A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast

Evgeny V. Pavlov, Muriel Priault, Dawn Pietkiewicz, Emily H.-Y. Cheng, Bruno Antonsson, Stephen Manon, Stanley J. Korsmeyer, Carmen A. Mannella, and Kathleen W. Kinnally

1Division of Basic Sciences, New York University College of Dentistry, New York, NY 10010
2Institut de Biochimie et Génétique Cellulaires/Centre National de la Recherche Scientifique, F-33077 Bordeaux, France
3Departments of Pathology and Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
4Serono Pharmaceutical Research Institute, Serono International S.A., CH-1228 Plan-les Ouates, Geneva, Switzerland
5Wadsworth Center, New York State Department of Health, Albany, NY 12203

During apoptosis, proapoptotic factors are released from mitochondria by as yet undefined mechanisms. Patch-clamping of mitochondria and proteoliposomes formed from mitochondrial outer membranes of mammalian (FL5.12) cells has uncovered a novel ion channel whose activity correlates with onset of apoptosis. The pore diameter inferred from the largest conductance state of this channel is ~4 nm, sufficient to allow diffusion of cytochrome c and even larger proteins. The activity of the channel is affected by Bcl-2 family proteins in a manner consistent with their pro- or antiapoptotic properties. Thus, the channel activity correlates with presence of proapoptotic Bax in the mitochondrial outer membrane and is absent in mitochondria from cells overexpressing antiapoptotic Bcl-2. Also, a similar channel activity is found in mitochondrial outer membranes of yeast expressing human Bax. These findings implicate this channel, named mitochondrial apoptosis–induced channel, as a candidate for the outer-membrane pore through which cytochrome c and possibly other factors exit mitochondria during apoptosis.

Introduction

Apoptosis is integral to such diverse cellular processes as tissue remodeling and organogenesis, as well as chemotherapy-induced tumor regression. It is a phenomenon fundamental to higher eukaryotes and essential to mechanisms controlling tissue homeostasis. A key early event in the apoptotic cascade in many cell types is the release of cytochrome c and other proteins from mitochondria (Liu et al., 1996; Kluck et al., 1997; Wei et al., 2001). Once in the cytoplasm, cytochrome c and procaspase 9 bind the cytoplasmic protein apaf-1 and form apoptosomes that promote caspase activation and destruction of the cell (Liu et al., 1996).

The mechanism by which proapoptotic factors are released from mitochondria early in apoptosis is unknown. It has been speculated that a permeability transition of the inner membrane causes swelling of the matrix space. As the inner membrane has a much greater surface area than the outer membrane, the ensuing swelling would rupture the outer membrane and spill cytochrome c into the cytoplasm. However, cytochrome c release has been shown to occur in the absence of a loss of outer membrane integrity in some cell types, suggesting instead a more selective mechanism, e.g., formation of a pore in the outer membrane (Antonsson et al., 1997; Brenner and Kroemer, 2000; Saito et al., 2000; Martinou and Green, 2001; Shimizu et al., 2001). Importantly, the existence of such a channel has not yet been demonstrated by independent criteria, e.g., electrophysiological characteristics.

There is considerable evidence that members of the Bcl-2 protein family exert their pro- and antiapoptotic effects by regulating the release of cytochrome c from mitochondria (Antonsson et al., 1997; Kluck et al., 1997; Yang et al., 1997; Brenner and Kroemer, 2000; Kroemer and Reed, 2000; Saito et al., 2000; Martinou and Green, 2001; Shimizu et al., 2001; Wei et al., 2001). Interestingly, some proteins in the Bcl-2 family have structures similar to pore-
forming toxins and can create ion channels in artificial membranes (Antonsson et al., 1997; Schendel et al., 1997; Schlesinger et al., 1997). Furthermore, Bax can induce transport of cytochrome c in liposomes (Saito et al., 2000). However, there is as yet no direct evidence for a Bax-induced pore or channel in the mitochondrial outer membrane that would correspond to the pathway for release of proapoptotic mitochondrial proteins like cytochrome c.

Hematopoietic FL5.12 cells are mammalian cells that enter apoptosis after withdrawal of the growth factor interleukin-3 (IL-3) (Olzai et al., 1993; Gross et al., 1998). Bax oligomerizes and translocates into mitochondria within twelve hours after IL-3 withdrawal. These events immediately precede release of proapoptotic factors, e.g., cytochrome c (Gross et al., 1998), which in turn is prevented by the antiapoptotic protein Bcl-2 (Goping et al., 1998; Gross et al., 2000). In this study, patch clamp techniques are used to directly demonstrate that a novel ion channel activity occurs both in the outer membrane of mammalian mitochondria early in apoptosis, and in the mitochondria of yeast expressing human Bax. Electrophysiological characterization of this high-conductance channel and comparison with other known mitochondrial channels, as well as purified Bax channels, are included.

