Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice

Wei Hsu, Reena Shakya, and Frank Costantini

Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032

Axin is a component of the canonical Wnt pathway that negatively regulates signal transduction by promoting degradation of β-catenin. To study the role of Axin in development, we developed strains of transgenic mice in which its expression can be manipulated by the administration of doxycycline (Dox). Animals carrying both mouse mammary tumor virus (MMTV)–reverse tetracycline transactivator and tetracycline response element (TRE)–Axin–green fluorescent protein (GFP) transgenes exhibited Dox-dependent Axin expression and, when induced from birth, displayed abnormalities in the development of mammary glands and lymphoid tissues, both sites in which the MMTV promoter is active. The transgenic mammary glands underwent normal ductal elongation and side branching during sexual maturation and early pregnancy, but failed to develop lobulo-alveoli, resulting in a defect in lactation. Axin attenuated the expression of cyclin D1, a Wnt target that promotes the growth and differentiation of mammary lobulo-alveoli. Increased apoptosis occurred in the mammary epithelia, consistent with the inhibition of a Wnt/cyclin D1 survival signal by Axin. High levels of programmed cell death also occurred in the thymus and spleen. Immature thymocytes underwent massive apoptosis, indicating that the overexpression of Axin blocks the normal development of T lymphocytes. Our data imply that the Axin tumor suppressor controls cell survival, growth, and differentiation through the regulation of an apoptotic signaling pathway.

Introduction

Axin was first identified as a negative regulator of embryonic axis formation, exerting its effects by modulating the Wnt signal transduction pathway (Zeng et al., 1997). Substantial evidence from several laboratories has since revealed that Axin plays a central role in regulating the stability of β-catenin, a crucial event in cellular responses to Wnt signaling (reviewed in Miller et al., 1999; Kikuchi, 2000; Peifer and Polakis, 2000). Distinct functional domains of Axin mediate its interaction with several Wnt signaling molecules, including disheveled, the serine/threonine kinase GSK-3β, β-catenin, and adenomatous polyposis coli (APC),* and the serine/threonine phosphatase PP2A (Behrens et al., 1998; Fagotto et al., 1999; Hsu et al., 1999; Kikuchi, 2000). In the absence of a Wnt signal, β-catenin forms a complex including Axin, APC, and GSK-3β, leading to its phosphorylation by GSK-3β and degradation through the ubiquitin-dependent proteolysis system (Aberle et al., 1997; Hart et al., 1998; Farr et al., 2000). Wnt signals perturb the formation of this complex by activating the upstream regulators, disheveled, casein kinase Iε, and GBP/Frat1 (Li et al., 1999; Peters et al., 1999; Smalley et al., 1999; Willert et al., 1999; Julius et al., 2000; Kikuchi, 2000). Thus, β-catenin is protected from phosphorylation and consequent degradation. The downstream signaling events are triggered by the accumulation of nuclear β-catenin, which interacts with transcription factors of the lymphoid enhancer factor/T cell factor (LEF/TCF) family (Behrens et al., 1996; Molenaar et al., 1996) to regulate target genes, such as cyclin D1, c-myc, and c-jun (He et al., 1998; Mann et al., 1999; Shtutman et al., 1999; Tetsu and McCormick, 1999). In addition to its interaction with components of the Wnt pathway, Axin has been shown to activate the c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling cascade through...
domains distinct from those regulating Wnt/β-catenin (Zhang et al., 1999).

Members of the Wnt family are important for diverse processes during embryonic, fetal, and postnatal development, including the development of the embryonic axis, central nervous system, limbs, reproductive tract, kidneys, and mammary glands (reviewed in Wodarz and Nusse, 1998). Furthermore, several Wnt signaling molecules have been implicated in the development of different forms of cancer (reviewed in Behrens, 2000; Polakis, 2000). For instance, mammary gland tumors develop in transgenic mice with elevated expression of Wnt-1, Wnt-10b, or the Wnt target gene cyclin D1 (Tsukamoto et al., 1988; Wang et al., 1994; Lane and Leder, 1997). The development of colorectal cancers is commonly initiated by mutations of APC in humans and mice (reviewed in Behrens, 2000; Polakis, 2000). Expression of a stabilized form of β-catenin can lead to the formation of hair follicle and mammary tumors in transgenic mice (Gat et al., 1998; Imbert et al., 2001), and mutations affecting the stability of β-catenin have been identified in human malignancies (reviewed in Polakis, 2000). Finally, the recent finding that Axin is mutated in hepatocellular carcinomas suggests that it acts as a tumor suppressor (Satoh et al., 2000).

