Mlc1p Is a Light Chain for the Unconventional Myosin Myo2p in Saccharomyces cerevisiae

Richard C. Stevens and Trisha N. Davis
Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350

Abstract. In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Δ6IQp, that can support the growth of a yeast strain at 90% the rate of a wild-type isogenic strain. We exploit this mutant in a characterization of the light chains of Myo2p. First, we demonstrate that the localization of calmodulin to sites of polarized growth largely depends on the IQ sites in the neck of Myo2p. Second, we demonstrate that a previously uncharacterized protein, Mlc1p, is a myosin light chain of Myo2p. MLC1 (YGL106w) is an essential gene that exhibits haploinsufficiency. Reduced levels of MYO2 overcome the haploinsufficiency of MLC1. The mutant MYO2-Δ6IQ is able to suppress haploinsufficiency but not deletion of MLC1. We used a modified gel overlay assay to demonstrate a direct interaction between Mlc1p and the neck of Myo2p. Overexpression of MYO2 is toxic, causing a severe decrease in growth rate. When MYO2 is overexpressed, Myo2p is fourfold less stable than in a wild-type strain. High copies of MLC1 completely overcome the growth defects and increase the stability of Myo2p. Our results suggest that Mlc1p is responsible for stabilizing this myosin by binding to the neck region.

Key words: myosin • polarized • stability • Myo4 • cytokinesis

The Saccharomyces cerevisiae unconventional myosin Myo2p is a member of the class V myosins and has been implicated in vesicle movement and polarized growth (Johnston et al., 1991; Govindan et al., 1995). Homologues of Myo2p include mouse dilute, which plays a role in melanosome transport (Provance et al., 1996; Nascimento et al., 1997), and chicken myosin V, which has a role in neuron filopodial extension (Wang et al., 1996). Myo2p is essential for growth of S. cerevisiae, and it localizes to the bud tip during bud formation and to the bud neck during cytokinesis (Brockerhoff et al., 1994; Lillie and Brown, 1994). A temperature-sensitive mutation in MYO2 confers defects in polarized growth and in vacuole inheritance but not in general secretion (Johnston et al., 1991; Govindan et al., 1995; Hill et al., 1996).

All myosins have at least one light chain that binds to the myosin heavy chain via a light chain binding motif called an IQ site (Cheney and Mooseker, 1992; Xie et al., 1994). IQ sites are often found in tandem repeats between the head-motor domain and the tail domain (Cheney and Mooseker, 1992; Rayment et al., 1993). IQ sites are ~25-amino acid residue motifs that bind calmodulin or myosin light chains. In many cases, the binding of these small EF-hand proteins activates the Mg²⁺ ATPase activity of myosins. For example, calmodulin is required for the Mg²⁺ ATPase activity of chicken myosin V (Espindola et al., 1992). Furthermore, light chains perform structural roles by affecting myosin head orientation as well as orientation of light chains to each other. As an example, the light chains of scallop myosin II are required to stabilize Ca²⁺ binding by the myosin head domain and alter the myosin head orientation (Fromherz and Szent-Györgyi, 1995). Myo2p has six tandem IQ sites (Johnston et al., 1991).

We have previously shown that calmodulin binds to Myo2p to perform an essential function in polarized growth (Brockerhoff et al., 1994). Not only is calmodulin present at sites of polarized growth (Brockerhoff and Davis, 1992), but calmodulin and Myo2p have direct physical contact through the IQ sites in the neck of Myo2p (Brockerhoff et al., 1994). CMD1 mutants show allele-specific synthetic lethality with the mutant myo2-66, thus suggesting that calmodulin and Myo2p share an essential function.

Interestingly, both class V myosins in S. cerevisiae, Myo2p and Myo4p, confer deleterious effects on cell
growth when overexpressed (Haarer et al., 1994). Myo4p localizes to the bud and is essential for the polarized distribution of the asymmetric determinant, Ash1p (Bobola et al., 1996; Jansen et al., 1996). MYO4 is not essential for growth (Haarer et al., 1994). The cause of growth defects when either MYO2 or MYO4 is overexpressed is unknown.

Here we investigate the role of light chains in the function of Myo2p. Localization of calmodulin to sites of cell growth depends on the neck region of Myo2p. The S. cerevisiae genome sequencing project revealed a small protein with similarities to calmodulin and myosin light chains. We show that this protein, which we name Mlc1p (myosin light chain), binds to the myosin neck and regulates the stability of Myo2p.