Results and discussion

Bax content of mitochondrial outer membranes

Hematopoietic FL5.12 cells enter apoptosis upon withdrawal of IL-3 by a process that has been well characterized (Bojes et al., 1997; Gross et al., 1998). The translocation of Bax from the cytoplasm to the mitochondrial outer membrane is an early event in this cascade. As shown in Fig. 1 A, outer membranes of mitochondria isolated 12 h after IL-3 withdrawal contained significantly more Bax (5–10-fold increase when normalized to voltage-dependent anion-selective channel [VDAC] levels) than the same membranes before IL-3 withdrawal, as expected (Gross et al., 1998).

Proteoliposomes were formed by fusion of purified mitochondrial outer membranes with liposomes in the presence of cytochrome c and washed with high salt to remove bound cytochrome c. Proteoliposomes prepared from outer membranes of mitochondria isolated 12 h after IL-3 withdrawal contained much less cytochrome c than proteoliposomes prepared from membranes of control mitochondria (Fig. 1 B). The failure of proteoliposomes with high Bax content to retain cytochrome c is consistent with (but certainly not proof of) increased permeability toward this 12-kD protein. Without characterization of specificity, these preparations were examined for the presence of a novel ion channel activity (see below).

Ion conductance of the native mitochondrial outer membrane

The ion permeability of outer membranes was determined by directly patch-clamping isolated mitochondria with microelectrodes (Kinnally et al., 1987; Lohret et al., 1997). The average conductance of outer-membrane patches of mitochondria isolated from FL5.12 cells 12 h after IL-3 withdrawal was significantly greater than that of patches from mitochondria isolated from FL5.12 cells 24 h after IL-3 withdrawal (i.e., apoptotic cells) than from normal cells (i.e., control). Silver-stained gels and Western blots with antibodies against cytochrome oxidase subunit IV indicate equivalent content of overall protein and low contamination by inner membranes for both preparations (data not shown). (B) Immunoblots show that less cytochrome c is present in salt-washed proteoliposomes made from mitochondrial outer membranes of apoptotic cells than of normal cells (control).

Figure 1. Proteoliposomes enriched with Bax fail to retain cytochrome c. (A) Immunoblots show Bax (but not VDAC) levels are higher (5–10-fold) in outer membranes purified from mitochondria isolated from FL5.12 cells 12 h after IL-3 withdrawal (i.e., apoptotic cells) than from normal cells (i.e., control). Silver-stained gels and Western blots with antibodies against cytochrome oxidase subunit IV indicate equivalent content of overall protein and low contamination by inner membranes for both preparations. (data not shown). (B) Immunoblots show that less cytochrome c is present in salt-washed proteoliposomes made from mitochondrial outer membranes of apoptotic cells than of normal cells (control).

Characterization of an apoptosis-induced channel

To characterize single-channel events in outer membranes, they were diluted with additional lipid to form proteoliposomes. These proteoliposomes were prepared by the same methods as those used in the cytochrome c trapping experiments, except that cytochrome c was omitted from the preparation. A novel ion channel activity was readily detected by patch-clamping the proteoliposomes derived from apoptotic mitochondria. Current traces from these patches exhibit numerous deflections corresponding to opening and closure of
the channel at constant voltage (Fig. 2). Analysis of many traces indicates that the channel has multiple conductance levels with peak, single-channel openings of 2.5 ± 0.6 nS. This maximum ion conductance corresponds to a pore diameter of 4.0 ± 0.5 nm, assuming a pore length of 7 nm, using the method of Hille (1992). Conductance changes of this magnitude have not previously been described for channels in the mitochondrial outer membrane. Although common, these large current transitions occurred at a lower frequency (less than one per minute) than the smaller transitions of 1–1.5 nS (several per second) (Fig. 2, A–C).

This novel, large-conductance ion channel has been designated a mitochondrial apoptosis–induced channel (MAC). The single-channel behavior of MAC is substantially different from the known behavior of VDAC (Colombini et al., 1996) and the protein import channel (translocase outer membrane [TOM]) (Thieffry et al., 1992; Lohret et al., 1997; Hill et al., 1998; Künkele et al., 1998; Ahting et al., 2001) in terms of peak conductance, predominant transition sizes, and frequency and duration of transitions (Fig. 2 C and Table I). Also, none of the properties of the other two outer-membrane ion channels (VDAC and TOM) were noticeably modified 12 h after IL-3 withdrawal. Unlike VDAC and the TOM channel, MAC is not voltage-dependent, i.e., its open probabilities do not vary systematically with voltage. Like the TOM channel, MAC is slightly cation-selective with a permeability ratio for K⁺/Cl⁻ of three. The cation selectivity is consistent with the possibility that MAC might provide a permeability pathway for cytochrome c, which carries a net positive charge at physiological pH.