Although some understanding of the role of Axin in early mouse embryogenesis has been gained through studying loss of function mutations (Gluecksohn-Schoenheimer, 1949; Jacobs-Cohen et al., 1984; Perry et al., 1995; Zeng et al., 1997), its role in later developmental events mediated by Wnt signals is unclear, in part because of the early embryonic lethality of Axin mutants. To further investigate the role of Axin in mammalian development and tumorigenesis, we have developed bi-transgenic strains of mice in which the overexpression of Axin can be induced in several tissues, using the tetracycline-dependent activation system (Gossen et al., 1995). We have used these mice to examine the consequences of Axin overexpression in the postnatal development of the mammary gland and lymphoid tissues. Our results imply that the Axin tumor suppressor plays a role in cell survival, growth, and differentiation through the regulation of an apoptotic signaling pathway.

Results
Regulated expression of Axin in transgenic mice
To investigate the potential ability of Axin to regulate Wnt signal transduction during mammary gland development and tumorigenesis, Axin was expressed in transgenic mice using the promoter/enhancer of mouse mammary tumor virus (MMTV). Initial attempts to establish lines of mice expressing an MMTV–Axin transgene were unsuccessful (unpublished data). We suspected this might be due to pre- or perinatal lethal effects of the transgene, since the MMTV promoter/enhancer is active in several tissues in addition to the mammary gland (Hennighausen et al., 1995). We therefore attempted to express Axin using a tetracycline-dependent activation system, which had been successfully used for conditional gene expression in eukaryotic cells and in various tissues of mice (reviewed in Saez et al., 1997). In this system, three components are required to achieve tetracycline-dependent expression. First, the reverse tetracycline transactivator (rtTA), a fusion of tet-repressor DNA binding domain and VP16 transcriptional activation domain, is expressed in a tissue- or cell-specific pattern, using appropriate regulatory sequences. Second, a tetracycline response element (TRE) is used to control expression of the target gene. Third, the drug doxycycline (Dox), which can be administered in a temporally specific fashion, induces rtTA to bind to the TRE, turning on the expression of the target gene (Gossen et al., 1995).
To express Axin in a tetracycline-dependent manner, the two DNA constructs MMTV–rtTA and TRE2–Axin–green fluorescent protein (GFP) (Fig. 1 A) were used separately to generate transgenic mice (see Materials and methods for details). For easier detection of transgene expression, a myc epitope tag (MT) was inserted at the amino terminus of Axin. The enhanced GFP was included under the control of an internal ribosomal entry sequence (IRES2) as an additional reporter for expression of the Axin transgene (Fig. 1 A). One MMTV–rtTA transgenic line (MTA4), which was used for the studies reported here, expressed rtTA mRNA strongly in the mammary gland, salivary gland, thymus, and testis, weakly but consistently in the spleen, and not detectably in the intestine, heart, liver, or lung, as determined by RT-PCR analysis (Fig. 1 B).

