Toxoplasma gondii myosins B/C: one gene, two tails, two localizations, and a role in parasite division

Frédéric Delbac, Astrid Sänger, Eva M. Neuhaus, Rolf Stratmann, James W. Ajioka, Catherine Toursel, Angelika Herm-Götz, Stanislas Tomavo, Thierry Soldati, and Dominique Soldati

1 Zentrum für Molekulare Biologie, Universität Heidelberg, D-69120 Heidelberg, Germany
2 Laboratoire de Biologie des Protistes, Centre National de la Recherche Scientifique (CNRS), UMR 6023, Université Blaise Pascal, 63177 Aubière, France
3 Department of Molecular Cell Research, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
4 Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
5 UMR CNRS 8576 Université des Sciences et Technologies de Lille, France

Introduction

The actin cytoskeleton plays a fundamental role in host cell invasion by apicomplexan parasites (Dobrowolski and Sibley, 1997; Pinder et al., 1998, 2000). In *Toxoplasma gondii*, in particular, motility and host cell invasion are powered by the parasite actin cytoskeleton and most likely by myosin motors (Dobrowolski and Sibley, 1996). A recent report established the essential role of microtubules during parasite division and shed light on a distinct role of the actin cytoskeleton: contributing to proper inheritance of organelles into daughter cells (Shaw et al., 2000). Both microtubule and actin cytoskeletons are essential components of the machinery responsible for genome segregation and cell division in eukaryotes (Field et al., 1999; Goode et al., 2000). Conventional class II myosins contribute to force production by driving cleavage furrow contractility, an essential process during separation of daughter cells (Robinson and Spudich, 2000; for review see Bezanilla et al., 2000). Recently, two unconventional myosins of class V have been implicated in *Schizosaccharomyces pombe* cytokinesis (Win et al., 2001). In apicomplexan parasites, nuclear division occurs by endomitosis, a cytokinetic process without nuclear membrane breakdown. As in other organisms, microtubules play a key role during replication, when the ends of microtubules are inserted into the nuclear envelope at the spindle body (Tilney and Tilney, 1996; Shaw et al., 2000). In *T. gondii*, cytokinesis involves the internal budding of two daughter cells from the common cytoplasmic mass of the parental cell by a mechanism called endodyogeny (Fig. 1; Vivier and Petitprez, 1969). In other apicomplexa such as *Theileria*, four cells bud from the common cytoplasmic mass, and in *Plasmodium* species, four nuclear divisions occur before the budding of 16 daughter cells. This mode of division...
is called merogony or schizogony. It is essential that each newly formed cell receives one nucleus, one mitochondrion, a Golgi apparatus, some rough endoplasmic reticulum, and a few copies of each specialized organelle necessary to invade the next host cell. Closely apposed to the plasma membrane, a series of flat cisternae constitute the inner membrane complex (IMC). Budding proceeds concomitantly with the formation of the IMC and a basket of circumferentially arranged microtubules that extend from the polar ring surrounding the apical prominence. An intramembranous particle lattice within the IMC is associated with the subpellicular microtubules, likely contributing to shape maintenance and dynamics of the parasite (Morrisette et al., 1997).

The current repertoire of myosins in T. gondii is comprised of four genes giving rise to five distinct proteins, all of the class XIV, which appears restricted to members of the Apicomplexa phylum (Heintzelman and Schwartzman, 2001). In a previous study, we showed that endogenous MyoA localizes beneath the plasma membrane, and that its short tail carries the localization determinant (Hettmann et al., 2000), making MyoA an appealing candidate for power gliding motility. Nothing is known yet about the function of the other myosins. MyoB and MyoC are encoded by a single gene that gives rise to two alternatively spliced mRNAs, which encode two myosins with distinct tails (Heintzelman and Schwartzman, 1997). MyoC has been recently reported to localize to a structure reminiscent of the Golgi apparatus (Heintzelman and Schwartzman, 1999). In the closely related parasite Plasmodium falciparum, three myosins have been reported so far. PfMyoA and PfMyoB also belong to the class XIV and are structurally very similar to T. gondii MyoA, whereas PfMyoC is a larger, unclassified myosin.

Here, we report about the determination of the expression pattern of MyoB/C products and the predominant role of their tails in subcellular localization. The cellular distribution and phenotypes resulting from the overexpression of wild-type or mutant forms of MyoB and MyoC strongly suggest that the MyoB/C gene products are implicated in parasite division.

