 5 and 6) membranes were incubated in the presence of 1.3 nM PKCα or 1.3 nM RDα. When Ca++ was in the buffer (compare bars I and 3), equal amounts of either PKCα or RDα bound to caveolae membranes. Removal of Ca++ from the buffer (compare bars 2 and 4) reduced binding to the level seen when noncaveolae membranes were substituted for caveolae (compare bars 2 and 4 with 5 and 6). Further evidence for RDα-mediated binding is that PKCα, which contains a different regulatory domain that appears not to require calcium for association with caveolae (see Fig. 2), did not block PKCα binding to caveolae membranes even when present in >100-fold excess (Fig. 6 B, compare bars I–5).

Identification of a PKCα-binding Protein in Caveolae

Most likely, the high-affinity binding of PKCα to caveolae involves an interaction with a resident protein of caveolae. A candidate protein should bind PKCα in the presence of calcium, bind the regulatory domain of PKCα, and be concentrated in caveolae. Several PKC-binding proteins have been identified by probing expression libraries with recombinant PKC (called interaction cloning [10]). A protein isolated from such a screen with the required characteristics is clone 34. Clone 34 is a 68-kD protein identical in amino acids 1–312. PKCα was isolated from serum starved cells (7). In an overlay assay, clone 34/sdr bound the regulatory domain of PKCα only when calcium and PS were present (data not shown). We used a quantitative binding assay to localize the region of clone 34/sdr that contains the PKCα-binding domain (Fig. 7). Samples of histidine-tagged fusion protein containing either amino acids 1–168, 145–250, or 250–417 of clone 34/sdr were bound to individ-

![Figure 4](https://example.com/figure4.png)

Figure 4. PKCα binding to isolated caveolae and noncaveolae membrane fractions using either a solid phase (A and B) or solution (C) assay. The indicated membrane fractions were prepared form Rat-1 cells grown 24 h in the absence of serum using standard methods. (A) Membranes (3 μg) were air dried into individual wells of a 96-well plate and incubated in the presence of 100 μl of either complete buffer 37°C (Control) or 4°C or complete buffer at 37°C with the indicated modifications (no Ca++, Mg++, no PS, or no PKCα). The amount of bound PKCα was measured using an indirect radioimmune assay as described in Materials and Methods. (B) Individual wells of a 96-well plate containing 3 μg of either caveolae membrane (squares), noncaveolae membrane (circles), or BSA (diamonds) were incubated with the indicated amounts of PKCα before assaying for bound enzyme as described. Values are the average of triplicate measurements ± the standard deviation. (C) Isolated caveolae membrane (lanes 1–6) or noncaveolae membrane (lane 7) was incubated in the presence of 5 nM purified PKCα (reaction volume 300 μl) for 30 min at 37°C (lanes 1–5 and 7) or 4°C (lane 6) using either complete buffer (control) or complete buffer with the indicated modifications (no Ca++, Mg++, no PS, or no PKCα). After the incubation, the samples were chilled, pelleted at 100,00 g for 60 min at 4°C, separated by gel electrophoresis, and immunoblotted with either anti-PKCα or anti-caveolin-1 IgG.
ual wells of a 96-well plate. Wells were then incubated in the presence of either the full-length (PKCα) or the regulatory domain of PKCα (RDα) in the presence or absence of PS before assaying for the amount bound. Both PKCα (left) and RDα (right) bound peptide 145–250 in the presence (hatched bars) but not the absence of PS (solid bar) at the indicated temperature. Values are the average of triplicate measurements ± the standard deviation.

Figure 5. Neither PMA (A) nor ATP (B) was required for PKCα binding to caveolae. The solid phase binding assay was using the standard buffer with the indicated additions at 37°C as described in Fig. 4 A. Incubations were carried out in the presence (+) or absence (−) of calcium with the indicated concentration of PMA in the buffer. (B) Incubations were carried out in the presence (+) or absence (−) of ATP at the indicated temperature. Values are the average of triplicate measurements ± the standard deviation.