Materials and Methods

Plasmids

The plasmids used in this study are listed in Table I.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Parent vector</th>
<th>Relevant markers and construction*</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBluescriptII KS (+)</td>
<td>amp' f1 origin</td>
<td>Stratagene</td>
<td></td>
</tr>
<tr>
<td>pGEX-2T</td>
<td>Pneu with gene encoding GST</td>
<td>Pharmacia</td>
<td></td>
</tr>
<tr>
<td>pQE30</td>
<td>Pneu with 6XHis polylinker</td>
<td>Qiagen</td>
<td></td>
</tr>
<tr>
<td>pRS306</td>
<td>URA3 f1 origin</td>
<td>(Sikorski and Hieter, 1989)</td>
<td></td>
</tr>
<tr>
<td>pRS315</td>
<td>CEN6 ARS4 LEU2 f1 origin</td>
<td>(Sikorski and Hieter, 1989)</td>
<td></td>
</tr>
<tr>
<td>pRS316</td>
<td>CEN6 ARS4 URA3 f1 origin</td>
<td>(Sikorski and Hieter, 1989)</td>
<td></td>
</tr>
<tr>
<td>pGF27</td>
<td>pRS304</td>
<td>2-μm origin (YEp24 fragment) inserted at AatII site</td>
<td>G. Zhu</td>
</tr>
<tr>
<td>pGF29</td>
<td>pRS306</td>
<td>2-μm origin (YEp24 fragment) inserted at AatII site</td>
<td>G. Zhu</td>
</tr>
<tr>
<td>pJG28</td>
<td>pSB5</td>
<td>amp' trc promoter, CMD1</td>
<td>J. Geiser</td>
</tr>
<tr>
<td>pJP10-2B</td>
<td>YCp50</td>
<td>URA3 MYO2 CEN4 ARS1</td>
<td>(Johnston et al., 1991)</td>
</tr>
<tr>
<td>pLI831</td>
<td>pBluescriptII SK (+)</td>
<td>ADE3</td>
<td>E. Muller</td>
</tr>
<tr>
<td>myo4 Δ::URA3</td>
<td>pBluescriptII KS (+)</td>
<td>myo4 Δ::URA3</td>
<td>S. Brown</td>
</tr>
<tr>
<td>pRS23</td>
<td>pRS27</td>
<td>5.6-kb ClaI fragment of MYO2</td>
<td>This study</td>
</tr>
<tr>
<td>pRS28</td>
<td>pRS27</td>
<td>myo2 Δ::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>pRS29</td>
<td>pRS25</td>
<td>5.6-kb ClaI fragment of MYO2</td>
<td>This study</td>
</tr>
<tr>
<td>pRS31</td>
<td>pGF29</td>
<td>5.6-kb ClaI fragment of MYO2</td>
<td>This study</td>
</tr>
<tr>
<td>pRS34</td>
<td>pRS29</td>
<td>Nhel site removed</td>
<td>This study</td>
</tr>
<tr>
<td>pRS50</td>
<td>pRS37</td>
<td>2-μm origin (YEp24 fragment) inserted at NotI site</td>
<td>This study</td>
</tr>
<tr>
<td>pRS72</td>
<td>pRS43</td>
<td>Nhel site added at codon 1 of MYO2</td>
<td>This study</td>
</tr>
<tr>
<td>pRS172</td>
<td>pRS43</td>
<td>Internal deletion of MYO2 (S787G)</td>
<td>This study</td>
</tr>
<tr>
<td>pRS174</td>
<td>pRS306</td>
<td>5.4-kb ClaI fragment of MYO2-D6IQ</td>
<td>This study</td>
</tr>
<tr>
<td>pRS221</td>
<td>pGF29</td>
<td>5.4-kb ClaI fragment of MYO2-D6IQ</td>
<td>This study</td>
</tr>
<tr>
<td>pRS276</td>
<td>pRS285</td>
<td>3.3-kb BamHI fragment carrying MLC1</td>
<td>This study</td>
</tr>
<tr>
<td>pRS286</td>
<td>pRS316</td>
<td>mcl Δ1::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>pRS289</td>
<td>pGF27</td>
<td>1.4-kb BamHI-SacI fragment of MLC1</td>
<td>This study</td>
</tr>
<tr>
<td>pRS290</td>
<td>pE30</td>
<td>1.4-kb BamHI-SacI fragment of MLC1</td>
<td>This study</td>
</tr>
<tr>
<td>pRS321</td>
<td>pRS315</td>
<td>1.4-kb BamHI-SacI fragment of MLC1</td>
<td>This study</td>
</tr>
<tr>
<td>pSB6</td>
<td>pACYC177</td>
<td>kan' lysis genes of lambdA</td>
<td>(Brockerhoff et al., 1994)</td>
</tr>
<tr>
<td>pSB20</td>
<td>pGEX-3X</td>
<td>MYO2 (aa740–1457) fused to GST</td>
<td>(Brockerhoff et al., 1994)</td>
</tr>
<tr>
<td>pSB21</td>
<td>pGEX-3X</td>
<td>MYO2 (aa740–1116) fused to GST</td>
<td>(Brockerhoff et al., 1994)</td>
</tr>
<tr>
<td>pSB24</td>
<td>pGEX-3X</td>
<td>MYO2 (aa790–924) fused to GST</td>
<td>(Brockerhoff et al., 1994)</td>
</tr>
<tr>
<td>pSB25</td>
<td>pGEX-3X</td>
<td>MYO2 (aa740–833) fused to GST</td>
<td>(Brockerhoff et al., 1994)</td>
</tr>
<tr>
<td>pSB27</td>
<td>pGEX-3X</td>
<td>MYO2 (aa247–740) fused to GST</td>
<td>(Brockerhoff et al., 1994)</td>
</tr>
<tr>
<td>pTD28</td>
<td>pTD17</td>
<td>2-μm origin LYS2 CMD1</td>
<td>(Davis and Thorner, 1989)</td>
</tr>
<tr>
<td>pTD29</td>
<td>YEp24</td>
<td>2-μm origin LYS2</td>
<td>(Geiser et al., 1993)</td>
</tr>
</tbody>
</table>

*Unless otherwise stated, all markers from the parent plasmid are present in the new construct. MYO2-D6IQ encodes an internal deletion in Myo2p with the mutation S787G and missing amino acids 787–927. MLC1 is identical to the Saccharomyces cerevisiae open reading frame VGL100w.
Deletion of the region encoding the neck of MYO2 was made by oligonucleotide-directed mutagenesis (Kunkel et al., 1987). Because of the large size of MYO2, a cassette was created containing the middle one-third of the gene, which encodes the neck domain of Myo2p, cloned into the BamHI and EcoRI sites of pBluescript II KS+ to make pRS78. The first step towards deleting the six IQ cassettes was to introduce NarI restriction endonuclease cleavage sites into the coding sequence of MYO2 at each end of the region encoding the IQ cassettes. The oligonucleotide NarI (5'-GCAATAGAGTCGACATGCCTTTGTTATGATCAGAACAG-3') results in the addition of glycine between amino acid residues 786 and 787 as well as the mutation S787A. The oligonucleotide NarI4 (5'-GAAATAGAACAATTTAGGGCGGCACGC-TACTGATTAATC-3') results in the addition of a glycine between amino acids 927 and 928. After mutating pRS78 using NarI and NarI4, the resulting plasmid was digested with NarI and recolored using T4 DNA ligase. This mutant cassette was then ligated to BamHI- and EcoRI-cut pRS43 to create the plasmid pRS172, which encodes a Myo2p with an S787G mutation and lacks only amino acids 788–927. This mutant was named MYO2-Δ6IQ. Plasmid pRS221 has the 5.4-kb Asp718-SacI fragment containing MYO2-Δ6IQ cloned into pGFP2.