Two different TRE2–Axin–GFP lines, TA11 and TA32, were used in these studies. By crossing either of these lines with MTA4 (in the absence of Dox induction), we were able to obtain the double transgenic mice, which were born without any obvious defects. To induce the expression of MT–Axin and GFP in these offspring, their mothers were fed Dox in the drinking water starting at the time of parturition, and the offspring were maintained on Dox throughout their lives. Expression of MT–Axin and GFP, as well as phenotypic abnormalities, were only observed in the Dox-induced double transgenic offspring (hereafter referred to as DDTg mice), and never in single transgenic siblings treated with Dox, or double transgenics in the absence of Dox (unpublished data). DDTg mice derived from lines TA11 and TA32 expressed MT–Axin and GFP both in the testes and mammary glands, whereas only line TA32 showed expression in the thymus (see Fig. 6 A). Therefore, both TA lines were used for mammary gland analyses, whereas line TA32 was used to study the effects of Axin in lymphoid organs. Western blot analyses with anti-Axin antisera detected a novel MT–Axin protein in the mammary gland and thymus was used to study the effects of Axin in lymphoid organs. Western blot analyses with anti-Axin antisera detected a novel MT–Axin protein in the mammary gland and thymus of DDTg mice, in addition to the endogenous Axin proteins of 120 and 140 kD in control tissues (Fig. 1 C). The transgenic MT–Axin protein was expressed at 1.5 and 2.5 the level of endogenous Axin in mammary gland and thymus, respectively. Approximately 40% of DDTg mice derived from line TA32 died at ∼3 wk of age (with Dox treatment starting at the day of birth), whereas those from line TA11 rarely died prematurely. The cause of death in these animals has not been determined, and most of the mice that survived this critical period went on to live to adulthood.

Figure 2. Dox-induced expression of Axin inhibits maturation of the mammary gland. (A) In a pup born to a control female (left) the stomach filled with milk is clearly visible (arrowhead). In two pups born to a female DDTg mouse (center and right) no milk was visible in the stomachs. (B and C) Hematoxylin- and eosin-stained sections of mouse mammary glands at 2 d postpartum. In a control mouse (B), the lobulo-alveoli were fully developed and lactation effects were seen. In a DDTg mouse at 2 d postpartum (C), there was hypoplastic development of lobulo-alveoli with very little lactation. (D) Immunoblot analyses showed the expression of casein, a marker for terminally differentiated mammary epithelium, in mammary glands at various developmental stages (lane 1, 2-mo-old virgin; lane 2, 9.5 dpc; lane 3, 16.5 dpc). K14 was also analyzed as a control for epithelial cell content of the mammary glands. Bars, 250 μm.

However, when DDTg females were maintained on Dox throughout their pregnancy the stomachs of all their pups appeared empty (Fig. 2 A, two pups on the right), suggesting a deficiency in lactation. The pups were otherwise normal, as they could be rescued by fostering to normal, lactating females.

The mammary epithelium develops during three phases: fetal development, puberty, and pregnancy (reviewed in Sakakura, 1991). In female fetuses, the mammary buds develop beginning at E12, they become mammary sprouts at E16, and by birth each has ramified into a small mammary gland tree with 15–20 branching ducts. The gland then remains static until puberty. During sexual maturation, the distal end of each duct grows and forms a terminal end bud, a specialized and highly proliferative epithelial structure. The end bud elongates and ramifies to form the mammary ductal tree system, which spreads throughout the fatty stroma. Finally, during pregnancy, the mammary epithelial ducts form side branches that develop into lobulo-alveolar structures, eventually filling the entire mammary fat pad. In a histological section of normal lactating mammary gland, the stroma is densely packed with alveolar lobules, which are well extended and filled with milk (Fig. 2 B). However, the lactating mammary glands of DDTg females showed severe hypoplasia of the lobulo-alveoli (Fig. 2 C; n = 6, four from line TA11 and two from line TA32). They were very small in diameter and contained little if any milk. This hypoplastic alveolar development was accompanied by a deficiency in terminal differentiation of mammary epithelia, as shown by...
reduction in expression of the milk protein, casein, at late pregnancy (Fig. 2 D).

A more thorough examination of mammary gland development in DDTg females by whole mount staining showed that the mammary ductal tree system developed normally, and that side branching had occurred at mid-pregnancy (8.5 dpc). However, at late pregnancy (16.5 dpc), although the DDTg mammary epithelia showed continued side branching, their alveolar development was severely hypoplastic (J–L) as compared with controls at the same stage (G–I). Bars: (A, D, G, and J) 3 mm; (B, E, H, and K) 1 mm; (C, F, I, and L) 250 μm.