Figure 6. The regulatory domain of PKCα (A), but not intact PKCε (B), binds caveolae. The solid phase binding assay was using the standard buffer with the indicated additions at 37°C as described in Fig. 4 A. Incubations were carried out in the presence (+) or absence (−) of calcium with the indicated concentration of regulatory domain (RDα) or PKCα in the buffer. (B) Incubations were carried out using a complete buffer containing the indicated amounts of PKCα and PKCε. Values are the average of triplicate measurements ± the standard deviation.

and in linear patches on the surface (arrowheads). The edge and surface patches colocalized with caveolin-1 (compare arrowheads between A and B). The mAb anti-caveolin-1 used to do the colocalization reacted poorly with Rat-1 cells. Nevertheless, when we used polyclonal anti-caveolin-1 IgG (C) and anti-clone 34/sdr IgG (D) on separate sets of cells, a similar edge staining (arrowheads) was evident in both sets. Immunoblots of total protein loads from Rat-1 cell OptiPrep 1 gradient fractions (E) showed that PKCα, clone 34/sdr, and caveolin-1 quantitatively cofractionated (fractions 1–8). By contrast, another PKC-binding protein, RACK 1 (receptor for activated C
PKCα, was primarily in the bulk plasma membrane fraction (fractions 9–14).

We used the solid phase binding assay to see if anti–clone 34/sdr IgG blocked PKCα binding to caveolae (Fig. 9A). Good binding was observed when caveolae fractions were incubated with the complete binding mixture (bar 1). Addition of 15 μg of the affinity-purified anti–clone 34/sdr IgG to the incubation mixture reduced PKCα binding by ~50% (bar 2). Increasing the concentration of the antibody did not further reduce binding. The same concentration of polyclonal anti–caveolin-1 IgG, by contrast, had no effect on PKCα binding (bar 4). PKCα did not bind to noncaveolae membranes (bar 4). These results suggest clone 34/sdr is a protein component of the PKCα-binding site.

A peptide competition assay provided additional evidence that clone 34/sdr was involved in PKCα binding to caveolae (Fig. 9B). We used subsaturating concentrations of PKCα in a standard binding assay where each tested peptide was present in 100-fold excess. Compared with no additions (bar 1), peptide 1–168 had no effect on PKCα binding (bar 2). Peptide 145–250, by contrast, reduced binding to the level seen when noncaveolae membranes were substituted for caveolae (compare bars 3 and 6). Peptide 250–417 did not inhibit binding (bar 4). We also tested the effect of the PKCα pseudosubstrate peptide on binding (bar 5). This peptide completely blocked binding (bar 5). Therefore, we have localized peptide domains within both clone 34/sdr and PKCα that can interact during PKCα binding to caveolae membranes.

Discussion

PKCα Binding to Caveolae

Cell fractionation and immunocytochemistry have previously shown that PKCα is constitutively present in caveolae and that this is a major cell surface location for the enzyme (25). We used a solid phase binding assay that has successfully identified other membrane binding sites for cytosolic proteins (28) to determine if PKCα would bind to caveolae. PKCα bound with high affinity (binding was dependent on calcium) did not require the addition of either PMA, PS, or ATP, and only occurred at 37°C. PKCα did not bind to noncaveolae membranes, which contain >90% of the plasma membrane protein starting material. The same specific interaction with caveolae was also detected in a solution binding assay. Caveolae, therefore, exhibit a PKCα binding activity that may be responsible for targeting the enzyme to this compartment.

We found that caveolae contained other members of the PKC enzyme family. Fractions from untreated cells contained PKCα only when calcium was present and PKCα only when calcium was absent from the isolation buffer. The presence of PKCε was not dependent on calcium, although this cation did appear to reduce the amount of enzyme in the fraction. The calcium concentration needed to retain the enzyme during isolation is a reflection of the cation requirement for PKC binding to caveolae. These results raise the possibility that local fluctuations in the concentration of calcium can regulate the amount of a PKC isoenzyme in caveolae. Calcium could function, therefore, as a regulatory switch that controls the isoenzyme composition of caveolae. This may be especially important at times when calcium entry occurs at caveolae (2).