The plasmid pRS174 was created to integrate MYO2-Δ6IQ into the genome of S. cerevisiae. pRS174 was made by ligating the 5.4-kb ClaI fragment of pRS172 into ClaI-cut pRS316. The gene YGL106w encodes a 149–amino acid protein with similarities to calmodulin. Based on the work described in this paper, we have renamed YGL106w as MLC1. The 3.3-kb BamHI fragment of lambda PM-3553 (American Type Culture Collection, Rockville, MD) was cloned into the BamHI site of pBluescript II KS+ to create pRS276. Plasmid pRS286 was derived from pRS276, in which the 2.8-kb NdeI-NorI fragment was removed. 5’ overhanges were filled in with Klenow, and plasmid was recircularized with T4 DNA ligase. In plasmid pRS287, MLC1 is the only open reading frame remaining in the plasmid backbone polylinker. The plasmid to delete MLC1 precisely was made in a similar way to the way MYO2-Δ6IQ construct. Plasmid pRS284 was made by digesting pRS276 with EcoRI, filling in the 5’ overhangs with Klenow, and recircularizing the plasmid with T4 DNA ligase. The coding sequence of MLC1 was replaced with an EcoRI site by oligonucleotide-directed mutagenesis (Kunkel et al., 1987) using primer MLC1D (5’-CTAATATTGGATCCGACCTC-TCAAAATCTGATATCAGAAGACGCTAA-3’) and MLC1E (5’-GAAATAGAACAATTTAGGGCGGCACGC-TACTGATTAATC-3’), resulting in the creation of pRS285. A 0.8-kb EcoRI fragment containing TRPl (Davis et al., 1986) was cloned into the EcoRI site of pRS285 to make pRS286. In pRS286, the TRP1 gene is in the same orientation as the original MLC1. Plasmid pRS289, designed to express 6Xhis-tagged MLC1 in Escherichia coli, was made in several steps. An NcoI site was placed at the first codon of MLC1 by oligonucleotide-directed mutagenesis using primer MLC1-NcoI (5’-GGCTCTGGTGGCTGCCATGGTTATTCTAT-3’) and MLC1-NcoI (5’-GGCTCTGGTGGCTGCCATGGTTATTCTAT-3’), resulting in the creation of pRS291. The MLC1-NcoI fragment was made identical to pRS291 with NcoI, filling in using the Klenow fragment of DNA polymerase, digesting with SacI, and purifying the 0.8-kb plasmid. Plasmid pRS292 was then made by digesting pRS30 (Qiagen, Inc., Chatsworth, CA) with BamHI, filling in using the Klenow fragment of DNA polymerase, digesting with SacI, and ligating in the 0.8-kb MLC1 fragment.

Biochemical analysis

Production of 35S-labeled 6XHis-Mlc1p was as follows. The E. coli strain JM109 (Coulondre and Miller, 1977) containing the plasmids pRS286 and pRS26 was grown in 30 ml of M9 medium (Miller, 1972) with 1.0 mM MgCl₂ (instead of MgSO₄), 0.4% glucose, 1 μg/ml thiamine, 50 μg/ml ampicillin, 15 μg/ml kanamycin, and 8 μCi carrier-free Na35SO4 (DuPont/NEN) to 20 Klett units and then cultured in a 1,400 dilution of an ampicillin-lactobacilysin solution to a final concentration of 2 ml. After 5 h at 37°C, the cells were collected by centrifugation and resuspended in 400 μl lysis buffer (50 mM Tris, pH 7.5, 1 mM MgCl₂, and 1 mM phenylmethylsulfonyl fluoride). The sample was frozen and thawed several times, alternating