The defects in mammary gland development in the DDTg mice were remarkably similar to those in mice lacking cyclin D1, in which the mammary epithelium also undergoes normal elongation and side branching, but fails to form alveolar lobules (Fantl et al., 1995; Sicinski et al., 1995). As cyclin D1 has been identified as a bona fide target gene of the Wnt/β-catenin signaling pathway (Shtutman et al., 1999; Tetsu and McCormick, 1999), we examined the possible inhibitory effects of Axin on Wnt signaling. Even though high levels of cytoplasmic β-catenin were consistently exhibited in normal epithelia of developing mammary alveoli (Fig. 5 A), the DDTg mice showed relatively lower levels of β-catenin at the same stage (Fig. 5 B, n = 3). In normal mammary epithelia undergoing alveolar development, cyclin D1 was uniformly and strongly expressed, as revealed by immunostaining (Fig. 5 C). However, its expression was significantly reduced in the mammary epithelia of DDTg mice (Fig. 5 D, n = 2). Immunoblot analyses showed an approximately ninefold reduction of the steady-state level of cyclin D1 in the lactating mammary gland epithelium of DDTg mice (Fig. 5 E). Therefore, the inhibitory effects of MT–Axin on alveolar development in the lactating mammary

Figure 4. Inducible expression of Axin in the mammary gland epithelia of DDTg mice. Immunohistochemical staining with an anti-myc antibody localized MT–Axin to the epithelia of mammary glands in DDTg mice (B and D). The mammary glands of control mice showed only background staining (A and C). (A and B) 8.5 dpc; (C and D) 2 d postpartum. Bars, 125 μm.
Reduced β-catenin and cyclin D1 expression and increased apoptosis in lactating mammary gland epithelia of DDTg mice. (A and B) Sections were immunostained with an anti-β-catenin antibody (red staining), and counterstained with hematoxylin (blue staining). (A) High levels of cytoplasmic β-catenin (arrowheads) were observed in normal epithelia of lactating mammary gland at 2 d postpartum. (B) The mammary gland of DDTg mice at 2 d postpartum showed reduced levels of β-catenin. (C and D) Immunohistochemical staining with an anti-cyclin D1 antibody revealed a reduced level of cyclin D1 expression in the epithelia of lactating mammary gland at 2 d postpartum. (E) The lactating mammary gland of a control mouse showed intense and uniform staining. (D) Mammary epithelia of DDTg mice showed reduced staining and, in some areas (indicated by arrowheads), lack of staining above background levels. (F) Protein lysates from control and DDTg mammary gland at 17.5 dpc were immunostained with (left) anti-myc antibody to detect transgenic expression of MT–Axin, (center) anti-K14 (50 kD) antibody, serving as a control of the epithelial cell content of the mammary gland, and (right) anti-cyclin D1 antibody. The level of cyclin D1 (36 kD) was ninefold reduced in the DDTg mammary epithelia compared with the control, after normalization for K14 levels. The positions of protein molecular weight markers are indicated at the left. Arrowheads indicate the presence of the specific protein bands and the asterisk indicates nonspecific bands. (F and G) TUNEL staining of control (F) and DDTg (G) mouse mammary glands at 2 d postpartum. The epithelia of DDTg lactating mammary gland displayed increased numbers of apoptotic cells. Bars: (A and B) 62.5 μm; (C, D, F, and G) 125 μm.

Figure 5.

Dox-induced overexpression of Axin interferes with normal thymic development

Histological analyses of the DDTg mice that died at about 3 wk of age revealed no abnormalities in the heart, intestine, kidney, liver, lung, pancreas, salivary gland, skin, or testes. However, all of the DDTg mice (derived from TRE2–Axin–GFP line TA32), even those that survived, shared a defect in the thymus, which was much smaller than in normal mice at the same age. We analyzed a total of 10 DDTg animals, 6 at 3 mo and 4 at 4 mo of age. The thymus was one of the tissues that expressed rtTA at high levels in MMTV–rtTA transgenic mice (Fig. 1 B), and the Dox-inducible TRE–Axin–GFP transgene was also expressed in this tissue, as indicated by whole mount fluorescence microscopy (Fig. 1 C and Fig. 6 A).