Results

T. gondii myosins are differentially regulated between the tachyzoite and bradyzoite stages

Treatment of intracellular parasites with actin inhibitors was reported to have marginal effects on parasite growth and replication, but induced the formation of large residual bodies at the posterior end of dividing parasites (Shaw et al., 2000). In preliminary experiments, treatment with the myosin heavy chain ATPase inhibitor, 2,3-butanedione monoxime (BDM), induced a significant replication delay and the formation of enlarged parasites that failed to accomplish proper cell division (unpublished data). EM revealed that most parasites failed to achieve proper separation, despite normal nuclear duplication and acquisition of individual organelles, including the conoid and the nascent IMC. The effect of BDM was suggestive of a role for myosin(s) in cell division, but was nevertheless inconclusive because of the risk that BDM may have affected a nonmyosin target.

Toward the identification of a myosin contributing to cell division, we analyzed the pattern of expression of the five known myosins in the two invasive life stage forms of T. gondii present in intermediate hosts. Specific transcripts coding for myosins A, B, C, and D (not shown), but not E, were amplified by RT-PCR using total RNAs isolated from the rapidly replicating tachyzoites (Fig. 2 A). Furthermore, a comparison of the amount of specific transcripts between tachyzoites and the dormant, encysted bradyzoites was assessed by semiquantitative RT-PCR (Fig. 2 B), as previously described (Yahiaoui et al., 1999). Rather unexpectedly and with the exception of MyoA, the myosin mRNAs were more abundant in the persistent stage. This analysis did not distinguish between the increased rate of transcription and the increased stability of transcripts in bradyzoites compared with tachyzoites. Expressed sequence tag (EST) clones corresponding to myosins are extremely underrepresented in the 10,000 ESTs found in the T. gondii database (Ajioka et al., 1998). Nevertheless, the same tendency toward a predominant representation in bradyzoite compared with tachyzoite cDNAs was observed (http://www.chil.upenn.edu/ParaDBs/). Indeed, 11 EST clones specific for MyoC were present in the in vivo bradyzoite cDNA library compared with two ESTs in the much larger pool of T. gondii RH strain tachyzoite ESTs. This imbalance reflects and strengthens the results obtained by RT-PCR. The two transcripts encoding MyoB and MyoC were previously described and presumed to derive from alternative RNA splicing (Heintzelman and Schwartzman, 1997).

To investigate the expression of MyoB and MyoC, we raised polyclonal antipeptide sera specific to each protein and to MyoB/C. The COOH-terminal peptide of 21 resi-
Role of myosins in *T. gondii* parasite division | Delbac et al. 615

Dues specific to MyoB has poor predicted antigenicity, and sera raised against it failed to detect MyoB (unpublished data). In Western blots, a sera raised against bacterially expressed glutathione-S-transferase fused to the last 118 residues specific to MyoC detected a protein of the expected molecular mass of 132 kD in tachyzoites (unpublished data). Additionally, two peptides corresponding to MyoB/C (B/C1 and B/C2) and two peptides specific for MyoC (C1 and C2) were used. The corresponding antisera were affinity purified against the peptides B/C1 and B/C2. The monoclonal anti-myc was used in the lower half.

The MyoB/C gene generates two transcripts by alternative splicing of the last intron

To identify the mechanism generating the alternatively spliced mRNAs, we isolated and sequenced cosmid clones containing the MyoB/C locus. The genomic sequence revealed that the MyoB mRNA is derived from a larger transcript with an unspliced last intron (Fig. 3 A). The MyoB transcript codes for a polypeptide 1,074 amino acids long, ending with 21 residues specific to MyoB. In contrast, if the last intron is spliced out, a shorter transcript codes for MyoC; 1,171 amino acids long, ending with 118 amino acids unique to MyoC (Fig. 3 B). Thus, MyoB is the product of an incomplete processing of the primary transcript.
Transient expression of MyoB/C gene products reveals their biased segregation between daughter cells after endodyogeny

The very low expression level of MyoB in tachyzoites and the difficulty to unambiguously determine the subcellular localization of the two alternatively spliced products prompted us to adopt an epitope tagging strategy, as used for the characterization of MyoA (Hettmann et al., 2000). In addition, transient expression of MyoB, MyoC, and the MyoB/C motor domain lacking the tail (MyoB/CΔtail) revealed unexpected features.