1. Abbreviations used in this paper: 5’-FOA, 5’-fluoro orotic acid; DAPI, 4’,6-diamidino-2-phenylindole; GFP, green fluorescent protein; GST, glutathione-S-transferase.
Table II. Yeast Strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype*</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRY1</td>
<td>MATa ade2-10a can1-100 his3-11,15 leu2-3,112 trpl-1 ura3-1</td>
<td>R. Fuller (Stanford University, CA) (Geiser et al., 1991)</td>
</tr>
<tr>
<td>JGY46</td>
<td>MATa/MATa ade2-10a ade2-10a can1-100 can1-100 his3-11,15 his3-11,15 leu2-3,112 leu2-3,112 trpl-1 trpl-1 trpl-1 ura3-1 ura3-1 ura3-1</td>
<td>E. Muller (University of Washington, Seattle, WA)</td>
</tr>
<tr>
<td>EMY55-5D</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 cyh2 his3-11,15 leu2-3,112 lys2Δ::HIS3 trpl-1 ura3-1</td>
<td>E. Muller (University of Washington)</td>
</tr>
<tr>
<td>EMY55-6B</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 cyh2 his3-11,15 leu2-3,112 lys2Δ::HIS3 trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>MMY28</td>
<td>MATa ade2-10a ade3-100 can1-100 (S65T-GFP)–CMD1 his3-11,15 leu2-3,112 lys2Δ::HIS3 trpl-1 ura3-1</td>
<td>(Moser et al., 1997)</td>
</tr>
<tr>
<td>RSY1</td>
<td>EMY55-5D X EMY55-6B</td>
<td>This study</td>
</tr>
<tr>
<td>RSY2</td>
<td>MATa/MATa ade2-10a ade3-100 ade3-100 can1-100 can1-100 cyh2 his3-11,15 his3-11,15 leu2-3,112 leu2-3,112 lys2Δ::HIS3 lys2Δ::HIS3 MYO2/мо2Δ::TRP1 trpl-1 trpl-1 trpl-1 ura3-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY2-60B</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 his3-11,15 leu2-3,112 lys2Δ::HIS3 myo2Δ::TRP1 trpl-1 trpl-1 ura3-1 carrying plasmid pRS50</td>
<td>This study</td>
</tr>
<tr>
<td>RSY21</td>
<td>MATa ade2-10a can1-100 his3-11,15 leu2-3,112 MYO2/D6IQ trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY22</td>
<td>MATa ade2-10a can1-100 his3-11,15 leu2-3,112 MYO2/D6IQ trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY38</td>
<td>MATa/MATa ade2-10a ade3-100 ade3-100 can1-100 can1-100 CMD1/GFP–CMD1 his3-11,15 his3-11,15 lys2Δ::HIS3 lys2Δ::HIS3 MYO2/D6IQ MYO4/myo4Δ::URA3 trpl-1 trpl-1 ura3-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY38-9D</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 GFP–CMD1 his3-11,15 leu2-3,112 lys2Δ::HIS3 myo2Δ::TRP1 trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY38-16A</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 GFP–CMD1 his3-11,15 leu2-3,112 lys2Δ::HIS3 myo2Δ::URA3 trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY38-16C</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 GFP–CMD1 his3-11,15 leu2-3,112 lys2Δ::HIS3 myo2Δ::URA3 trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY38-17C</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 GFP–CMD1 his3-11,15 leu2-3,112 lys2Δ::HIS3 myo2Δ::URA3 trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY105</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 can1-100 his3-11,15 his3-11,15 leu2-3,112 his3-11,15 leu2-3,112 lys2Δ::HIS3 trpl-1 trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY105-6A</td>
<td>MATa ade2-10a ade3-100 can1-100 can1-100 can1-100 his3-11,15 his3-11,15 leu2-3,112 his3-11,15 leu2-3,112 lys2Δ::HIS3 trpl-1 trpl-1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>RSY107</td>
<td>RSY21 X RSY105-6A carrying plasmid pRS289</td>
<td>This study</td>
</tr>
<tr>
<td>RSY112</td>
<td>MATa/MATa ade2-10a ade2-10a ade3-100 ade3-100 can1-100 can1-100 his3-11,15 his3-11,15 leu2-3,112 leu2-3,112 lys2Δ::HIS3 lys2Δ::HIS3 MYO2/MYO2::URA3 trpl-1 trpl-1 ura3-1 ura3-1 carrying plasmid pRS289</td>
<td>This study</td>
</tr>
</tbody>
</table>

* GFP–CMD1 encodes a fusion protein of green fluorescent protein and calmodulin.

between −20 and 20°C to lyse the cells, and then centrifuged at 10,000 g for 30 min in a 4°C microcentrifuge. The supernatant fraction was batch mixed for 10 min with 700 μl pre-equilibrated Ni-NTA beads (Qiagen, Inc.). The beads were poured to form a column and washed with 10 ml lysis buffer containing 25 mM imidazole. Purified 6XHis-Mlc1p was eluted from the column using lysis buffer containing 50 mM imidazole. The imidazole buffer was exchanged with 100 mM ammonium bicarbonate with a PD-10 G25 column (Pharmacia Biotech, Piscataway, NJ). Protein was stored at −80°C until needed. Protein concentration was determined using bicinchoninic acid (Sigma Chemical Co.). The purified 35S-labeled 6XHis-Mlc1p had a specific activity of 27 dpm/fmol.

Purified 35S-labeled calmodulin was made as previously described (Broekhoven et al., 1992), except that only 8 mCi Na2SO4 was used in the labeling. The purified 35S-labeled 6XHis-Mlc1p had a specific activity of 27 dpm/fmol.

The gel overlay assays for calmodulin and Mlc1p binding were performed as previously described (Broekhoven et al., 1994) with slight modifications. In brief, extracts were made from the E. coli strain GMI (Coullandre and Miller, 1977) containing either plasmid pGEX-2T, pSB20, pSB21, pSB24, pSB25, or pSB27. Approximately 30 μg total protein was loaded into each lane for SDS-PAGE. Proteins were transferred to Immobilon membranes (Millipore Corp., Bedford, MA) using a wet-transfer apparatus (Bio-Rad Laboratories) following the instructions provided by the manufacturer. After transfer, the proteins were renatured by washing the Immobilon membranes for a total of 40 min (four changes) in buffer A (20 mM Hepes, pH 7.2, 100 mM NaCl) and blocked for 6 h in buffer A containing 5% bovine serum albumin and 0.05% Tween-20. The membranes were probed for 16 h at 21°C with either 140 mM 35S-labeled 6XHis-Mlc1p or 156 mM 35S-labeled calmodulin in buffer C (buffer A with 5 mM CaCl2 and 0.05% Tween-20). The membranes were then washed for 40 min (four changes) in buffer C. Next, the membranes were air dried, dipped in 7% 2,5-diphenyloxazole in acetone, air dried, and exposed to Hyperfilm-MP (Amersham Corp.) for 5–8 d.

Northern Analysis of MYO2 Transcript

Total mRNA was purified from strains of CRY1 carrying either pRS43, pRS172, pRS31, or pRS221 using a previously described procedure (Wise, 1991). From 500-ml cultures, ~7.0 mg RNA was obtained. Total mRNA was purified from the samples using the Promega PolyA Tract mRNA Isolation System I (Madison, WI) with MagneSphere particles. Approximately 50 μg poly A-containing mRNA was purified from each culture.