The progenitors of T cells originate in the bone marrow and arrive at the thymus where they develop into mature thymocytes (for review see Paul, 1999). A normal thymus has two lobes (left and right), each containing several lobules, which are further divided into cortical and medullary regions. The cortex contains many immature and resting thymocytes that express low levels of the T cell marker CD3. Mature thymocytes express high levels of CD3 and reside in medulla, an epithelial enriched environment (Paul, 1999).

Histological analyses of thymus from DDTg mice revealed a lack of normal organization. In normal 3-wk-old mice (Fig. 6 D), the thymic lobules are characterized by a darkly stained cortex and a lightly stained medulla. In contrast, the thymuses of 3-wk-old DDTg mice showed no separate lobules within a lobe and had no discernible cortex and medulla (Fig. 6 E; n = 6). In 4-wk-old DDTg mice, these defects were similar except that the thymus was even smaller in size (Fig. 6 F; n = 4).

The medulla and cortex could be easily distinguished by staining the epithelia with anticytokeratin antibodies and the thymocytes with methyl green (Fig. 6 G). The thymocyte-enriched cortical region was absent in the thymuses of 3- and 4-wk-old DDTg mice (Fig. 6, H and I), implying the loss of immature thymocytes that normally reside in the cortex. Because the expression of CD3 is low in immature thymocytes and high in mature thymocytes (Paul, 1999), CD3 staining was also used to differentiate these two cell types and regions. In control thymus, mature thymocytes in the medulla stained more darkly, whereas immature thymocytes in the cortex showed lighter staining (Fig. 6 E). This method confirmed that the immature thymocyte–enriched cortical region was lost in DDTg mice (Fig. 6 C).
The paucity of immature thymocytes in the thymus suggested that expression of Axin in the DDTg mice might have induced apoptosis of these cells. Indeed, large numbers of apoptotic thymocytes with fragmented nuclei were observed in the thymic cortex of 3-wk-old DDTg mice (Fig. 7, A and B). Whereas programmed cell death occurs normally during the maturation of thymocytes (Sebzda et al., 1999), TUNEL staining confirmed that there was a massive increase in apoptosis in the thymuses of DDTg mice, especially in the cortical region (Fig. 7, C and D). We also examined other lymphoid organs for the presence of apoptotic cells, and observed increased apoptosis and decreased numbers of lymphocytes in the spleen (Fig. 7, E–H) and lymph nodes (unpublished data), although the effect was not as severe as in the thymus.

Discussion

An important role of Axin in early embryogenesis has been demonstrated through the analysis of loss of function mutants in mice (Zeng et al., 1997) and zebra fish (Heisenberg et al., 2001) as well as expression of wild-type and dominant-negative forms in frog embryos (Zeng et al., 1997; Itoh et al., 1998; Fagotto et al., 1999). However, little is known about the role of Axin in later developmental events, e.g., its capacity to negatively regulate many Wnt-mediated signaling events during fetal and postnatal development. Axin has also been implicated as a tumor suppressor, based on its mutation in human hepatocellular carcinoma (Sato et al., 2000). However, the mechanism of its function as a tumor suppressor has not yet been investigated in an animal model.

One approach to these questions, which we describe in this paper, is to generate transgenic mice in which the expression of wild-type Axin (or, potentially, mutant forms) can be induced to high levels in a regulated manner. We have developed MMTV–rtTA and TRE2–Axin–GFP transgenic mice, or in double transgenic mice without Dox administration (unpublished data). (D–F) Hematoxylin- and eosin-stained sections of thymus from a 3-wk-old control mouse (D), a 3-wk-old DDTg mouse (E), and a 4-wk-old DDTg mouse (F). Immunohistological staining of thymus was performed with anti-CD3 (B and C) or anti-pan cytokeratin (G–I) antibody. (G–I) Sections were stained with anti-cytokeratin antibodies in brown color to mark the thymic epithelia, whereas thymocytes were counterstained with methyl green. In a control mouse (G), the medulla showed heavy brown staining, whereas the green stain indicated the many immature thymocytes in the cortex. In the thymus of a 3-wk-old (H) and a 4-wk-old (I) DDTg mouse, the thymocyte-enriched cortex had disappeared. The T cell marker CD3 is expressed highly in mature thymocytes and weakly in immature thymocytes. This marker distinguished the medulla (m) from cortex (c) in a normal, 4-wk-old thymus (B). However, in the thymus of 4-wk-old DDTg mice, no distinguishable regions could be observed, indicating a loss of the cortical region and a dramatic decrease in the population of thymocytes expressing low levels of CD3 (C). Bars: (A, G, H, and I) 250 μm; (B and C) 125 μm; (D–F) 1 mm.
also be noted that this pathway plays an important role during the earliest fetal stages of mammary gland development, as shown by the absence of mammary glands in LEF-1 mutant mice (van Genderen et al., 1994).