PMA did not significantly increase the level of PKC in caveolae above that normally present when isolation was carried out under the correct calcium conditions for retention of the isoenzyme (Fig. 2, lane 3). This suggests that PMA does not stimulate recruitment of cytosolic PKCs to caveolae but instead stabilizes the resident population of isoenzyme so it remains bound regardless of the concentration of calcium in the isolation buffer. This conclusion is supported by the finding that PMA did not induce binding of PKCα to either caveolae or noncaveolae membranes in vitro (Fig. 5A).

Recombinant PKCα was used in all of the in vitro assays, so binding to isolated caveolae was not dependent on phosphorylation of the enzyme. Furthermore, the regulatory domain alone bound as well as the whole protein, and this region does not contain any of the phosphorylation sites thought to modulate the interaction of PKCα with the cytoskeleton (20). PMA was also not required for binding, nor did it block binding (Fig. 4A), and calcium was required for retention during caveolae isolation. These are the characteristics of a binding site designed to recognize inactive, native PKCα within the cell and concentrate the enzyme at caveolae independently of the activation state of the cell. There may be binding sites specific for each of the major isoenzyme families. The specificity required to distinguish between isoenzyme families may be conferred by other PKC-binding proteins together with cofactors concentrated in caveolae. The PKC isoenzymes in caveolae are probably engaged in regulating essential cellular activities.

One activity that PKCα appears to regulate at this location is the internalization of caveolae (25). The phosphorylation of a 90-kD caveolae substrate occurs during invagination and sequestration of molecules by caveolae. Cells lacking PKCα do not have detectable enzyme in caveolae.
and both caveolae invagination and ligand internalization are blocked. Like many resident proteins of caveolae, the PKC\(\alpha\) in this domain is normally resistant to solubilization by Triton X-100 at 4°C. After stimulation of histamine H\(_1\) receptors, membrane-bound PKC\(\alpha\) becomes detergent soluble, suggesting a change in its linkage to the caveolae membrane. Under these conditions, phosphorylation of the 90-kD substrate does not occur, and internalization of caveolae is inhibited. The binding activity we have detected may be essential for positioning PKC\(\alpha\) to optimize the phosphorylation of this protein. Another outcome of binding is to localize PKC isoenzymes at a site where they can interact with multiple signaling pathways (2).

Localization of a PKC\(\alpha\)-binding Protein to Caveolae

A number of PKC-binding proteins have been identified that could participate in targeting PKC\(\alpha\) to caveolae (10, 18, 21), including caveolin (23). We focused our attention on clone 34/sdr because initial immunofluorescence examination suggested it was present in caveolae. Immunofluorescence and cell fractionation of Rat-1 cells clearly show that the majority of the plasma membrane clone 34/sdr is concentrated in caveolae. Clone 34/sdr was in caveolae fractions isolated without calcium even after PMA pretreatment of cells (data not shown). The binding of PKC\(\alpha\) to both caveolae and purified clone 34/sdr requires calcium and the regulatory domain of PKC\(\alpha\). In addition, neither activity requires ATP or an activator such as PMA. Anti–clone 34/sdr IgG reduces PKC\(\alpha\) binding by 50%, and a specific peptide (amino acids 145–250) within sdr competitively inhibits binding. These results suggest clone 34/sdr has a role in targeting PKC\(\alpha\) to caveolae.

\(sdr\) was originally isolated from NIH 3T3 cells in a screen for RNA messages that are upregulated during serum deprivation (7). \(sdr\) contains a leucine zipper-like motif between amino acids 50 and 100 and two consensus sites for PKC phosphorylation. One of the phosphorylation sites (amino acids 229–250) is at the amino terminus of the \(sdr\) peptide that binds the regulatory domain of