Northern blot analysis was performed using standard procedures (Sambrook et al., 1989) with the following modifications. 10 μg mRNA was loaded in each lane of a prerun formaldehyde gel. After removing the formaldehyde by washing 2× in DEPC dH2O, mRNA was transferred to a nitrocellulose membrane using capillary transfer (Sambrook et al., 1989). The membrane was baked at 65°C for 1 h. Probes were made using the 3.4-kb Ncol-EcoRI fragment of MYO2 from pRS72 and a PCR product containing a 0.5-kb fragment of TRX2. After incubating the membrane with ~1010 cpm of each probe (pooled) for 48 h, the membrane was washed and analyzed using a Molecular Dynamics PhosphorImager (model 4008; Sunnyvale, CA) using 176-micron pixel size.
Indirect Immunofluorescence and Green Fluorescent Protein Fusions

The immunolocalization of Myo2p in strains CRY1 and RSY21 was performed as previously described (Brockerhoff et al., 1994; Lillie and Brown, 1994).

The localization of GFP–Cmd1p in strains RSY38-9D, RSY38-16A, RSY38-16C, and RSY38-17C was performed using a fluorescent microscope (model Axioplan; Carl Zeiss, Inc.) (Moser et al., 1997). 200 cells from each strain were scored for the presence of polarized calmodulin. Calmodulin was judged to be polarized if the fluorescent signal was stronger in the bud than in the mother portion of each cell. Images were captured using an Imagepoint-cooled CCD video camera (Photometrics, Tucson, AZ) fitted to the microscope in conjunction with IP Lab software (Signal Analytics, Vienna, VA). Images for GFP–calmodulin are 5-s exposures. Previous studies have shown that expression of GFP alone in yeast resulted in a uniform distribution of fluorescence throughout the cell, excluding the vacuole (Niedenthal et al., 1996).

Results

Myo2p Functions without a Neck Domain

The neck of Myo2p contains six IQ sites in a tandem array spanning amino acids 790–921 (Johnston et al., 1991). Myo2p is essential for growth, but the six IQ sites are not. The mutant MYO2-Δ6IQ, lacking the sequence encoding amino acids 787–927, supports nearly normal growth as the only source of Myo2p, causing only a 10% reduction in growth rate (Fig. 1). An immunoblot confirmed that neckless Myo2-Δ6IQp is stably produced and that no wild-type Myo2p is present in the strain (Fig. 1 C). The mutant cells have a normal budding index but on average are 10% larger in size. The distribution of bud sizes was similar to that seen in wild-type cultures. The mutant cultures contained about 5% large unbudded cells not found in the wild-type cultures. A strain carrying MYO2-Δ6IQ does not grow at 38.5°C, whereas an isogenic wild-type strain grows poorly. A strain carrying MYO2-Δ6IQ grows well on medium with or without 1 M sorbitol (data not shown).

The neckless mutant protein localizes indistinguishably from that of wild-type Myo2p (Fig. 2). In both cases, unbudded cells have either no localization or a small patch of Myo2p. In small- and medium-budded cells, the Myo2p is present in a concentrated region at the bud tip. In large-budded cells, the Myo2p is either at the bud tip or at the bud neck (Fig. 2). These results are consistent with previous analysis of Myo2p localization (Brockerhoff et al., 1994; Lillie and Brown, 1994).

Neckless MYO2-Δ6IQ Affects Calmodulin Localization

Our previous results strongly suggest calmodulin is a light chain of Myo2p. Calmodulin localizes to the sites of cell

Figure 1. The mutant MYO2-Δ6IQ allows growth. Strains carrying wild-type MYO2 (CRY1) or MYO2-Δ6IQ (RSY21) were plated on YPD medium and incubated for 3 d at 30 and 37°C (A). Log-phase cultures were diluted to 10,000 cells/μl in YPD medium, and growth was monitored over 4 h. Cell number was determined on a Coulter counter (Coulter Corporation, Hialeah, FL). (B) ■ wild-type MYO2 strain, CRY1; ● MYO2-Δ6IQ strain, RSY21. An immunoblot of extracts made from log-phase cultures of strains CRY1 and RSY21 (C). The antibody was anti-Myo2p (Lillie and Brown, 1994).

Figure 2. Comparison of the localization of Myo2p and Myo2-Δ6IQp. Cells were stained with affinity-purified anti-Myo2p antibody as described in Materials and Methods. Cells were simultaneously stained with DAPI to stain DNA. Bar, 5 μm.
growth, and calmodulin mutants display defects in polarized growth (Brockerhoff and Davis, 1992; Davis, 1992; Ohya and Botstein, 1994). Mutations in CMD1 exacerbate defects caused by myo2-66 in an allele-specific manner. The viability of the MYO2-Δ6IQ strain allows us to test if the localization of calmodulin at sites of cell growth depends on the six IQ sites of Myo2p. Localization of a fusion of GFP to calmodulin was examined in wild-type and neckless mutant strains. GFP–calmodulin functionally replaces calmodulin and localizes properly (Moser et al., 1997). In a strain carrying wild-type MYO2, GFP–calmodulin is found at sites of cell growth in 84% of the cells (Fig. 3 and Table III). This number is equivalent to values obtained by immunolocalization (Brockerhoff and Davis, 1992). The cells without polarized calmodulin are either large-budded cells in the process of moving calmodulin from the bud tip to the bud neck or unbudded cells that have not yet started bud formation. In a strain carrying MYO2-Δ6IQ, only 15% of the cells have polarized calmodulin with greatly reduced and more diffuse signal even in these cells. Myo4p localizes diffusely in the yeast bud (Jansen et al., 1996). We tested whether the remaining GFP–calmodulin in the bud of the MYO2-Δ6IQ strain was dependent on Myo4p, which is not essential for growth. Strains deleted for MYO4 and containing wild-type MYO2 show the same localization of GFP–calmodulin as a wild-type strain containing both MYO4 and MYO2. However, in a strain carrying MYO2-Δ6IQ and myo4Δ, GFP–calmodulin is polarized in only 4% of the cells (Fig. 3 and Table III). Thus, calmodulin localization to sites of polarized growth is largely dependent on the six IQ sites of Myo2p, although Myo4p contributes to a small extent.

