Intracellular Localization of Proteasomal Degradation of a Viral Antigen

Luis C. Antón,* U Irich Schubert,**† Igor Bacík,* Michael F. Princiotta,* Pamela A. Wearsch,* James Gibbs,* Patricia M. Day,* Claudio Realini,* Martin C. Rechsteiner,* Jack R. Bennink,* and Jonathan W. Yewdell*†

*Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892; †Heinrich-Pette Institute, University of Hamburg, Hamburg, Germany; ‡Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland 20892; and †Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112

Abstract. To better understand proteasomal degradation of nuclear proteins and viral antigens we studied mutated forms of influenza virus nucleoprotein (NP) that misfold and are rapidly degraded by proteasomes. In the presence of proteasome inhibitors, mutated NP (dNP) accumulates in highly insoluble ubiquitinated and nonubiquitinated species in nuclear substructures known as promyelocytic leukemia oncogenic domains (PODs) and the microtubule organizing center (MTOC). Immunofluorescence revealed that dNP recruits proteasomes and a selective assortment of molecular chaperones to both locales, and that a similar (though less dramatic) effect is induced by proteasome inhibitors in the absence of dNP expression. Biochemical evidence is consistent with the idea that dNP is delivered to PODs/MTOC in the absence of proteasome inhibitors. Restoring proteasome activity while blocking protein synthesis results in disappearance of dNP from PODs and the MTOC and the generation of a major histocompatibility complex class I–bound peptide derived from dNP but not NP. These findings demonstrate that PODs and the MTOC serve as sites of proteasomal degradation of misfolded dNP and probably cellular proteins as well, and imply that antigenic peptides are generated at one or both of these sites.

Key words: antigen presentation • molecular chaperone • nuclear proteins proteolysis • ubiquitin/immunology • proteasome

PROTEASOMES are complex multisubunit proteases abundant in the nucleus and cytosol that function in all eukaryotic cells to degrade damaged or unwanted proteins. The major means of tagging proteins for proteasomal destruction is covalent modification by multiple chains of ubiquitin (Ub) (Ciechanover, 1998). Incubation of cells with proteasome inhibitors results in the accumulation of polyubiquitinated proteins, and in most circumstances, cell death (Bogoy et al., 1997; Lee and Goldberg, 1998).

Abbreviations used in this paper: APL, acute PML; dNP, misfolded nucleoprotein; GFP, green fluorescent protein; LC, lactacystin; LCSM, laser confocal scanning microscope; MTOC, microtubule organizing center; NP, influenza virus nucleoprotein; NF pop, NP with SIINFEKL appended to the COOH terminus; OVA, ovalbumin; PBC, primary biliary cirrhosis; PML, promyelocytic leukemia; POD, PML oncogenic domain; RAR, retinoic acid receptor; rVV, recombinant vaccinia virus; Ub, ubiquitin; zLLL, cbz-LeuLeuLeu-nal.

Proteasomes participate in the generation of many of the peptides that are displayed on the cell surface in a complex with class I molecules of the major histocompatibility complex for surveillance by the immune system (York and Rock, 1996). Peptides are generated indiscriminately from host gene products and gene products of viruses and other intracellular pathogens (Pamer and Cresswell, 1998). Discrimination between self and nonself peptides is performed at the level of the antigen receptor expressed by CD8+ T lymphocytes. There is sufficient plasticity in the system to enable T cell recognition of some self antigens, which accounts for the generation of most defined T cell responses to tumors.

Although there has been rapid progress in understanding the function of the proteasome-Ub system in cellular metabolism, and more specifically, its role in generating antigenic peptides, many important questions remain, including the involvement of molecular chaperones in the process, the intracellular sites of ubiquitination and proteasomal degradation, and the nature of substrates that provide antigenic peptides. In the present communication we describe findings with a metabolically unstable form of
influenza virus nucleoprotein (NP) that provide some initial answers to these questions.

Materials and Methods

Cells

143B human osteosarcoma cells lacking thymidine kinase and Hela cells were obtained from the American Type Culture Collection and maintained in DMEM supplemented with 7.5% (vol/vol) fetal bovine serum in an air/CO₂ (91%/9%) atmosphere at 37°C. 1,929 cells expressing K⁺ from a transfected gene were maintained similarly.

Viruses

R recombinant vaccinia viruses (rVV) were constructed by standard methodology (Chakrabarti et al., 1985) using a modified form of pSC11 with multiple cloning sites to express inserted genes under the control of the p7.5 promoter active early and late in VV replication. rVV(ppep) was constructed by inserting an oligonucleotide encoding KKEEKNKLR-KKENKDKEEDRKEK at position 333 in NP. Green fluorescent protein (GFP) constructs were created by fusing Npdm or pdm encoding constructs with a C DNAC encoding EDFP (Clontech), a red-shifted version of GFP modified by two substitutions (Phcyt-Laeu, Ser65→Thr), and 190 synonymous coding alterations to match human codon usage. For cloning convenience, sequences encoding the spacer peptide ARDPVPAT were inserted between the COOH terminus of the Npdm constructs and initiating Met of GFP. Most VV infections were performed with media containing cytosine arabinoside at 40 μg/ml to limit expression to viral gene products expressed under the control of early promoters. This reduces the morphological alterations in cells induced by VV and also controls for the blockade in late VV gene expression induced by proteasome inhibitors (Antón et al., 1998).