Several members of the Wnt family are expressed at various stages of normal mammary gland development, including Wnt-4, -5b, -6, -7b, and -10b in the epithelium and Wnt-2, -5a, and -6 in the stromal compartment (for review see Robinson et al., 2000). This raises the possibility that some Wnts may mediate epithelial induction by the stroma, whereas others may serve in an autocrine pathway. To date, the only member of the Wnt family whose role in mammary gland development has been evaluated using a null mutation is Wnt-4, which is expressed in the mammary epithelium during early to mid-pregnancy. In these experiments (Brisken et al., 2000), mammary buds from E14.5 Wnt4−/− fetuses (which die perinatally) were transplanted into wild-type mice, where their subsequent development could be assessed. The mutant mammary glands showed a specific defect in progesterone-induced ductal side branching early in pregnancy, indicating that Wnt-4 functions downstream of progesterone signaling in this process. However, at later stages of pregnancy, the mutant epithelia exhibited a more normal pattern of branching and alveolar development, suggesting that other members of the Wnt family expressed later in mammary gland development may eventually compensate for the lack of Wnt-4 (Brisken et al., 2000).

In the present study, we have shown that the induced overexpression of Axin in the mammary epithelium of DDTg mice interferes with the later phases of mammary gland development. The gland develops normally during the early stages of pregnancy, forming a normal ductal tree system and undergoing extensive side branching. Thus, Axin overexpression does not appear to interfere with the Wnt-4–mediated signaling events, which are required specifically for lateral branching during mid-pregnancy (Brisken et al., 2000). However, later in pregnancy the maturation of DDTg mammary tissue is severely impaired, with the absence of mature lobulo-alveolar structures and a failure of lactation. Given the established activity of Axin as a negative regulator of the canonical Wnt/β-catenin pathway, it is likely that Axin is interfering with a Wnt signaling event required for alveolar development. Interestingly, the lack of an effect of Axin on ductal side branching is consistent with evidence that Wnt-4 may signal through an alternative pathway (Kuhl et al., 2000) rather than the canonical Wnt/β-catenin pathway (Shimizu et al., 1997; Wong et al., 1994). If Wnt-4 signaled through the canonical Wnt/β-catenin pathway, it is likely that overexpression of Axin would have also had an effect during the stage of mammary gland development at which Wnt-4 is required.

Although the mechanisms by which various Wnts contribute to the control of mammary gland development are poorly understood, one downstream gene that appears to play an important role is cyclin D1. The cyclin D1 gene has been identified as a target of the canonical Wnt pathway, which is activated by β-catenin and TCF/LEF factors (Shutman et al., 1999; Tetsu and McCormick, 1999). In mice with a targeted mutation in cyclin D1, the mammary ductal tree developed normally and formed many side branches early in pregnancy, however there was a dramatic impairment in the expansion of mammary epithelium and development of alveolar lobules in late pregnancy (Fantl et al., 1999). In the DDTg mice, we found that high levels of Axin appeared to reduce the accumulation of cytoplasmic β-catenin in the mammary epithelia. The expression of cyclin D1 in these cells was also greatly reduced, and the mammary gland phenotype was very similar to that of the cyclin D1 knockout mice. Thus, we propose that Axin can inhibit a Wnt-mediated signal required for the expression of cyclin D1 (Fig. 8). We also observed an increased number of apoptotic cells in the mammary epithelia of DDTg mice, suggesting that a Wnt signal inhibited by Axin normally provides a survival signal for these cells. This result is consistent with
recent reports that Wnt signaling may inhibit apoptosis through a β-catenin/Tcf-dependent mechanism in addition to promoting cell growth and proliferation (Bournat et al., 2000; Reya et al., 2000; Chen et al., 2001; Ioannidis et al., 2001). The ability of cyclin D1 to prevent programmed cell death may also play a role in Wnt-mediated, anti-apoptotic effects (Albanese et al., 1999).