MLC1, a New Light Chain

The newly completed genome sequence for S. cerevisiae identified a potential myosin light chain. YGL106w encodes a 149–amino acid polypeptide with significant homology to calmodulin and myosin light chains. Based on the results described below, we have renamed this gene MLC1. An alignment with vertebrate calmodulin and the most similar light chain reveals homology throughout the

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Polarized calmodulin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>84</td>
</tr>
<tr>
<td>myo2-Δ6IQ</td>
<td>15</td>
</tr>
<tr>
<td>myo4Δ</td>
<td>80</td>
</tr>
<tr>
<td>myo4Δ myo2-Δ6IQ</td>
<td>4</td>
</tr>
</tbody>
</table>
sequences (Fig. 4). Mlc1p shares 35% identity with vertebrate calmodulin, second to only yeast calmodulin among yeast proteins (Davis and Thorner, 1986). Mlc1p is 35% identical to a chicken light chain (MLE1) (Matsuda et al., 1981). Mlc1p is 31% identical to *Acanthamoeba* myosin 1C light chain, another unconventional myosin light chain (Wang et al., 1997).

MLC1 Is Essential and Displays Haploinsufficiency

Initial attempts to make a diploid hemizygous for *MLC1* were unsuccessful. Southern blot analysis revealed that one-step gene replacement (Rothstein, 1991) resulted in strains containing at least two wild-type copies of *MLC1* for every copy of the deletion construct. One possible explanation for this effect is that one copy of *MLC1* per diploid genome is insufficient for viability. This phenomenon is called haploinsufficiency (Wilkie, 1994). We tested if *MLC1* is haploinsufficient by repeating the gene disruption in a strain carrying two copies of *MLC1* in the genome plus one copy of *MLC1* on a plasmid. In this case, we were able to delete one copy of *MLC1* from the genome as described in the Materials and Methods. The hemizygous diploid requires a plasmid copy of *MLC1* for viability (Fig. 5). Haploid spores that contain the *mlc1*Δ gene disruption require *MLC1* on a plasmid (data not shown). Therefore, *MLC1* is haploinsufficient and essential.

To begin characterizing the phenotype of *mlc1*Δ cells, we examined spores from a hemizygous diploid strain. The diploid requires a plasmid copy of *MLC1* to survive. Any spores receiving the plasmid would grow into colonies even if they carried the genomic copy of *mlc1*Δ. The *mlc1*Δ spores that did not inherit the plasmid were identified as the 20% of the spores that germinated but did not form colonies. The *mlc1*Δ cells grew elongated buds (Fig. 6). Cytokinesis was not complete because removal of the cell wall by treatment with zymolyase did not result in separation of the buds from the mother cells. DAPI staining revealed that the elongated cells have multiple nuclei (Fig. 6 C). Less than 1% of the spores from the control strain formed elongated cells.

Mlc1p Interacts with the Neck of Myo2p

Two lines of evidence suggest Mlc1p is a light chain of Myo2p. First, the haploinsufficiency exhibited by *MLC1* is suppressed by reduced copies of *MYO2* (Fig. 5). A diploid strain hemizygous for both *MYO2* and *MLC1* is viable.

Figure 4. Alignment of the predicted amino acid sequence of *MLC1* with three other small EF-hand proteins. Vertebrate calmodulin (*Homo sapiens*) amino acids 7–149, a chicken light chain (*Gallus gallus*, MLE1) amino acids 45–190, and *Acanthamoeba* myosin 1C light chain (*A. castellanii*, MLC1) amino acids 7–149 are compared with the complete amino acid sequence of Mlc1p. Amino acid residues sharing identity between Mlc1p and at least one of the other sequences are shaded. Amino acids within potential Ca²⁺-binding loops are labeled with a solid line.

Figure 5. *MLC1* displays haploinsufficiency. Strains JGY46, RSY105, RSY107, and RSY112, each carrying the *MLC1* plasmid pRS289, were streaked onto both minimal medium lacking uracil and minimal medium containing 5-FOA (which will kill any cells that require the plasmid pRS289). The plates were incubated at 30°C for 3 d.
Suppression of the haploinsufficiency by hemizygous MYO2 demonstrates that Mlc1p must ordinarily be present at the minimum level necessary for cell growth. MYO2-D6IQ can also suppress the haploinsufficiency of MLC1 (Fig. 5). However, MYO2-D6IQ cannot bypass the requirement for Mlc1p in a haploid strain (data not shown), so there must be at least one other essential function of Mlc1p in yeast.

Second, Mlc1p binds directly to the IQ sites of Myo2p as assayed by a gel overlay protocol. The constructs used in this experiment are presented in Fig. 7. 6XHis-Mlc1p binds specifically to the fusion proteins that contain IQ sites (Fig. 8 B). As a control, we show calmodulin also binds specifically to fusion proteins that contain IQ sites (Fig. 8 C). Both calmodulin and 6XHis-Mlc1p bind equally well in the presence of Ca\(^{2+}\) or EGTA (data not shown). These data demonstrate that Mlc1p has a direct interaction with the IQ sites of Myo2p.

The Toxicity of Overexpressed MYO2 Is Suppressed by MLC1 but Not CMD1

We looked for a functional interaction between Mlc1p and Myo2p. A yeast strain carrying a high-copy number plasmid of MYO2 grows 40% slower than strains with normal levels of MYO2 (data not shown). Microscopy has revealed that 5% of cells in the MYO2 overexpression strain have abnormal bud necks or multiple buds (data not shown). A similar defect in high-copy number MYO4 strains may be caused by the neck region of Myo4p, and overexpression of calmodulin does not suppress this effect (Haarer et al., 1994). One possibility is that high copies of myosin light chains will overcome defects associated with MYO2 overexpression.