First, a striking asymmetry in the repartition of MyoB, MyoC, and even MyoB/CΔtail in daughter cells was apparent 24 and 48 h after transfection. Freshly lysed parasites are asynchronous and thus undergo replication at different times after transfection and host cell infection, resulting in variable numbers of strongly positive and almost negative parasites per vacuole. Likely, if the transfected parasites divided before the transgene products had accumulated, the myosins would be present in both daughter cells. In contrast, if the protein accumulated before division, it could not be distributed evenly between the daughter cells (Fig. 4 A–D in red, E and F in green). The anti-TgMIC6 was used as a control to detect all the parasites present in the vacuole. Other cotransfected cytoplasmic or organellar markers (green fluorescence protein [GFP], catalase, or MIC6) were, without exception, evenly distributed among the parasites of a given vacuole (unpublished data). The only other reported segregation defect in T. gondii was observed after the expression of a chimeric molecule targeted to the apicoplast, which prevented replication of the organelle in daughter cells (He et al., 2001).

Second, MyoB was nonhomogenously distributed in the parasite cytoplasm, often found at its periphery (Fig. 4, A and B, arrows) and excluded from the nucleus. In dividing parasites, MyoB was enriched in distinct structures or lamellae that appeared to extend from the periphery in between the daughter cells (Fig. 4, A and B, small arrows). A considerable accumulation of the protein was detectable at the posterior of the parasites, forming a residual body (Fig. 4, A and B, arrowheads). The distribution of MyoC resembled that of MyoB, including at the periphery and in the extension between dividing parasites, but concentrated additionally at the apical and posterior poles, particularly visible when protein expression was weaker (Fig. 4 D, small arrows). Formation of residual bodies was also observed (Fig. 4 D, panel c, arrowhead). Most importantly, MyoB/CΔtail, the motor truncated of the tail domain, normally considered to target myosins to their place of action, was also found at the periphery (best visible in parasites with lower protein levels; Fig. 4 E, arrows) and enriched in residual bodies (Fig. 4 E, arrowhead).

Although parasites stably expressing MyoB and MyoC were obtained and analyzed (see below), multiple attempts to generate stable transformants expressing MyoB/CΔtail remained unsuccessful, suggesting that the truncated form of the protein was not tolerated.

MyoB and MyoC exhibit distinct cellular localizations

To analyze more closely the localization of the MyoB/C gene products in nondividing parasites, we generated recombinants stably expressing myc–MyoB or myc–MyoC. We confirmed the expression of polypeptides of the anticipated sizes by Western blotting with anti-myc antibodies (Fig. 5 C). The stably transformed parasites were then examined by immunofluorescence assay (IFA), revealing distinct, subcellular steady-state distributions (Fig. 5, A and B). As previously observed in transient transfections, MyoB was spread throughout the cytoplasm associated with a punctate structure,
whereas the distribution of MyoC was mostly restricted to the posterior and weakly to the anterior poles of the parasites (Fig. 5 E). Double immunofluorescence staining of MyoB and MyoA showed no major overlap. Additionally, the double staining against MyoC and the apical micronemal protein TgMIC6 confirmed the predominant posterior localization of MyoC. High resolution confocal microscopy distinctly identified the staining of MyoC as a ring structure, likely corresponding to the posterior polar ring and more weakly to the apical polar ring at the terminal regions of the IMC. A schematic representation of a tachyzoite (adapted from Nichols and Chiappino, 1987) is depicted in Fig. 5 D. At the apical pole, the conoid is associated with the apical polar ring, the IMC, and the sets of 22 pellicular microtubules. The posterior polar ring delineates the termination of the IMC at the rear end of the parasite. A parasitophorous vacuole containing 32 parasites arranged in rosette illustrates the focused staining at the posterior pole of the parasites, which corresponds to the center of the rosette. A weaker staining at the periphery corresponds to the apical tip of each parasite (Fig. 5 E). The restricted localization of MyoC is unlikely to depend only on direct interactions with actin filaments since the treatment of recombinant parasites with 10 μM cytochalasin D for 2 h did not alter the ring structures visualized by IFA (unpublished data).