Figure 8. Immunofluorescence (A–D) and cell fractionation (E) localization of clone 34/sdr to caveolae. (A and B) The same sample of normal human fibroblasts grown on coverslips was processed for immunofluorescence colocalization of caveolin-1 (A) and sdr (B). (C and D) Rat-1 cells were grown on coverslips, and separate samples were processed for immunofluorescence localization of either caveolin-1 (C) or sdr (D). (E) OptiPrep 1 fractions (1–14 from the top) of Rat-1 cell plasma membrane were prepared as described in Fig. 1. An equal volume of each fraction was separated by electrophoresis and immunoblotted with either monoclonal anti-PKC\(\alpha\) IgG, anti-RACK1 IgG, anti–clone 34/sdr IgG, or anti–caveolin-1 IgG. Arrowheads indicate areas of colocalization (A and B) or similar staining patterns (C and D). Bar, 5 \(\mu\)m.
PKCa and blocks its binding to caveolae. SRBC (sdr-related gene product that binds C-kinase) (9) shares several similarities with sdr, including binding PS as well as the regulatory domain of PKC and phosphorylation by PKC. These two proteins belong to a class of molecules called STICKs (substrates that interact with C-kinase [10]). Each STICK may have a primary function in targeting a distinct set of PKC isoenzymes to specific locations in the cell. Interestingly, a fusion protein with cell transform-

PKCα and blocks its binding to caveolae. SRBC (sdr-related gene product that binds C-kinase) (9) shares several similarities with sdr, including binding PS as well as the regulatory domain of PKC and phosphorylation by PKC. These two proteins belong to a class of molecules called STICKs (substrates that interact with C-kinase [10]). Each STICK may have a primary function in targeting a distinct set of PKC isoenzymes to specific locations in the cell. Interestingly, a fusion protein with cell transform-

PKCα and blocks its binding to caveolae. SRBC (sdr-related gene product that binds C-kinase) (9) shares several similarities with sdr, including binding PS as well as the regulatory domain of PKC and phosphorylation by PKC. These two proteins belong to a class of molecules called STICKs (substrates that interact with C-kinase [10]). Each STICK may have a primary function in targeting a distinct set of PKC isoenzymes to specific locations in the cell. Interestingly, a fusion protein with cell transform-

PKCα and blocks its binding to caveolae. SRBC (sdr-related gene product that binds C-kinase) (9) shares several similarities with sdr, including binding PS as well as the regulatory domain of PKC and phosphorylation by PKC. These two proteins belong to a class of molecules called STICKs (substrates that interact with C-kinase [10]). Each STICK may have a primary function in targeting a distinct set of PKC isoenzymes to specific locations in the cell. Interestingly, a fusion protein with cell transform-

PKCα and blocks its binding to caveolae. SRBC (sdr-related gene product that binds C-kinase) (9) shares several similarities with sdr, including binding PS as well as the regulatory domain of PKC and phosphorylation by PKC. These two proteins belong to a class of molecules called STICKs (substrates that interact with C-kinase [10]). Each STICK may have a primary function in targeting a distinct set of PKC isoenzymes to specific locations in the cell. Interestingly, a fusion protein with cell transform-

PKCα and blocks its binding to caveolae. SRBC (sdr-related gene product that binds C-kinase) (9) shares several similarities with sdr, including binding PS as well as the regulatory domain of PKC and phosphorylation by PKC. These two proteins belong to a class of molecules called STICKs (substrates that interact with C-kinase [10]). Each STICK may have a primary function in targeting a distinct set of PKC isoenzymes to specific locations in the cell. Interestingly, a fusion protein with cell transform-

PKCα and blocks its binding to caveolae. SRBC (sdr-related gene product that binds C-kinase) (9) shares several similarities with sdr, including binding PS as well as the regulatory domain of PKC and phosphorylation by PKC. These two proteins belong to a class of molecules called STICKs (substrates that interact with C-kinase [10]). Each STICK may have a primary function in targeting a distinct set of PKC isoenzymes to specific locations in the cell. Interestingly, a fusion protein with cell transform-
This work was supported by grants from the National Institutes of Health, CA53841, HL 20948, and GM 43169, and the Perot Family Foundation.

Received for publication 20 November 1997 and in revised form 4 March 1998.

References