A strain overexpressing MYO2 shows a noticeable reduction in growth rate (Fig. 9 A). The same strain overexpressing MYO2-D6IQ grows normally. Northern blot analysis reveals that both MYO2 and MYO2-D6IQ are transcribed to similar steady-state levels in these two strains and at least fivefold over normal levels (Fig. 9 B). Surprisingly, the immunoblot for a strain overexpressing MYO2 does not show higher levels of Myo2p (Fig. 9, C and D). In fact, Myo2p seems to actually decrease in the strain overexpressing MYO2. Overexpressing MYO2-D6IQ results in high levels of Myo2p (Fig. 9, C and D).
We hypothesized that high levels of calmodulin or Mlc1p would counteract the toxicity of overexpressed MYO2. Overexpressing CMD1 is unable to overcome the decreased growth rate (Fig. 9A) or the low levels of Myo2p (Fig. 9D) caused by overexpressed MYO2. In contrast, a high-copy number plasmid carrying MLC1 is able to fully suppress the overexpression MYO2 defects and results in a strain that has high levels of Myo2p (Fig. 9, A and C). These results indicate that the neck region of MYO2 is indeed responsible for an overexpression growth defect and that this toxicity is overcome by high levels of Mlc1p.

Mlc1p Stabilizes Myo2p

Because high copies of MLC1 are able to overcome defects caused by overexpression of MYO2, we tested the hypothesis that Mlc1p stabilizes Myo2p. Yeast cultures were analyzed for the stability of Myo2p by following Myo2p breakdown by immunoblot analysis (Fig. 10). In a wild-type strain, Myo2p has a half-life of greater than 8 h. In a strain carrying MYO2-Δ6IQ, the Myo2-Δ6IQp has a half-life of greater than 8 h. The neckless Myo2-Δ6IQp is at least as stable as wild-type Myo2p. When overexpressed, the half-life of Myo2p is only 2–3 h. These data explain why the Myo2p levels in the overexpression strain are not increased. In a strain overexpressing MYO2 and carrying high copies of MLC1, the half-life of Myo2p is 4 h. High copies of MLC1 are able to stabilize Myo2p, thus suggesting Mlc1p is a light chain responsible for stabilizing the neck region of Myo2p.

Discussion

Electron micrographs of the chicken myosin V molecule show two heads connected to a 30-nm stalk. At the proximal end of each head is a 20-nm neck that likely corresponds to the six IQ sites (Cheney et al., 1993). This region is predicted to be an α-helix as is the neck of class II myosins. In class II myosins, the neck region is stabilized by the binding of the myosin light chains (Raymont et al., 1993; Houdusse and Cohen, 1996). Calmodulin is the previously identified light chain for both the chicken and the yeast myosin V (Cheney et al., 1993; Brockerhoff et al., 1994). However, calmodulin does not stabilize the yeast myosin. Here, we present evidence that MLC1 (YGL106w) encodes a new light chain for the yeast class V myosin Myo2p. Our results argue that Mlc1p binds to the neck region and stabilizes Myo2p.

When overexpressed, Myo2p has a decreased half-life and is toxic to yeast cells. Overproduction of calmodulin does not affect the stability of Myo2p, but overproduction of Mlc1p stabilizes Myo2p and ameliorates the toxicity. The requirement for Mlc1p to stabilize Myo2p is bypassed by deleting the six IQ sites in Myo2p. Thus, the presence of the IQ sites destabilizes Myo2p unless sufficient Mlc1p is present.

Removal of the IQ sites in Myo2p causes a slightly slower growth rate and slightly larger cells. A mutant Dicyostelium myosin II heavy chain ΔBLCBS, which lacks the two IQ sites, maintains 20% wild-type motor activity when measured in the sliding filament assay (Uyeda et al., 1996). The ΔBLCBS myosin allows cell division in vivo but demonstrates slightly slowed furrow formation during cytokinesis (Zang et al., 1997). Thus, both Myo2-Δ6IQp and the ΔBLCBS myosin confer relatively minor defects. These results indicate that the full efficiency of the myosin is not essential for myosin function in vivo.

MLC1 is essential and haploinsufficient. Haploinsufficiency is rarely observed in yeast genes. There are several reasons reduction in the number of gene copies may have
deleterious effects. In some cases, reduced gene copy number affects regulatory genes working at a threshold level (Wilkie, 1994). An example of this form of regulation is dosage-dependent sex determination in *Drosophila*. Alternatively, some proteins may be produced at the minimum level to give proper function. The *ACT1* gene displays temperature-sensitive growth defects and increased osmосsitivity when present at low levels (Shortle et al., 1984). Finally, the stoichiometry of various protein components may be important. Several lines of evidence suggest that a fixed ratio between Mlc1p and Myo2p is required to confer normal growth. First, a diploid yeast strain carrying one copy of *MLC1* can only grow if there is no more than one copy of wild-type *MYO2*. Second, the growth defects associated with a yeast strain overexpressing *MYO2* are eliminated by adding extra copies of *MLC1*. Finally, removal of the IQ binding sites from Myo2p rescues the haplinsufficiency exhibited by *MLC1*.

Myo2Δ6IQp does not overcome a requirement of Mlc1p for cell viability. This observation does not address the essential nature of the interaction between Mlc1p and Myo2p. It merely demonstrates that Mlc1p must have at least one essential function that does not involve binding to the neck of Myo2p. None of the other four myosins in yeast are essential for growth (Brown, 1997), suggesting that Mlc1p has an essential function unrelated to myosins. Inviable *mlc1*Δ cells show a striking defect in cytokinesis, resulting in enlarged, multinucleate cells. This phenotype is identical to defects detected in cells deleted for *IQG1*, which encodes a newly discovered IQGAP family member.
in yeast (Epp and Chant, 1997; Lippincott and Li, 1998). Iqg1p contains five IQ sites that could act as binding sites for Mlc1p. We propose that one essential function of Mlc1p is to act as a light chain for IQGAP.