MAC activity is induced by apoptosis and inhibited by Bcl-2

There is a fourfold increase in the detection of MAC in proteoliposomes prepared with mitochondrial outer membranes purified 12 h after IL-3 withdrawal compared with the control (P < 0.05). Normal cultures of FL5.12 cells grown in the presence of IL-3 routinely have ~7% apoptotic cells as indicated by annexin-V staining (unpublished data; Bojes et al., 1997). This background of apoptotic cells could account for the low basal level of detection of MAC (Fig. 2 D).

The electrophysiological experiments were repeated on clones of FL5.12 cells overexpressing Bcl-2, an antiapoptotic protein that prevents release of cytochrome c from mitochondria (Yang et al., 1997). MAC was not detected in cells overexpressing wild-type Bcl-2 after IL-3 withdrawal, but expression of a mu-
Comparison of MAC and Bax ion channel activities suggests several similarities (Table I). Like MAC, Bax channels display multiple conductance levels (Fig. 3) and a slight cation selectivity, but their typical peak current transitions (~0.5 nS) are much smaller than that displayed by MAC (~2.5 nS). If MAC is a Bax channel, this important functional difference could relate to specific aspects of in vivo insertion and assembly in the native mitochondrial outer membrane, to post-translational modification (Zha et al., 2000), or to involvement of additional mitochondrial components (Priault et al., 1999a,b; Shimizu et al., 2000, 2001; Antonsson et al., 2001).

MAC activity is induced by Bax expression in yeast

To independently confirm the correlation between MAC activity and the presence of Bax in mitochondrial membranes, proteoliposome experiments were repeated using yeast strains engineered to express human Bax. Although yeast do not normally possess components of the apoptotic cascade found in higher eukaryotes, they die when forced to express hBax, and can be rescued by coexpression of Bcl-2 (Priault et al., 1999a,b; Gross et al., 2000). Mitochondrial outer and inner membranes were purified from yeast grown either in the presence of doxycyclin to repress hBax expression, or 16 h after doxycyclin withdrawal to induce expression of hBax. To simplify the subsequent single-channel analysis, the yeast strain lacked VDAC (Fig. 4 B).

Expressed human Bax was exclusively localized to the mitochondrial outer membranes (Fig. 4 A), and the same membranes, incorporated in proteoliposomes, displayed an ion channel activity virtually identical (in terms of peak and predominant conductance transitions, and cation selectivity) to MAC from apoptotic mammalian cells (Fig. 4 C and Table I). Inner membrane contamination of the outer membrane preparations was assessed by immunoblotting against the inner membrane protein, subunit IV of the ATP synthase, and was comparable for both types of preparations (unpublished data). MAC activity was never observed in proteoliposomes containing mitochondrial outer membranes devoid of Bax (from wild-type yeast), and rarely detected in the repressed control. In contrast, 40% of the patches showed activity consistent with MAC when Bax expression was induced.

Figure 3. Bax forms high conductance channels with multiple conductance levels. Current traces show hBax channel activity at various voltages had transitions ranging from 0.15–2.0 nS. Purified oligomeric hBax (34 ng/µl in the pipette tip) self-inserted into patches excised from liposomes originally formed without protein. Other conditions are as in Figs. 1 and 2.

<table>
<thead>
<tr>
<th></th>
<th>mMAC</th>
<th>hMAC</th>
<th>hBax</th>
<th>TOM</th>
<th>VDAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak conductance</td>
<td>2.5 ± 0.6</td>
<td>2.2 ± 0.3</td>
<td>0.1–2.0</td>
<td>0.71 ± 0.06</td>
<td>0.68 ± 0.09</td>
</tr>
<tr>
<td>Transition size</td>
<td>1.4 ± 0.4</td>
<td>1.5 ± 0.2</td>
<td>0.1–0.5</td>
<td>0.34 ± 0.03</td>
<td>0.36 ± 0.04</td>
</tr>
<tr>
<td>Ion selectivity</td>
<td>Cation</td>
<td>Cation</td>
<td>Cation</td>
<td>Cation</td>
<td>Anion</td>
</tr>
<tr>
<td>P/P_C</td>
<td>3.0 ± 0.9</td>
<td>4.7 ± 1.3</td>
<td>6.8 ± 1.0</td>
<td>3.6 ± 0.8</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>Voltage dependent</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pore size (nm)</td>
<td>4.0 ± 0.5</td>
<td>3.8 ± 0.2</td>
<td>0.8–3.8</td>
<td>2.3 ± 0.1</td>
<td>2.1 ± 0.05</td>
</tr>
</tbody>
</table>

mMAC, mammalian MAC of apoptotic FL5.12 cells; hMAC, MAC of yeast expressing human Bax; hBax, recombinant Bax.