Antibodies

A nitopeptide antiserum was prepared by immunizing rabbits with synthetic peptides conjugated to KLH. Peptides corresponded to PR8 NP sequences 2-12 +Cys and Cys+488-498; the extraneous Cys being used for conjugation and coupling to beads. The NH₂-terminal-specific serum was affinity purified against the synthetic peptide disulfide coupled to SulfoLink beads (Pierce Chemical Co.) and absorbed multiple times against uninfected fixed and permeabilized cells to remove antibodies specific for cellular proteins. The COOH-terminal antisera could be used without further purification. Monoclonal antibodies specific for the proteasome (clones MCPP20 and MCPP21) were generously provided by K. B. Hendli (University of Copenhagen, Copenhagen, Denmark). Human sera from primary biliary cirrhosis (PBC) patients containing anti-promyelocytic leukemia (PML) oncogenic domain (POD) antibodies were generously provided by D.B. Bloch (Harvard Medical School, Charlestown, MA.) and J. Liang (NIDDK, Bethesda, MD.). The colocalization of human antibody staining of PODs in TK⁺ cells with the anti-PML mAb was confirmed. The commercial sources of the following antibodies are as listed: polyclonal antibodies to mouse, human, rabbit, or rat Ig (Jackson ImmunoResearch). Coverslips were mounted on glass slides with Fluoromount-G (Southern Biotechnology) containing 15-μm-diameter beads to prevent cell compression, and images collected with a Bio-Rad MRC1024 laser scanning confocal Zeiss Axioplan microscope, using a 63× planapochromat oil immersion objective. Controls established the specificity of fluorochrome-conjugated antibodies for their respective IgGs, and that signals in green, red, and far red channels were derived from the respective fluor. Digital images were assembled using Adobe Photoshop software and printed with a Fujix Pictrography digital printer (Fuji). For cytofluorography, cells were incubated with mAb for 30 min on ice, washed, and incubated with rabbit anti-mouse Ig conjugated to fluorescein (Dako). Cells were suspended in PBS containing ethidium homodimer (Molecular Probes), and analyzed using a FACScalibur™ cytofluorograph (Beckton Dickinson). Live cells were gated based on scattering properties and low ethidium homodimer staining.

Biochemical Procedures

Western Blotting

Confluent 143B cells grown in 6-well plates were infected with rVV and incubated for 150 min and then for 360 min in the presence or absence of 20 μM Cbz-Leu-ε-leucinal (zLLE). Plates were transferred to an ice bath, and subjected to a sequential extraction to prepare the nuclear matrix, according to the protocol of Staufenbierl and Jeppe (1984), with the exception that all buffers contained Complete protease inhibitor cocktail (EDTA-free, Boehringer Mannheim) and 10 μM zLLE. Equivalent amounts of samples from each step of the procedure were acetone precipitated, and precipitates resuspended in boiling SDS-PAGE sample buffer (Laemmli, 1970). Samples were also prepared from rVV-infected Hela cells by suspending cells in ice-cold buffer containing 50 mM Tris-hydrochloride (pH 8.0), 5 mM EDTA, 100 mM NaCl, 0.5% (wt/vol) CHAPS ([3-[3-cholamidopropyl]dimethyl-ammonio]-1-propanesulfonate), 0.2% (wt/vol) deoxycholate, and then mixed with an equal volume of boiling SDS-PAGE sample buffer. After electrophoresis, proteins were transferred to Immobilon membranes (Millipore) in transfer buffer (Towbin et al., 1979) lacking SDS. Membranes were incubated overnight with TBS-Casemine (Bio-Rad) and then with rabbit anti-NP antibodies, followed by peroxidase-labeled anti-rabbit IgG (Boehringer Mannheim). Blots were developed using the ECL system (Pierce Chemical Co.), and luminescence recorded by Biomax MR film (Kodak). Images were digitized by a flat bed scanner, assembled using Adobe Photoshop software, and printed with a Fujix Pictrography digital printer.

[35S]Met Labeling

Cells infected 3 h previously were incubated in Met-free DMEM with 100 μM lactacystin (LC) for 40 min, and then radiolabeled by 5 min of incubation with [35S]Met. After washing, cells were chased at 37°C for up to 120 min in M et containing DMEM. At appropriate times, 2 × 10⁶ cells were removed to ice. Cells were incubated with 1% (vol/vol) Triton X-100 (TX-100) containing buffer and centrifuged at 15,000 g for 10 min. Supernatants and pellets were suspended in boiling SDS-PAGE sample buffer boiled for 5 min, and analyzed by SDS-PAGE. Images of autoradiographs of the dried gels were digitized using a flat bed scanner, assembled using Adobe Photoshop software and printed with a Fujix Pictrography digital printer. The activity of the total cell lysate was quantitated using a PhosphorImager (Molecular Devices) and the amount of protein recovered from each sample was used as an internal standard for normalization of the amount of protein recovered from each sample.

Results

Modification of NP Results in Enhanced Generation of Antigenic Peptides

The NP from the PR8 influenza virus is a 498-residue protein that is transported to the nucleus via multiple nuclear localization sequences (Wang et al., 1997). We genetically engineered NP to contain a 29-residue sequence nearly identical to that from JAK1 kinase proposed to enhance the generation of antigenic peptides by targeting the protein to proteasomes (Raelin et al., 1994). In addition, we appended to the COOH terminus a peptide corresponding to residues 257–264 from chicken ovalbumin (OVA). This
peptide binds tightly to the H-2 Kb MHC class I molecule, and Kb-Ova\textsubscript{257-264} complexes can be easily quantitated cytofluorographically using a mAb (25-D1.16) specific for this complex (Porgador et al., 1997). As a control, the peptide was also expressed at the COOH terminus of wild-type NP (this is termed NP\textsubscript{pep} and the other construct dNP\textsubscript{pep}).