The tails of MyoB and MyoC determine their specific localizations

Three distinct domains define the modular structure of most myosins. The catalytic motor domain binds to actin, the regulatory neck region carries the light chains and structurally acts as a lever arm, and the tail domain is responsible for the functional diversity of each molecule. The tail domains appear to contribute predominantly as determiners of subcellular localization; they bring the motor to its site of action. MyoB and
MyoC share a common core region in their tail domain and diverge only in their last 21 and 118 amino acids, respectively. To assess the importance of these domains, we fused GFP to fragments encoding the tails of MyoB or MyoC. Additionally, to examine the efficiency of alternative splicing in tachyzoites, we fused GFP to a genomic fragment of the MyoB/C gene that encompasses both tail exons. Stable clones expressing GFP–Btail, GFP–Ctail, or the GFP–B/Ctail chimera were isolated and characterized. The myc–GFP–Btail and myc–GFP–Ctail fusions showed the expected mobility shift compared with GFP on a Western blot (Fig. 6 F). Interestingly, parasites expressing GFP fused to the genomic fragment of MyoB/C predominantly produced GFP–Ctail. Only a trace of a product comigrating with GFP–Btail was visible. This result correlates with the predominance of MyoC versus MyoB in wild-type tachyzoites (Fig. 2 C) and suggests that a fully processed transcript is the major spliced form (Fig. 3 C). The subcellular localization of GFP–tail fusions was determined by IFA and confocal microscopy. Consistent with the localization of full-length MyoB and MyoC, GFP–Btail was distributed in a punctate pattern throughout the cytoplasm, whereas GFP–Ctail accumulated in ring structures at the extremities of the parasites (Fig. 6, B and C). In parasites undergoing cell division and thus containing two nuclei, two rings are visible and likely correspond to the posterior polar rings of the forming daughter cells (Fig. 6 D, and also Fig. 1, b–d). In perfect agreement with the results of Western blotting, the GFP–B/Ctail fusion was mostly found to localize at the polar rings similar to GFP–Ctail (Fig. 6 A). GFP fused to the last COOH-terminal 118 amino acids of MyoC did not localize to the polar rings but was abundant and diffuse in the cytosol (Fig. 6 E). This result indicates that the determinants of MyoC localization are not restricted to the region specific to MyoC, and additional information in the common core of the two tails is important for the selective targeting.

MyoB is readily soluble, whereas MyoC partitions with the detergent-insoluble fraction

We examined the nature of the interaction between MyoB, MyoC, and other cellular components by biochemical fractionation followed by Western blot analysis. The *T. gondii* catalase has recently been shown to fractionate with the soluble proteins (Ding et al., 2000) and was used here as a marker of complete lysis. Previous analysis had shown that GFP is readily soluble when parasites are lysed in PBS (Hettmann et al., 2000). MyoB mainly partitioned with the soluble fraction, whereas MyoC was resistant to solubilization in the presence of high salt and could not be extracted by detergent (2% Triton X-100). Complete solubilization of MyoC was obtained with carbonate treatment, pH 11.5 (Fig. 7 A). Fractionation in the presence of 2% Triton X-100 and 10 mM ATP released about half of the MyoC (Fig. 7 B). A similar observation has recently been reported for endogenous MyoC (Heintzelman and Schwartzman, 1999). The profile of GFP–MyoC tail solubility was almost identical to the one obtained with full-length MyoC. Indeed, similar to MyoC, GFP–Ctail associated quantitatively with the particulate fraction even in the presence of Triton X-100. However, and in contrast to MyoC, in the presence of detergent and ATP, GFP–Ctail remained insoluble (Fig. 7 B).

Parasites overexpressing MyoB harbor morphological defects during cell division

The integration of a second copy of *MyoB* controlled by the TUB1 promoter led to significant overexpression of MyoB compared with the wild-type situation. In contrast, MyoC was expressed at a level comparable to the endogenous protein (Fig. 2 C). We isolated several independent clones exhibiting variable levels of MyoB expression (Fig. 8 F). In addition to full-length MyoB, clone B1 accumulated notable amounts of a degradation product, mimicking MyoB/Ctail. Indeed, the truncation corresponds to a large deletion in its tail region, as demonstrated by using antibodies recognizing the NH2-terminal epitope tag. Upon morphological examination, this clone showed strong phenotypic abnormalities during cell division. By IFA, most vacuoles were shown to contain one or multiple large residual bodies staining for MyoB, but failed to stain with DAPI (Fig. 8 A). The same phenotype was observed with other clones, though with a variable severity. MyoB and actin accumulated significantly in these structures (Fig. 8 B), but they were only weakly stained for rhoptries (unpublished data) or microneme markers (Fig. 8 C). Such residual bodies were most frequently located at the posterior of the parasites, whereas bleb-like protrusions were found distributed more randomly around the parasites. The presence of the glycosyl phosphatidylinositol–anchored plasma membrane marker, SAG1 (Fig. 8 D), around the residual bodies concomitant with the absence of staining with an IMC marker (Fig. 8 E) indicated that...
these bodies were surrounded solely by the plasma membrane. Numerous vacuoles contained parasites that had not accurately separated, and the geometrical organization in rosettes was rarely seen in the overexpressers compared with wild-type parasites. DAPI and IMC staining revealed an unusual proportion of parasites undergoing cell division (Fig. 8 E, arrows). Quantification at the EM level revealed that the process of cell division was slower in MyoB overexpressers, since more than 40% of the parasite population was in the middle of endodyogeny (two nuclei per cell) compared with less than 10% in wild-type parasites.