*Single channel characteristics for each channel type were determined under the same conditions as indicated in Materials and methods. Characteristics of TOM and VDAC agree with previously published behavior.

*Calculated from peak transition size assuming 7 nm pore length (Hille, 1992).
Conclusions and future prospects

This is the first demonstration using electrophysiological methods of a novel ion channel activity in the outer membrane of mitochondria associated with onset of apoptosis. This channel, named MAC, is the first whose pore size, inferred from single-channel conductance, is sufficient to allow proteins as large as or larger than cytochrome c to diffuse through the outer membrane. This postulated function is consistent with the inability of MAC-containing proteoliposomes to trap cytochrome c.

Bax clearly plays an essential role in MAC activation, forming the channel either by itself or in association with one or more outer-membrane components common to mammalian and yeast mitochondria. Contrary to some reports published previously (Shimizu et al., 2000, 2001), but in support of others (Priault et al., 1999a,b; Antonsson et al., 2001), this component is not VDAC, since VDAC was absent from the yeast strain in which MAC activity was induced by hBax expression. Although antibodies against hBax had no effect on MAC activity, preliminary experiments suggest cytochrome c reduces the ion conductance of this channel, but not of VDAC or TOM (unpublished data). If Bax alone forms the MAC channel, the observed differences in electrophysiological properties between MAC and channels induced by recombinant Bax in synthetic membranes likely arise from fundamental differences in Bax insertion, assembly, and/or regulation. The antiapoptotic role of Bcl-2 may relate to its ability (as demonstrated above) to suppress the activity of MAC, perhaps by associating with Bax in a manner that inhibits Bax oligomerization (Gross et al., 1998). Extension of the electrophysiological approaches described in this report should lead to a fuller understanding of the molecular mechanisms underlying the formation of this newly discovered channel; its regulation by apoptosis-associated proteins (e.g., Bcl-2 family members, caspases, and cytochrome c); and, ultimately, its role in apoptosis.

Materials and methods

Cells and growth conditions

Parental FLS.12 cells were cultured as described previously (Gross et al., 1998) in Iscove’s modified Eagle media, 10% fetal bovine serum, 10% WEHI-3B supplement (filtered supernatant of WEHI-3B cells secreting IL-3). FLS.12 clones overexpressing Bcl-2 or Bcl-2 mutant (G145E substitution) were passed in this media plus geneticin (1 mg/ml) (Yin et al., 1994). Cultures were kept below 1.5 million cells/ml. Cells were washed three times in media with (control) or without (apoptotic) IL-3 12 h before the isolation of mitochondria. The DBY747/b5 (mat a, his 3, leu2, trp1, ura3, por1::URA3) strain of yeast carrying the pCM184-human Bax plasmid was grown in YPLac media either in the presence or absence of doxycyclin (10 μg/ml) for 16 h at 30°C (Priault et al., 1999b).

Isolation of mitochondria and preparation of proteoliposomes

Mitochondria were isolated from 2–15 g of FL5.12 cells as described previously (Murphy et al., 2001). Yeast mitochondria were prepared by a modification of Daum et al. (1982) as described previously (Lohret et al., 1997). Mitochondrial outer membranes were stripped from inner membranes by French pressing isolated mitochondria using modifications of the method of Decker and Greenawalt (1977). Outer membranes were separated from inner membranes as described by Lohret et al., (1997) and Mannella (1982). Proteoliposomes were formed by a modification of the method of Criado and Keller (1987) (Lohret et al., 1997). Briefly, small liposomes were formed by sonicication of lipid type IV-S soybean L-α-phos-
pressed as a glutathione

ary anti–mouse antibody (Jackson ImmunoResearch Laboratories; 1:2,500).

with a monoclonal antibody (Research Diagnostics; 1:2,500) and a second-

ported as bath potentials.

5 mM Hepes, pH 7.4. Voltage clamp was performed with the excised con-

diameter tips and resistances of 10–20 MΩ.