After 6 h of infection of L-Kb cells with rVV's expressing NP\textsubscript{pep} or dNP\textsubscript{pep}, approximately threefold more Kb-Ova\textsubscript{257-264} complexes were present on the surface of VV-dNP\textsubscript{pep}-infected cells as determined cytofluorographically after indirect immunofluorescence (Fig. 1, top histogram). Incubation of cells with the highly specific irreversible proteasome inhibitor LC resulted in the nearly complete inhibition of complex expression from the chimeric proteins and from OVA, the parent protein (Fig. 1, bottom histogram). There was only a slight effect on cells infected with a rVV expressing Ova\textsubscript{257-264} as a cytosolic minigene product (a single Met is appended to the NH\textsubscript{2} terminus to enable efficient translation), consistent with the interpretation that LC acts by preventing proteasome liberation of Ova\textsubscript{257-264} (or a proteolytic intermediate) from NP\textsubscript{pep}, dNP\textsubscript{pep}, and OVA, and not by interfering with VV gene expression or delivery and loading of peptides onto Kb molecules.

Metabolic Stability of dNP\textsubscript{pep} and NP\textsubscript{pep}

Increased protein degradation is associated with enhanced generation of antigenic peptides (Tevethia et al., 1983; Townsend et al., 1988). To investigate the more efficient production of Ova\textsubscript{257-264} from dNP\textsubscript{pep}, we examined the metabolic stability of dNP\textsubscript{pep} and NP\textsubscript{pep} in the presence and absence of LC. rVV-infected cells were labeled for 5 min with \[^{35}\text{S}]\text{Met}\) and chased for up to 2 h at 37°C. Proteins present in TX100-soluble and insoluble material were separated by SDS-PAGE and the amounts of NP\textsubscript{pep} recovered remained nearly constant throughout the chase period, with the solubility decreasing...
in a time-dependent manner to a plateau value. This corresponds with the transport of NP pep into the nucleus where it is partially TX100 insoluble. As expected, the process was unaffected by LC. By contrast, in the absence of LC, recovery of both soluble and insoluble dNP pep decreased with time. Importantly, LC selectively increased the recovery of insoluble dNP pep, without affecting soluble dNP pep. We interpret this data to indicate that, first, insertion of the JAK1 sequence into dNP pep greatly enhances its degradation by proteasomes, and, second, that the form digested by proteasomes is insoluble in TX100. These findings predict that incubation of cells with proteasome inhibitors should result in the accumulation of dNP pep in cells.

Intracellular Localization of dNP pep

This prediction was first confirmed by immunofluorescence of fixed and permeabilized rVV-infected cells using rabbit antibodies raised to the NH2 terminus of unmodified NP (anti-NH2). In the absence of proteasome inhibitors, staining of NP pep observed using a laser scanning confocal microscope (LCSM) was only slightly above background autofluorescence levels (data not shown). In the presence of either LC (data not shown) or the reversible proteasome inhibitor zLLL, dNP pep was detected in three locations: weak staining of the nuclear body (excluding the nucleolus), and strong staining of small nuclear sub-structures (Fig. 3, first row) and, in some cells, a cytoplasmic structure that was often juxtanuclear (Fig. 3, third and fourth rows, arrows). This differs markedly from the staining pattern of NP pep (Fig. 3, second row), which like wild-type NP (not shown) strongly stains the nuclear body in the presence or absence (not shown) of proteasome inhibitors.

We colocalized the focal staining of dNP pep with antibodies specific for defined cellular structures. The nuclear structures colocalized with those stained by a mouse mAb (Fig. 3) or human autoimmune antibodies (see Fig. 5) specific for proteins present in PODs. PODs are enigmatic 0.3–1.0-μm-diameter macromolecular complexes comprised of >20 different proteins that are attached to the nuclear matrix (Sternsdorf et al., 1997). The cytoplasmic structure surrounded the staining obtained with a mAb specific for γ-tubulin, which identifies the pair of centrioles present at the microtubule organizing center (MTOC), the site where microtubules originate.

The accumulation of dNP pep in PODs and the MTOC is not simply the result of prolonged overexpression. If cells were infected with rVV for 2–4 h in the absence of proteasome inhibitors, dNP pep was detected by anti-NH2 antibody staining in PODs and the MTOC as early as 30 min after adding zLLL in a small percentage of cells (data not shown), and by 90 min, in a high percentage of cells (see Fig. 8). In both circumstances, this represents the rapid accumulation of newly synthesized dNP pep, since it did not occur if protein synthesis inhibitors were added with zLLL.

dNP pep Present in PODs and MTOC Is Resistant to Detergent and High Salt Extraction and Present in High M, Ubiquitinated Forms

PODs can be partially purified by progressive extraction designed to isolate the nuclear matrix (Staufenbiel and Deppert, 1984). This was performed biochemically and cytoimmunochemically. rVV-infected 143B cells incubated with zLLL were subjected sequentially to NP-40, DNase I, high salt, DNase I/RNAase, and then fixed with paraformaldehyde and examined using the LCSM after staining with anti-NH2 and anti-POD antibodies. Under these conditions dNP pep was easily detected in PODs and the MTOC (Fig. 4 C, arrow), whereas the low level staining of remaining NP pep was in a pattern not clearly related to PODs.