Figure 8. **Phenotypic analysis of parasites overexpressing MyoB.** Detection of residual bodies in intracellular parasites expressing myc–MyoB (clone MyoB/1) by confocal microscopy. (A) The residual bodies detected with anti-myc antibodies did not stain with DAPI. (B) Colocalization of MyoB (polyclonal anti-myc) with actin illustrated their coenrichment in residual bodies. (C) Residual bodies were not significantly stained with the microneme marker anti-TgMIC6. In contrast, they stained with antibodies recognizing the glycosyl phosphatidylinositol–anchored surface antigen SAG1 (D), but were not detected by antibodies recognizing a protein of the IMC (E). The latter marker visualized the high frequency of dividing parasites in the population by detecting the presence of newly formed daughter cell IMCs (E, arrows). (F) Western blot analysis of independent recombinant *T. gondii* clones expressing MyoB at different levels. N, nucleus; RB, residual body. Bars, 1 μm.

Figure 9. **Ultrastructural analysis of the residual bodies induced by MyoB overexpression.** Thin section electron micrographs of wild-type parasites (A and B) and parasites overexpressing myc–MyoB (C–F). Wild-type parasites divide and form regular rosettes (A and B), whereas the vacuoles of transgenic parasites are highly disorganized (C–E). The boxed region in E is presented at higher magnification in F. Residual bodies are clearly distinguished from parasites, as they lack the IMC and are surrounded only by the plasma membrane (C–F). In wild-type parasites, residual bodies such as the one seen in B were rare. C, conoid; N, nucleus; PM, plasma membrane; PPR, posterior polar ring; RB, residual body. Bars, 1 μm.

Ultrastructural analysis of MyoB overexpressers Thin section transmission EM of clones overexpressing MyoB revealed severe morphological defects. The MyoB overexpressers showed a significantly disorganized arrangement within the parasitophorous vacuole (Fig. 9, D and E) compared with the regular rosettes formed by wild-type parasites (Fig. 9, A and B). Presence of residual bodies, as observed by light microscopy, was also visible at the EM level. Most of these large cytoplasmic extensions were directly connected to the parasites, and were not only seen at the posterior (Fig. 9 C) but also toward the anterior pole (Fig. 9 E). Higher magnification clearly revealed that the bleb-like bulges were only surrounded by the plasma membrane and the IMC was absent (Fig. 9 F), confirming the data obtained by confocal microscopy (Fig. 8). The quasi absence of organelles in these residual bodies distinguished them from the
structures created by treatment with cytochalasin D (Shaw et al., 2000).

MyoB overexpressers showed a delay in cell division and reduced virulence in mice

To assess the influence of stable MyoB overexpression on growth rate, we counted parasites per vacuole at 12 and 24 h after infection. Parasites expressing MyoB exhibited a significant growth delay compared with parasites expressing GFP (Fig. 10 A) and GFP–MyoBtail (unpublished data), suggesting that the motor is necessary for the phenotype. To determine if this mutant exhibits an alteration of virulence in vivo, two series of experiments were conducted with groups of six mice infected in the intraperitoneal cavity with 20 parasites of either RH or RHMyoB (Fig. 10 B). As reported previously, the inoculation of wild-type RH is always lethal in mice (Mercier et al., 1998), and all infected (seropositive) mice died within 7 d. In contrast, a large proportion of mice infected with RHMyoB survived the challenge. 2 wk later, the mice were tested for seropositivity to confirm infection.

To examine if the attenuated parasites were able to establish a chronic infection in the animal, we searched for the presence of cysts using specific staining with the *Dolichos biflorus* lectin (Boothroyd et al., 1997). The presence of a few cysts per brain was indicative of a chronic infection in all mice analyzed (Fig. 10 C).}

Discussion

Cytokinesis is the process by which a cell partitions its surface and cytoplasm to form two daughter cells. In both animal and yeast cells, this process involves the assembly and contraction of an actomyosin ring. It is noteworthy that for a long time, among the hundreds of myosins known, only the conventional myosins of class II had been implicated in cell division (Field et al., 1999). However, a recent study established the involvement of two myosins of type V in *S. pombe* (Win et al., 2001). The asexual multiplication of *T. gondii* occurs by a peculiar process named endodyogeny, which is defined as the gradual development of two daughter parasites within a fully differentiated mother; the mother is incorporated into the daughters during the process (Fig. 1). In *T. gondii*, actin inhibitors did not prevent replication, perse, but disrupted the inheritance of mother cell organelles, resulting in the formation of residual bodies (Shaw et al., 2000). Therefore, myosin motor(s) were anticipated to function in one or several aspects of parasite division. However, the lack of detectable actin filaments in *T. gondii* under physiological conditions (Dobrowolski et al., 1997) has hampered the assignment of a role for actomyosin during furrowing and completion of daughter cell membrane separation.