GM57249 and National Science Foundation grants MCB-9513439, MCB-
	Wentao Yan, Liang Guo, and David Smith for technical assistance.

We thank Michael Forte and Atan Gross for many helpful discussions, and

submitted: 12 July 2001

Accepted: 2 October 2001

References

Ahling, U., M. Thieffry, H. Engelhardt, R. Hegerl, W. Neupert, and S. Nuss-

berger. 2001. Tom40, the pore-forming component of the protein-conducting

TOM channel in the outer membrane of mitochondria. J. Cell Biol. 153:

1151–1160.

Antonsson, B., F. Conti, A. Ciavatta, S. Montessuit, S. Lewis, I. Martinou, L. Ber-

gologomerization is required for channel-forming activity in liposomes and to

Antonsson, B., S. Montessuit, S. Bancher, and J.C. Martinou. 2001. Bax is pre-

dent as a high molecular weight oligomer/complex in the mitochondrial mem-

1997. Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells

on mouse liver inner mitochondrial membrane channel activity. J. Biol.

Chem. 267:8123–8127.

Colombini, M., E. Blachly-Dyson, and M. Forte. 1996. VDAC, a channel in the outer

mitochondrial membrane. In Ion Channels. Vol. 4. T. Narahashi, edi-

recordings of membranes usually non-accessible to patch-clamp pipette elec-

Decker, G.L., and J.W. Greenawalt. 1977. Ultrastructural and biochemical studies of

mitoplasts and outer membranes derived from french-pressed mitochon-

Goping, I.S., A. Gross, J.N. Lavie, M. Nguyen, R. Jemmerson, K. Roth, S.J.

Korsmeyer, and G.C. Shore. 1998. Regulated targeting of BAX to mito-

Gross, A., J. Jocckel, M.C. Wei, and S.J. Korsmeyer. 1998. Enforced dimerization of

BAX results in its translocation, mitochondrial dysfunction and apoptosis.

EMBO J. 17:5878–5885.

Gross, A., K. Pitchler, E. Blachly-Dyson, E. Basso, J. Jocckel, M.C. Baskis, S.J. Kors-

meyer, and M. Forte. 2000. Biochemical and genetic analysis of the mito-

chondrial response of yeast to BAX and BCL-X(L). Mol. Cell. Biol. 20:

3125–3126.

patch-clamp techniques for high-resolution current recording from cells and

cell-free membrane patches. Pfliigers Arch. 381:85–100.

Hill, K., K. Model, M.T. Ryan, K. Dietmeier, F. Martin, R. Wagner, and K. Pfann-

ner. 1998. Tom40 forms the hydrophilic channel of the mitochondrial im-

Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer Association, Sunder-

Kluck, R.M., E. Bossy-Wetzel, D.R. Green, and D.D. Newmeyer. 1997. The re-

lease of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of

Künkele, K.P., S. Heins, M. Dembowski, F.E. Nargang, R. Benz, M. Thieffry, J. Walsl,

1009–1019.

Lewis, S., S.S. Berbell, S. Patel, J.C. Martinou, and B. Antonsson. 1998. Purifica-

tion and biochemical properties of soluble recombinant human Bax. Protein

Liu, X., C.N. Kim, J. Yang, R. Jemmerson, and X. Wang. 1996. Induction of apop-

totic program in cell-free extracts: requirement for dATP and cytochrome c.

Lohrer, T.A., R. Jensen, and K.W. Kinnally. 1997. The Tom23 import protein is re-

quired for normal activity of a mitochondrial inner membrane channel. J. Cell

Mannella, C.A. 1982. Structure of the outer mitochondrial membrane: ordered ar-

Murphy, R., E. Schneider, and K.W. Kinnally. 2001. Overexpression of Bel-2 sup-

presses the calcium activation of a mitochondrial megachannel. FEBS Lett.

497:75–76.

with a conserved homolog, Bax, that accelerates programmed cell death.

Comparison of the effects of bax-expression in yeast under fermentative and

terminary conditions: investigation of the role of adenine nucleotides carrier

Priaulx, M., B. Chaudhuri, A. Clow, N. Camougird, and S. Manon. 1999b. In-

vestigation of bax-induced release of cytochrome c from yeast mitochondria

permeability of mitochondrial membranes, role of VDAC and ATP require-

Saito, M., S.J. Korsmeyer, and P.H. Schlesinger. 2000. BAX-dependent transport of

Schendel, S.D., J. De Blas, Z. Xue, M.O. Montal, S. Matuyama, M. Montal, and J.C.

Downloaded from jcb.rupress.org on July 9, 2017