Material recovered in the supernatant at each step of the extraction procedure (and a final step with Empigen BB to extract nuclear matrix-associated proteins, including those in PODs) was characterized by Western blotting using the anti-NH2 antibodies. A most all of the NP pep expressed in the presence (Fig. 4 A) or absence (data not shown) of zLLL was recovered in the first three steps of the fractionation process. The major species recovered migrated with the expected mobility (arrowhead). In addition, faster migrating species were present that were probably generated by proteolysis during the extraction procedure.

Figure 3. dNP pep rescued by zLLL localizes in PODs and the MTOC. rVV-infected 143B cells were incubated for 3 h before the addition of 20 μM zLLL. After 6.5 h, cells were fixed, permeabilized, stained with the indicated antibodies, and imaged with the LCSM. The second row displays cells expressing NP pep, in the first and third, cells expressing dNP pep. In the bottom row, dNP pep expressing cells were first extracted with 1% NP-40 and then fixed with methanol/aceton (80:20) for 15 min at −20°C to enable staining with the γ-tubulin-specific mAb. A rows point to the MTOC. Gray-scale images on the sides are merged in the middle with the color indicated by the text describing the antibody specificity. Bar, 10 μM.
In the absence of zLLL, the small amounts of dNP_{pep} that were present behaved similarly to NP_{pep}, being recovered in the first and third steps of the fractionation (Fig. 4A). In the presence of zLLL, similar amounts of dNP_{pep} were recovered in these fractions, but now a large amount of dNP_{pep} was recovered from the final Empigen BB extraction step. Notably, in addition to dNP_{pep} that migrated with the expected mobility (arrowhead), several lower mobility species were recovered at this stage, as well as the higher mobility species that probably represent proteolytic fragments.

The nature of the lower mobility forms of dNP_{pep} was examined by Western blotting of whole cell lysates of zLLL-treated HeLa cells infected with rVV's expressing dNP_{pep}, NP_{pep}, or a control protein (OVA). Using anti-NH$_2$ antibodies, the ladder-like nature of the higher M, forms of dNP_{pep} could be easily appreciated (Fig. 4B). By contrast, only a few higher M, forms were specifically detected (and at much lower levels) in NP_{pep}-expressing cells (compare to OVA-expressing cells). Calculation of the M, of the lower mobility bands indicated in red: (C) 143B cells expressing dNP_{pep} (left) or NP_{pep} (right) were extracted sequentially by NP-40, DNase I digestion, 2 M NaCl, DNase I/RNAase digestion, and then paraformaldehyde fixed, stained with anti-PML (top) or anti-NH$_2$ antibodies, and analyzed using the LCSM. Gray-scale images on the top and bottom are merged in the middle with the color indicated by the text describing the antibody specificity. The arrow points to the MTOC. (D) 143B cells infected with a control virus (C), NP_{pep} (N), or dNP_{pep} (D) were labeled for 5 min with $[^{35}$S]Met and chased for 40 min. Cells were extracted as above, and acetone precipitates were analyzed by SDS-PAGE and the radiolabeled proteins visualized using a PhosphorImager. Shown are the regions of the gel containing the proteins of interest along with control cellular and VV proteins. The intensity of total and NP-40 lysates was reduced fourfold before the 16-8 bit digital conversion to enable visualization of individual protein bands in all of the fractions. Arrows indicate NP_{pep} and dNP_{pep} bands. Based on PhosphorImager quantification (and taking into account sample recovery), 2.3-fold more NP_{pep} is present in total lysates than dNP_{pep}, whereas 6.8-fold more dNP_{pep} is recovered in the Empigen BB step.

Figure 4. Fractionation and biochemical characterization of dNP_{pep}. (A) Extracts from rVV-infected 143B cells incubated with or without 20 μM zLLL were analyzed by Western blotting using anti-NH$_2$ antibodies. Note that the panel on the left is from a different gel than that on the right, and that the corresponding bands are more compressed. (B) HeLa cells infected with the rVV indicated for 90 min were incubated for an additional 3.5 h in the presence of 40 μM zLLL. Total cell extracts were analyzed by Western blotting using antibodies against the NH$_2$- or COOH-terminal peptides. Calculated M, of the lower mobility bands indicated in red: (C) 143B cells expressing dNP_{pep} (left) or NP_{pep} (right) were extracted sequentially by NP-40, DNase I digestion, 2 M NaCl, DNase I/RNAase digestion, and then paraformaldehyde fixed, stained with anti-PML (top) or anti-NH$_2$ antibodies, and analyzed using the LCSM. Gray-scale images on the top and bottom are merged in the middle with the color indicated by the text describing the antibody specificity. The arrow points to the MTOC. (D) 143B cells infected with a control virus (C), NP_{pep} (N), or dNP_{pep} (D) were labeled for 5 min with $[^{35}$S]Met and chased for 40 min. Cells were extracted as above, and acetone precipitates were analyzed by SDS-PAGE and the radiolabeled proteins visualized using a PhosphorImager. Shown are the regions of the gel containing the proteins of interest along with control cellular and VV proteins. The intensity of total and NP-40 lysates was reduced fourfold before the 16-8 bit digital conversion to enable visualization of individual protein bands in all of the fractions. Arrows indicate NP_{pep} and dNP_{pep} bands. Based on PhosphorImager quantification (and taking into account sample recovery), 2.3-fold more NP_{pep} is present in total lysates than dNP_{pep}, whereas 6.8-fold more dNP_{pep} is recovered in the Empigen BB step.
Mr forms may be due to either cleavage of a short segment of the COOH terminus, or to steric effects of ubiquitination on antibody access to the COOH terminus. Based on these findings we conclude first that the bulk of dNP pep that is normally degraded by proteasomes accumulates in TX 100/NP-40-insoluble forms concentrated in PODs and the MTOC when proteasomes are inhibited, and second, that a fraction of this material is present in modified high Mr forms resulting at least in part from ubiquitination. Due to uncertainties associated with efficiencies of recovering and detecting antigens in Western blots, the ratio of ubiquitinated to nonubiquitinated dNP pep cannot be determined by this method. It is worth noting, however, that at least some of the loss in the total amount of [35S]Met labeled dNP pep in LC-treated cells recovered over the 2-h chase period (Fig. 2 b) is due to ubiquitination with its attendant alteration in electrophoretic mobility.