Parasites treated with BDM, an inhibitor of myosin ATP-ase, underwent proper nuclear replication but showed impairment in cell division, similar to the cytokinesis defects observed in other organisms (unpublished data). This observation suggested a critical role for a myosin during endodyogeny, but was inconclusive because this drug is known to have pleiotropic targets. Until now, no myosin of class II or V has been identified in Apicomplexa. To assign which myosin could be involved in the cell division process, we examined the pattern of expression and subcellular distribution of the five class XIV myosins identified so far in *T. gondii*. MyoA is the prominent motor candidate for powering parasite gliding motility, whereas MyoE could not be involved because it is not expressed at a detectable level in *T. gondii*. MyoA and MyoC are the products of alternatively spliced transcripts from the same gene (Fig. 3; Heintzelman and Schwartzman, 1997). These two transcripts are present in tissue cysts but are upregulated in bradyzoites. The abundance of the respective myosins suggests that a partial splicing leading to the production of MyoB occurs much less frequently. Thus, MyoC appears to be the predominant product in tachyzoites. This observation was confirmed by the fusion of a GFP coding sequence to a fragment of the MyoB/C gene covering the tail exons, which generates essentially GFP–MyoCtail.
Unexpectedly, MyoB, MyoC, and MyoB/CΔtail (including the motor and a divergent IQ motif) have a dominant effect under conditions of transient expression; this motor does not segregate equally during cell division. There is no obvious explanation for this unusual behavior, but it clearly implies an interaction of the motor with an as yet undefined cellular structure that might fail to segregate properly due to the overexpression or is naturally unevenly distributed between the daughter cells. We speculate that this structure or organelle might be the IMC or part thereof. First, during transient expression, MyoB, MyoC, and even the motor domain truncated of its tail localize to the cell periphery, to punctate structures and patches, as well as to membrane structures that appear to extend between the dividing daughter cells. Second, the almost exclusive localization of MyoC at the termination of the IMC suggests that this myosin might fulfill a direct role in assembly and elongation of this complex during budding of the daughter cells. Indeed, MyoC is associated with the IMC at an early stage of daughter cell formation (Fig. 6 D). This is reminiscent of the situation in *Caenorhabditis elegans* where myosin VI was shown to be required for asymmetric segregation of cellular components during spermatogenesis (Kelleher et al., 2000). The partitioning of MyoC with the detergent-insoluble fraction implies an interaction with components of the parasite cytoskeleton. This posterior structure is not disrupted by treatment with cytochalasin D and thus appears independent of the presence of intact actin filaments. Nevertheless, MyoC was previously shown to be a classical myosin, binding to F-actin in an ATP-sensitive fashion (Heintzelman and Schwartzman, 1999). The analysis of GFP–Ctail fusion confirmed that the localization and sedimentation determinants are confined within its tail domain.

In addition to the segregation defects, transient expression of both MyoB and MyoC leads to the accumulation of residual bodies at the posterior of the parasites after division. Both morphological defects observed during transient expression of MyoC and MyoB/CΔtail could not be analyzed further in stable cell lines because no viable transformant in *T. gondii* is associated with the IMC at an early stage of daughter cell formation. Indeed, MyoC at the termination of the IMC suggests that this myosin might fulfill a direct role in assembly and elongation of this complex during budding of the daughter cells. We speculate that this structure or organelle might be the IMC or part thereof. First, during transient expression, MyoB, MyoC, and even the motor domain truncated of its tail localize to the cell periphery, to punctate structures and patches, as well as to membrane structures that appear to extend between the dividing daughter cells. Second, the almost exclusive localization of MyoC at the termination of the IMC suggests that this myosin might fulfill a direct role in assembly and elongation of this complex during budding of the daughter cells. Indeed, MyoC is associated with the IMC at an early stage of daughter cell formation (Fig. 6 D). This is reminiscent of the situation in *Caenorhabditis elegans* where myosin VI was shown to be required for asymmetric segregation of cellular components during spermatogenesis (Kelleher et al., 2000). The partitioning of MyoC with the detergent-insoluble fraction implies an interaction with components of the parasite cytoskeleton. This posterior structure is not disrupted by treatment with cytochalasin D and thus appears independent of the presence of intact actin filaments. Nevertheless, MyoC was previously shown to be a classical myosin, binding to F-actin in an ATP-sensitive fashion (Heintzelman and Schwartzman, 1999). The analysis of GFP–Ctail fusion confirmed that the localization and sedimentation determinants are confined within its tail domain.