Calmodulin is an additional light chain for Myo2p. We have previously shown that calmodulin and Myo2p coimmunoprecipitate from yeast cell extracts and interact in vitro. A mutation that is in the actin-binding site of Myo2p and interferes with Myo2p function dramatically worsens the phenotype conferred by mutations in calmodulin (Brockerhoff et al., 1994). Here we show that the localization of calmodulin to sites of cell growth is predominately dependent on the IQ sites of Myo2p with only a small contribution by the other yeast class V myosin Myo4p. In a MYO2-Δ6IQ strain lacking MYO4, calmodulin localizes to the spindle pole body and to fast moving patches on the cell surface. The protein target that binds calmodulin in these fast moving patches has yet to be identified. The IQGAP protein in yeast localizes to the actin ring at the bud neck during cytokinesis (Epp and Chant, 1997; Lippincott and Li, 1998). Because calmodulin localization to the bud neck during cytokinesis depends on Myo2p, either calmodulin does not bind to yeast IQGAP or calmodulin binds IQGAP at levels below detection.

Only one other noncalmodulin unconventional myosin light chain has been characterized. Biochemical studies identified MCLC as a light chain for Acanthamoeba myosin IC (Wang et al., 1997). Mlc1p and MCLC share 31% sequence identity, and both proteins share significant identity with other calmodulin/EF-hand superfamily members. The chicken class V myosin has at least three light chains, calmodulin and two additional uncharacterized small proteins that copurify with the myosin (Cheney et al., 1993). These two small proteins have yet to be identified.

In conclusion, we presented several lines of evidence that Myo2p has at least two light chains, calmodulin and a newly characterized protein, Mlc1p. Mlc1p regulates the stability of Myo2p by binding to the neck region. Our characterization of Mlc1p may aid in the identification of the additional light chains of the chicken class V myosins.

We thank Susan Brown for plasmid myo4::URA3.

This work was supported by National Institutes of Health grant GM40506 (T.N. Davis). R.C. Stevens was supported by Public Health Services National Research Service Award T32 GM07270.

Received for publication 18 September 1997 and in revised form 15 June 1998.

References

Davis, T.N., and J. Thorner. 1989. Vertebrate and yeast calmodulin, despite signi-
ficant sequence divergence, are functionally interchangeable. Proc. Natl.

Davis, T.N., M.S. Urdea, F.R. Masiarz, and J. Thorner. 1986. Isolation of the

Espinola, F.S., E.M. Espreafico, M.V. Coelho, A.R. Martins, F.R.C. Costa,
characterization of p190-calmodulin complex from vertebrate brain: a novel

hand domains in calcium binding and regulation of scallop myosin. Proc.

The essential mitotic target of calmodulin is the 110-kilodalton component
of the spindle pole body in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:
7913–7924.

Govindan, B., R. Bowser, and P. Novick. 1995. The role of Myo2, a yeast class

directed vacuole movement during cell division in Saccharomyces cerevisiae.

Houdusse, A., and C. Cohen. 1996. Structure of the regulatory domain of scal-
lop myosin at 2Å resolution: implications for regulation. Structure. 4:21–32.

Mother cell-specific HO expression in budding yeast depends on the uncon-
ventional myosin Myo4p and other cytoplasmic proteins. Cell. 84:687–697.

cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of

Jones, E.W., and G.R. Fink. 1982. Regulation of amino acid and nucleotide bio-
synthesis in yeast. In The Molecular Biology of the Yeast Saccharomyces:
Metabolism and Gene Expression. Cold Spring Harbor Laboratory Press,

Kunkel, T.A., J.D. Roberts, and R.A. Zakour. 1987. Rapid and efficient site-
specific mutagenesis without phenotypic selection. Methods Enzymol. 154:
367–382.

conventional myosin, Myo2p, and the putative kinesin-related protein,
Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae.

Lippincott, J., and R. Li. 1998. Sequential assembly of myosin II, an IQGAP-
like protein, and filamentous actin to a ring structure involved in budding

acid sequences of the cardiac L-2A, L-2B and gizzard 17000-Mr light chains

Laboratory, Cold Spring Harbor Laboratory Press, NY. 466 pp.

spindle pole body of Schizosaccharomyces pombe and performs an essential

Nascimento, A.A.C., R.G. Amaral, J.C.S. Bizario, R.E. Larson, and E.M.
Esprafico. 1997. Subcellular localization of myosin-V in the B16 melanoma

Niedenthal, K.K., L. Riles, M. Johnston, and J.H. Hegemann. 1996. Green fluo-
rescent protein as a marker for gene expression and subcellular localization

Ohya, Y., and D. Botstein. 1994. Diverse essential functions revealed by com-

Provance, D.W., M. Wei, V. Ipe, and J.A. Mercer. 1996. Cultured melanocytes
from dilute mutant mice exhibit dendritic morphology and altered melano-

Rayment, I., W.R. Rypniewski, K. Schmidt-Base, R. Smith, D.R. Tomchick,
Three-dimensional structure of myosin subfragment-1: a molecular motor.
Science. 261:50–58.

Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: inte-

NY. 1650 pp.

Shorttle, D., P. Novick, and D. Botstein. 1984. Construction and genetic charac-
terization of temperature-sensitive mutant alleles of the yeast actin gene.

Sikorski, R.S., and P. Hieter. 1989. A system of shuttle vectors and yeast host
strains designed for efficient manipulation of DNA in Saccharomyces cerevi-

Uyeda, T.Q.P., P.D. Abramson, and J.A. Spudich. 1996. The neck region of the
myosin motor acts as a lever arm to generate movement. Proc. Natl. Acad.
Sci. USA. 93:4459–4464.

Function of myosin-V in filopodial extension of neuronal growth cones.

III, and E.D. Korn. 1997. The amino acid sequence of the light chain of

31:89–98.

Wise, J.A. 1991. Preparation and analysis of low molecular weight RNAs and

Xie, X., D.H. Harrison, I. Schlichting, R.M. Sweet, V.N. Kalabokis, A.G. Szent-

1997. On the role of myosin-II in cytokinesis division of Dictyostelium cells

dosage-dependent suppressor of a temperature-sensitive calmodulin mutant
encodes a protein related to the fork head family of DNA-binding proteins.