Transport of dNP pep to PODs/MTOC in the Absence of Proteasome Inhibitors

The failure to detect dNP pep in PODs/MTOC in the absence of proteasome inhibitors raises two possibilities: the delivery of dNP pep to PODs/MTOC occurs only when proteasomes are blocked; and dNP pep is delivered to PODs/MTOC in the absence of proteasome inhibitors but is degraded too rapidly for cytochemical detection. To address this issue, we labeled rVV-infected cells expressing NP pep or dNP pep with [35S]Met for 5 min, chased for 40 min, sequentially fractionated cells as above, and analyzed the fractions by SD PAGE, again taking advantage of the shut down of host proteins to visualize NP and dNP pep in an antibody-independent manner (Fig. 4 D). Consistent with the prior results, more NP pep (~2.3-fold) is present in total cell lysates than dNP pep, and the bulk of NP pep is recovered in the first three fractionation steps. By contrast, less dNP pep is recovered from the DNase and high salt extracts, whereas its recovery in the Empigen BB extraction step is enhanced approximately sevenfold relative to NP pep. This finding is consistent with the idea that dNP pep is delivered to PODs in the absence of proteasome inhibitors.

Effects of zLLL and dNP pep Expression on the Distribution of Cellular Constituents of the Degradation Machinery

We next examined the effects of zLLL and dNP pep expression on the distribution of cellular proteins in rVV-infected cells expressing dNP pep or dNP pep with GFP added to the COOH terminus, as well as cells transiently transfected with plasmids encoding the GFP-fusion proteins. dNP pep was detected using either antibody staining of fixed and permeabilized cells or by GFP autofluorescence in fixed or live cells. Similar results were obtained from each of these vector/detection systems, demonstrating that the findings are not limited to VV-infected cells, and that the intracellular localization of dNP pep by antibodies is not biased by fixation/permeabilization/penetration artifacts. In the interest of brevity, results will be shown only for rVV-expressed dNP pepGFP. PODs were detected using sera from patients with PBC which contain Abs to PML and other POD proteins, poly Ub with a mAb (clone FK2) nonreactive with free Ub (Fujimuro et al., 1994), proteasomes using a mixture of two mAbs (MCP20 and 21) reactive with native proteasome subunits (Hendil et al., 1995), and molecular chaperones with various monoclonal and polyclonal antibodies.

In both live and fixed dNP pepGFP-expressing cells treated with zLLL for 4 h, fluorescent GFP was highly concentrated in PODs and the MTOC (Fig. 5, arrows...
point to the MTOC. The autofluorescence of dNP pepGFP indicates that the GFP domain is properly conformed, demonstrating that dNP pepGFP need not be completely denatured to localize to these structures. The accumulation of dNP pepGFP in these sites was accompanied by recruitment of poly Ub, proteasomes, and HSC70 from their normal diffuse distribution in the nucleus and cytoplasm, often to the extent that staining was reduced elsewhere in the cell (compare to Fig. 6; the distribution of proteasomes, not shown, is similar to poly Ub). While dNP pep and poly Ub filled the MTOC, in many cells proteasomes and HSC70 formed a ring around MTOC. The redistribution of cellular proteins is a specific effect of inhibiting proteasomes, as similar results were obtained with LC (data not shown). A survey of mAbs specific for other molecular chaperones (data not shown) revealed HSP27 recruited PODs similarly to HSC70 and somewhat less strongly to the MTOC, and HSP70 was recruited weakly to both sites. The distribution of a number of other cytosolic chaperones (HSP110, HSP90, HSP60, HSP56, HSP47, and HSP40) was not noticeably affected by dNP pep expression, and none were concentrated in either PODs or the MTOC.

In parallel experiments we examined the effects of zLLL on the distribution of the same cellular proteins in uninfected cells (Fig. 6), or VV-infected cells expressing NP pep, NP pepGFP, or GFP (data not shown). Infection with these rVV s had no major effects on the distribution of cellular proteins in untreated or zLLL-treated cells. In untreated uninfected cells, low levels of poly Ub were concentrated in a few PODs in some cells, but neither HSC70 nor proteasomes (data not shown) were concentrated in PODs. None of these cellular proteins were concentrated in the MTOC. After 6 h of zLLL treatment, poly Ub and HSC70 were clearly recruited to PODs and the MTOC. We did not detect proteasome recruitment to either the MTOC or PODs after zLLL treatment (not shown).