In addition to the segregation defects, transient expression of both MyoB and MyoC leads to the accumulation of residual bodies at the posterior of the parasites after division. Both morphological defects observed during transient expression of MyoC and MyoB/CΔtail could not be analyzed further in stable cell lines because no viable transformant could be obtained with MyoB/CΔtail, and lines only expressing low levels of MyoC were obtained. Overexpression of class I myosins in *Dictyostelium discoideum* has been reported to lead to a phenotype similar to knockout mutants (Novak and Titus, 1997). As the MyoB/C gene is most likely indispensable, we will need to generate a conditional knockout based on an inducible system, which has recently been established for *T. gondii* (Meissner et al., 2001).

Here, stable MyoB overexpression induced a clear defect in proper separation of the daughter cell membranes, although nuclear division and formation of the daughter conoids appeared normal. In addition, the mutant did not show any impairment in host cell invasion (unpublished data), another actomyosin-dependent process proposed to involve MyoA. Generation of large residual bodies at the posterior end of the parasites and the presence of bleb-like structures randomly distributed around the parasites suggest an impairment in endodyogeny. Residual bodies appear to concentrate MyoB and actin but are essentially devoid of organelles and DNA. These bodies are therefore distinct from the residual bodies induced by treatment with actin inhibi-
RH, which led to decreased virulence and chronic infection (Merrick et al., 1998).

Materials and methods

Reagents

Restriction enzymes were obtained from New England Biolabs, Inc. The second- ary antibodies were from Bio-Rad Laboratories and Molecular Probes. Mouse ascites fluid of the 9E10 anti-myc hybridoma were used at 1:1,000. The antiactin monoclonal was generated against D. discoideum actin. The rabbit polyclonal antitubulin, anti-MIC6, and anti-MyoAtil were used as previously described (Ding et al., 2000; Hetmann et al., 2000; Reiss et al., 2001). Polyclonal antipeptide antibodies were generated as previously described (Hetmann et al., 2000). Peptides: 3B, aa 304-NVSIEGKDAQGVP-3C; 2B, aa 320-IGDCGGAGGCAGC-2C; 3C, aa 352-ACTTATAGGTCTGATTGGTG-3C; 5C, aa 422-GCTTTGGAAGTACTGAG-5C.; 6C, aa 426-TTGATACTTATAGGTCTGATTGGTG-6C.

Growth of parasites and isolation of DNA and RNA

T. gondii tachyzoites (RH strain wild-type and RH hypoxanthine-xanthine-guanine-phosphoribosyltransferase [hxgprt]) were grown in hu- man foreskin fibroblasts (HFF) maintained in DME with 10% FCS, 2 mM glutamine, and 25 g/ml gentamicin. Parasites were harvested after host cell lysis and purified by passage through filters with 3.0-mm pores and centrifugation in PBS. Genomic DNA was isolated from purified parasites as previously described (Sibley and Boothroyd, 1992). Total RNAs were prepared using “RNA clean2” (AGS GmbH) according to the manufacturer's instructions.

* T. gondii genomic library screening

A clone containing the MyoB/C locus was isolated from a cosmid library made in a SuperCos vector modified with a SAG1/ble vector (Hettmann et al., 2000). A clone containing the MyoB/C locus was isolated from a cosmid library grown in HFF on glass slides were fixed with 4% paraformaldehyde and 0.05% glutaraldehyde for 20 min. After fixation, slides were rinsed in PBS/0.1 M glycine. Cells were then permeabilized in PBS/0.2% Triton X-100 for 20 min and blocked in the same buffer with 2% FCS. Slides were incubated for 60 min with primary antibodies diluted in PBS/1% FCS, washed, and incubated for 60 min with Alexa488- or FITC-labeled goat anti-mouse IgGs diluted in PBS/1% FCS. Rapid freezing in ultra cold methanol with combined fixation/permeabilization was performed as described by Neuhaus et al. (1998). Slides were mounted in Vectashield and kept at 4°C in the dark. Intracellular parasites expressing GFP were fixed according to the above protocol and mounted immediately. Confocal images were collected with a Leica laser scanning confocal microscope (TCS-NT DMWIR) using a 100× Plan-Apo objective with NA 1.30. Single optical sections were recorded with an optimal pinhole of 1.0 and 16 times averaging. All other micrographs were obtained on a Zeiss Axioshot with a camera (Photometrics Type CH-250). Adobe Photoshop and Canvas 7 were used for image processing.

Indirect immunofluorescence microscopy and detection of GFP in *T. gondii*

All manipulations were performed at room temperature. Intracellular parasites grown in HFF on glass slides were fixed with 4% paraformaldehyde and 0.05% glutaraldehyde for 20 min. After fixation, slides were rinsed in PBS/0.1 M glycine. Cells were then permeabilized in PBS/0.2% Triton X-100 for 20 min and blocked in the same buffer with 2% FCS. Slides were incubated for 60 min with primary antibodies diluted in PBS/1% FCS, washed, and incubated for 60 min with Alexa488- or FITC-labeled goat anti-mouse IgGs diluted in PBS/1% FCS. Rapid freezing in ultra cold methanol with combined fixation/permeabilization was performed as described by Neuhaus et al. (1998). Sections were observed and documented on a Phillips 400 TEM. The EM negatives were scanned at 1,200 dpi and imported into Adobe Photoshop for processing.

In vivo experiments

BALB-c mice were inoculated by intraperitoneal injection of 20 freshly harvested tachyzoites parasites from the wild-type RH strain or with MyoB-overexpressing RH. 3 wk after infection, the number of survivors was re- corded and their *T. gondii* serology was tested by Western blotting against an RH tachyzoite lysate.

Isolation of *T. gondii* cysts from the brain of infected mice

Seropositive mice survivors were killed 8 wk after intraperitoneal injection of 20 parasites from MyoB-expressing RH. Parasite cysts were isolated from the brain as previously described (Tombafo et al., 1991). The cyst preparation was incubated for 1 h with the FITC-labeled lectin from *Dolichos biflorus*, diluted 1:50, at 37°C. We are grateful to Dr. J.F. Dubremetz (UMR CNRS 5539, Montpellier, France) for his assistance during earlier stages of the project and the critical discussions. We thank Dr. G. Ward and K.L. Carey (University of Vermont, Burlington, VT) for providing us with the *mab* 45.15 recognizing a 70-kD protein of the IMC.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG grant SO 366/1-1, SO366/1-2) and The Biotechnology and Biological Sciences Research Council. Dr. F. Delbac was supported by a grant of the Von Humboldt foundation. E. Neuhaus was a recipient of a postdoctoral fellowship from the Max Planck Society.

Parasite transformation and selection of stable transfectants

T. gondii tachyzoites (RHhxgprt) were transfected by electroporation as previously described (Soldati and Boothroyd, 1993). The HXGPT was used as a positive selectable marker in the presence of mycophenolic acid and xanthine as previously described (Donald et al., 1996).

Western analysis of parasite lysates

Crude extracts of tachyzoites were separated by SDS-PAGE (Laemmli, 1970). Western blot analysis was performed essentially as described by Soldati et al. (1996) using 8–10% polyacrylamide gels run under reducing conditions, followed by transfer to Hybond ECL nitrocellulose. For detection, affinity-purified, HRP-conjugated goat anti-mouse IgG or goat anti-rabbit IgG (1:2,000) and the ECL system (Amersham Pharmacia Bio- tech) were used. Direct recording of chemiluminescent signals and densitometry by the Luminescent Image Analyzer LAS-1000 (FujiFilm) allowed for quantification of signal intensities within a broad linear range.

Cell fractionation

10⁵ parasites, freshly released from infected cells, were resuspended in 1 ml of buffer (either PBS, PBS/1 M NaCl, PBS/0.1 M Na₂CO₃ (pH 11.5), or PBS/2% Triton X-100) and lysed by sonication (four times, 30 s each; on ice). 10 mM ATP was freshly added to minimize the interaction of the myo- sin with F-actin. Pellet and soluble fractions were separated by ultracentrifuging for 1 h at 55,000 rpm at 4°C.

Indirect immunofluorescence microscopy and detection of GFP in *T. gondii*

All manipulations were performed at room temperature. Intracellular parasites grown in HFF on glass slides were fixed with 4% paraformaldehyde and 0.05% glutaraldehyde for 20 min. After fixation, slides were rinsed in PBS/0.1 M glycine. Cells were then permeabilized in PBS/0.2% Triton X-100 for 20 min and blocked in the same buffer with 2% FCS. Slides were incubated for 60 min with primary antibodies diluted in PBS/1% FCS, washed, and incubated for 60 min with Alexa488- or FITC-labeled goat anti-mouse IgGs diluted in PBS/1% FCS. Rapid freezing in ultra cold methanol with combined fixation/permeabilization was performed as described by Neuhaus et al. (1998). Slides were mounted in Vectashield and kept at 4°C in the dark. Intracellular parasites expressing GFP were fixed accord-
Role of myosins in *T. gondii* parasite division | Delbac et al.

References