These data demonstrate that exposure of cells to proteasome inhibitors results in the accumulation of HSC70, HSP27, and poly Ub at PODs and the MTOC. Expression of dNP pep in the presence of proteasome inhibitors accelerates and enhances these effects, and also results in recruitment of proteasomes to these structures.

Subcellular Localization of Altered Conformational States of dNP pep

The conformational status of various forms of NP in cells was examined using other NP-specific antibodies. IC5-1B7 and H B65 are NP-specific mAbs that react with native NP and do not react with SDS-denatured NP in Western blots or when denatured virus is adsorbed to polyvinyl (Yewdell et al., 1981; Yewdell, J., unpublished results). In cells expressing NP or NP pep, IC5-1B7 and H B65 colocalized nearly perfectly with anti-NH2 antibodies, and the intensities of staining with the mAbs and the polyclonal serum were closely parallel, indicating that NP detected by the anti-NH2 antibodies is largely in a folded conformation by this criterion (data not shown). The small quantities of dNP pep present in cells not treated with proteasome inhibitors stained equally with the mAbs and the anti-NH2 antisera, indicating that conformed molecules are preferentially spared from degradation (data not shown).

Figure 6. Effect of proteasome inhibitors on the intracellular localization of components of the Ub-proteasome pathway in uninfected cells. 143B cells were incubated for 6 h in the presence of 21 µM zLLL, fixed, permeabilized, and stained for cellular components using the antibodies indicated. Gray-scale images in each column are merged on the bottom with the color indicated by the text describing the antibody specificity. Arrows point to the MTOC. Bar, 10 µm.
In dNP pep-expressing cells incubated with proteasome inhibitors, the mAbs failed to stain PODs, while intensely staining the MTOC (Fig. 3). This indicates that dNP pep rescued by proteasome inhibitors exists in multiple conformations, and that most or all dNP pep in PODs is at least partially unfolded.

In additional experiments (data not shown), we studied the intracellular distribution of NP constructs using the anti-COOH antiserum for immunofluorescence. When tested against VV-NP- or VV-NP pep-infected cells, staining with this serum closely paralleled staining with HB65 or 1C5-1B7 as detected by double immunofluorescence. When used to stain dNP pep rescued by proteasome inhibitors, it strongly stained both the MTOC and PODs. Since this antiserum does not bind to ubiquitinated forms of dNP pep (Fig. 4 B), this extends the biochemical data to demonstrate that nonubiquitinated dNP pep is present in PODs and the MTOC.

Extension of Findings to Other Forms of NP

We examined the behavior of two other forms of rapidly degraded PR8 NP, one consisting of the first 168 residues of the protein (NP1-168), the other full length NP with amino acid substitutions at residues 148 (Y→H) and 282 (G→R) (NP DM). Both colocalized to PODs and the MTOC in a proteasome inhibitor-dependent manner as demonstrated using anti-NH2 Abs, and recruited the same array of cellular proteins as dNP pep (data not shown). In contrast to dNP pep, NP DM was detected in PODs by the HB65 mAb, demonstrating that a more conformed form of NP can localize to PODs.

It was even possible to induce wild-type NP to localize to PODs and the MTOC by exposing VV-NP-infected to cells to canavanine, an amino acid analogue of Arg that induces protein misfolding (Fig. 7). NP in PODs and the MTOC was detected by anti-COOH but not anti-NH2 Abs, possibly due to the replacement of Arg in the NH2-terminal peptide with canavanine (the COOH peptide used for Ab generation does not contain Arg). In addition, large amounts of NP were now detected in the cytosol, an effect possibly related to canavanine modification of the nuclear localization signal. NP in PODs and MTOC recruited poly Ub, proteasomes, and HSC70. Notably this occurred in the absence of proteasome inhibitors, suggesting that the degradation machinery (which could also be affected by canavanine) was compromised under these conditions, either as a result of having to cope with vast quantities of proteins misfolded by incorporation of canavanine, or canavanine-induced modifications in the machinery.

Together, these findings indicate that, first, that the effects with dNP pep are not due to unique features of the protein conferred by the JAK1 sequence but are a general feature of misfolded PR8 NP, and, second, that similar effects can occur in the absence of proteasome inhibitors.

Proteasome-dependent In Situ Degradation of dNP pep

The accumulation of dNP pep in PODs and the MTOC in proteasome-inactivated cells suggested that these structures serve as sites for proteasome-mediated destruction of dNP pep. To test this idea, TK- cells were infected with VV-dNP pep GFP for 4 h to maximize the rate of dNP pep translation, incubated with zLLL for 90 min to accumulate a small but detectable amount of dNP pep in a high percent-
age of cells, and then for 4 h in the absence of zLLL but in the presence of protein synthesis inhibitors to shut off additional dNP pep synthesis (Fig. 8). After 90 min in zLLL, dNP pep GFP was detected in PODs and the MTOC in most cells. Over the 4-h reversal period, dNP pep GFP nearly completely disappeared (similar results were obtained in other experiments in which dNP pep was detected using anti-NH2 Abs; data not shown). This process was dependent on active proteasomes, since dNP pep GFP persisted in similar quantities in PODs and the MTOC if cells were incubated with zLLL and the protein synthesis inhibitors.

Based on these findings, we conclude that PODs and the MTOC serve as sources of substrates for proteasomes, and given the recruitment of proteasomes to these sites, are likely to represent sites of proteasome digestion.

We next related these findings to antigen processing. Kb was expressed in TK2 cells by coinfection with a rVV expressing Kb and mouse β2-microglobulin, and the expression of cell surface Kb–Ova257-264 complexes quantitated cytofluorographically after indirect staining with the 25D1.16 mAb (Fig. 9). Levels of background staining were controlled for by infection with VV-NP. As described above (Fig. 1), zLLL had little effect on the generation of complexes by cells expressing the cytosolic minigene product, OvaM257-264. Removal of zLLL in the presence of protein synthesis inhibitors was accompanied by the generation of a signal in dNP pep-expressing cells above the staining of NP-expressing cells (EC). Although the shift in the curve is relatively small, it represents 31% of the signal obtained in the continuous absence of inhibitors (no inhibitor), and in absolute terms, roughly 1,000 Kb–Ova257-264 complexes, which is more than sufficient for triggering most T cells. The effectiveness of the protein synthesis inhibitors is clearly demonstrated by the background staining of cells treated with inhibitors from the initiation of the infection (EC start), even if cells were infected with the rVV expressing the cytosolic minigene product. In contrast to results with dNP pep, Kb–Ova257-264 complexes were not generated from NP pep upon removal of zLLL. These findings indicate that removal of zLLL from cells allows proteasomes to generate peptides from the dNP pep that accumulates in the cells but not from NP pep, and is consistent with the idea that peptides (or their precursors) are generated at PODs, the MTOC, or at both of these locations.
Discussion

We studied the fate of dNP peptide, a model protein and class I–restricted antigen with a nuclear localization sequence that is ubiquitinated and degraded by proteasomes. Blocking proteasomal digestion results in the accumulation of dNP peptide in a highly insoluble form, a portion of which is ubiquitinated. Immunofluorescence with a peptide-specific antiserum that does not detectably react with ubiquitinated substrate reveals that nonubiquitinated dNP peptide is present at both the MTOC and PODs. The substrate-dependent enhanced recruitment of poly Ub to these structures clearly indicates that Ub-conjugated dNP peptide is also present. This, together with the substrate-dependent recruitment of HSC70, which is required for the in vitro polyubiquitination of some proteins (Bercovich et al., 1997), is consistent with the following model: denatured dNP peptide is chaperoned by HSC70 (and/or HSP27) to PODs and the MTOC, where it becomes an insoluble substrate for polyubiquitination and is degraded in situ by proteasomes. Several lines of evidence clearly indicate that complete denaturation of NP is not necessary for its delivery to PODs and the MTOC.

The idea that polyubiquitination of misfolded NP occurs at these sites is favored by several considerations. First, given the low solubility of ubiquitinated dNP peptide, its destruction at its site of ubiquitination would bypass the need for special mechanisms to transport it to another cellular site for disposal. Second, the rapid diffusion of GFP-tagged proteasomes visualized in viable cells (Reits et al., 1997) is fully consistent with a “search and destroy” capability for proteasomes. Third, and most directly, we have found that prolonged treatment with proteasome inhibitors (≥2 h) reduces the ability of cells to polyubiquitinate proteins (our unpublished results), presumably due to a decrease in the free Ub pool (Mimnaugh et al., 1997). Limiting levels of free Ub would account, first, for the failure of cells to completely ubiquitinate dNP peptide at PODs and the MTOC, and, second, for the plateau observed in the level of unmodified dNP peptide recovered from LC-treated cells after pulse radiolabeling (Fig. 2 b).

We believe that a subset of cellular proteins behaves similarly to dNP peptide, since polyubiquitin and HSC70 are recruited to PODs and the MTOC of uninfected cells treated with proteasome inhibitors. Clearly, however, the effect is much less dramatic. This is not surprising given that in VV-infected cells infected for 2 h onwards, dNP peptide represents ~5-10% of all newly synthesized protein, and that most of it denatures rapidly after synthesis. This quantitative difference probably accounts for the failure of proteasome inhibitors to recruit proteasomes to PODs and the MTOC in cells not expressing dNP peptide.

There is a considerable body of work relevant to these findings. Wojcik et al. (1996) reported that treating cells with proteasome inhibitors results in the accumulation of proteins (including proteasomes and Ub) at the MTOC: sufficient in fact to enable preferential staining of the MTOC in fixed cells with the protein stain amido black. Terming these structures “proteolysis centers,” they proposed that normal degradation of proteins occurs in this location. These findings were extended recently by Johnstone et al. (1998), who demonstrated the presence of ubiquitinated proteasome substrates (misfolded forms of integral membrane proteins exported from the ER) at the same location (termed “aggresomes” by these authors) in the absence of proteasome inhibitors.

We extend these findings by demonstrating that: proteins with a nuclear localization sequence can also be degraded in proteolysis centers/aggresomes; proteins destined for destruction in the MTOC can retain at least portions of their native structure as indicated by binding to conformation-specific antibodies, or in the case of GFP fusion proteins, maintenance of autofluorescence; specific molecular chaperones are involved in the process; polyubiquitin may be added to substrates at this site; and substrates present in the MTOC are degraded by proteasomes.

The last four points apply also to PODs, providing the first conclusive evidence that these structures serve as a site for proteasomal degradation of ubiquitinated proteins, which as we argue above, is probably secondary to its serving as a site ubiquitination of denatured proteins. PODs have been implicated in a number of cellular processes, including tumorigenicity, apoptosis, and viral replication (Stensdorff et al., 1997). Herpesviruses, adenoviruses, and papillomavirus all encode proteins that localize to PODs, in some cases, disrupting the PODs. In addition to PML (the “P” in PODs), other examples of the 20 known inhabitants of PODs include Sp100, HA USP, and SUMO-1.
(also known as PIC1). Significantly, both SUMO-1 and particularly HAUSP are related to the Ub-proteasome pathway. SUMO-1 is an Ub homologue that covalently modifies both PML and Sp100. Unlike Ub however, SUMO-1 modification appears to mainly affect the localization of its substrates and not their degradation, as both PML and Sp100 are localized to PODs only in their modified forms which are metabolically stable (as are other SUMO-1-modified proteins) (Saitoh et al., 1997). When used as an alternative for Ub, SUMO-1 is even known to prevent proteasomal degradation of proteins (Desterro et al., 1998). HAUSP is a Ub-dependent hydrolase, that removes Ub, but not SUMO-1 from substrates (Everett et al., 1998), and its presence in PODs is consistent with the idea that PODs serve as a center for protein ubiquitination and deubiquitination.

A chromosomal translocation characteristic for acute PML (APL) results in the creation of a fusion protein comprised of PML and the retinoic acid receptor α (RARα). The PML-RARα fusion protein acts as a dominant negative mutant, disrupting the integrity of PODs. Exposure of APL cells to retinoic acid returns the cells to a nontransformed phenotype concomitantly with the reformation of PODs and the degradation of the fusion protein (Daniel et al., 1993; Dyck et al., 1994; Weis et al., 1994). Alternatively, As2O3 treatment of normal or APL cells results in the recruitment of both PML and PML-RARα to PODs as well as their degradation (Zhu et al., 1997). The retinoic acid–induced degradation of PML-RARα is blocked by LC, implicating proteasomes in the process (Yoshida et al., 1996). Our findings are consistent with the idea that these proteins are degraded in PODs.

Everett et al. (1998) have shown that herpes simplex virus–induced destruction of PODs is mediated by the viral protein Vmw110 and is blocked by proteasome inhibitors. Vmw110 induces the proteasome-mediated destruction of PML and nuclear protein kinase. Vmw110 binds to HAUSP, but this is not required for its localization to PODs, or POD disruption of destruction of the kinase (Parkinson et al., 1999). These findings again support our conclusion that PODs serve as a general site for proteasome degradation, but Vmw110 probably induces proteasome degradation in multiple cellular sites, since Vmw110 mutants that do not localize to PODs can induce kinase degradation (Everett et al., 1999).

The involvement of PODs in the degradation of misfolded proteins also helps explain findings regarding mutant alleles of ataxin 1 that encode multiple copies of a polyglutamine domain present in the normal protein. These alleles are associated with a variety of inherited diseases of the nervous system. Ataxin 1 is normally present in small nuclear dots distinct from PODs. Mutant forms of ataxin 1 expressed in the absence of proteasome inhibitors are present in POD-like structures that contain PML and recruit Ub, proteasomes, HSP70, and HSP40 (Skinner et al., 1997; Cummings et al., 1998). It is uncertain to what extent ataxin versus other polyglutamine-containing proteins recruited into ataxin-initiated structures accounts for the recruitment of Ub, proteasomes, and chaperones (Perez et al., 1998). Our findings suggest that one (or more) of these misfolded proteins is recruited to PODs in association with HSP40 and HSP70, where it is polyubiquitinated but for some reason cannot be degraded by proteasomes, similar to what we describe for NP synthesized in the presence of canavanine.

Finally, we have linked the destruction of dNP_p in PODs and the MTOC to the generation of an antigenic peptide present in the protein. Given that all protein synthesis occurs in the cytosol, and that nuclear and ER proteins are commonly transported to the cytosol for degradation (Ciechanover, 1998), the MTOC is probably a more general site of proteasome-mediated peptide generation, whereas peptide generation at PODs is expected to be limited largely to the subset of proteins located in the nucleus. It should be noted that the inner portion of the nuclear membrane forms part of the ER, and that peptides generated in the nucleus would not necessarily need to be delivered to the cytosol to access TAP (the MHC-encoded transporter that delivers class I ligands to the ER).

Due to the low efficiency of antigen processing, we cannot be certain that peptides are generated from dNP_p accumulated at PODs/MTOC and not from lesser amounts of antigen present elsewhere in the cell. Given the function of the MTOC as proteolytic centers/aggresomes, however, it would be surprising if this were not a common site of peptide generation. Regarding PODs, there are several published findings that would support a role in antigen processing, perhaps even a specialized role in regulating the process. First, the expression of PML and other POD constituent proteins is enhanced by exposure of cells to interferons, which increase the expression of genes encoding class I molecules and the other dedicated components of the class I–processing pathway (Sternsdorf et al., 1997). Second, PML itself has been directly implicated in the regulation of antigen processing, as modifications in PML that disrupt PODs result in decreased transcription of antigen-processing genes (Zheng et al., 1998). Together with our findings, these observations suggest the following hypothesis: a signal emanating from ubiquitination/proteolysis occurring at PODs is involved in a positive feedback loop that regulates antigen processing gene transcription.

We are grateful to Drs. Bloch, Hendil, and Liang for their generous gifts of antibodies. Bethany Buschling provided outstanding technical assistance.

References

Antón et al. Viral Antigen Degradation

123