Expression of Axin under the MMTV promoter/enhancer also caused abnormal development of the thymus, with a massive apoptosis of immature thymocytes. The progenitors of T cells are CD4–, CD8– double-negative thymocytes, which differentiate into double-positive cells, the largest cell population in the thymus. Double-positive thymocytes rest in the cortex and await signals to develop into single-positive, mature thymocytes during a series of clonal selections, which are required for lobulo-alveolar development. See text for references. Diagram modified from Robinson et al. (2000).

Axin also has a pro-apoptotic activity that appears to be independent of its effects on the Wnt pathway, as shown by the induction of apoptosis in several types of cultured cells expressing elevated levels of Axin (Neo et al., 2000; Satoh et al., 2000; unpublished data). Besides regulating the Wnt/β-catenin pathway, Axin induces JNK/SAPK activity through its MEKK1 binding and self-binding domains (Zhang et al., 1999). Members of the JNK/SAPK family activate an apoptotic pathway in various cultured cells (Ip and Davis, 1998) and are required for the induction of neuron-specific apoptosis in the development of mouse brain (Yang et al., 1997; Kuan et al., 1999). It is therefore possible that Axin induces programmed cell death through a mechanism associated with its activation of the JNK/SAPK pathway. However, although programmed cell death occurred in the mammary glands and lymphoid tissues of DDTg mice, no apoptosis or phenotypic defects were observed in the testes, where strong expression of the transgene was also observed (unpublished data). Furthermore, the lack of any effect on the development and proliferation of the mammary epithelium until the late stages of pregnancy in DDTg mice argues against a generalized apoptotic activity of Axin. Thus, it appears more likely that the apoptotic effects of Axin are due to the inhibition of Wnt signals that specifically promote cell survival in certain tissues.

Materials and methods

Transgene constructs

Plasmid pTRE2–Axin–GFP was constructed by first inserting the 1.4-kb SacII-Nol fragment of IRES and enhanced GFP (pIRE2-EGFP; CLONTECH Laboratories, Inc.) in the same restriction sites upstream of human β-globin BamHI-PstI 3′ fragment (βG3′). The 3.3-kb Nhel-AvrII fragment of myc-tagged, full-length Axin cDNA (Zeng et al., 1997) was added to the Nhel site located 5′ to the IRES2–GFP–hβG3′. The 6.4-kb Nhel-EcoRV fragment of MT–Axin–IRE2–GFP–hβG3′ was then inserted into the same restriction sites downstream of TRE2, which consisted of seven copies of the tet operator and a minimal CMV promoter (CLONTECH Laboratories, Inc.).

To create plasmid pMMTV–rtTA, a 1.0-kb blunt-ended EcoRl and BamHI fragment, which encoded rtTA, was inserted into the blunt-ended Nhel and BamHI sites that are downstream of the LTR of mouse MMTV (1.3-kb HindIII-Smal fragment of pMSG vector; Amersham Pharmacia Biotech) and upstream of hβG3′. Both plasmids contained noncoding exon2, exon3, and polyadenylation signal of hβG3′ at their 3′ regions to ensure proper processing of the transcripts.

Generation and breeding of transgenic mice

All animals were housed under pathogen-free conditions in accordance with institutional guidelines. Gel-purified 7.4-kb TRE2–Axin–GFP and 4.2-kb MMTV–rtTA DNA fragments at a concentration of 3 μg/ml were separately microinjected into the pronuclei of fertilized mouse eggs. The injected embryos were cultured in vitro to the two-cell stage and transferred into the oviducts of 0.5-d pseudopregnant female mice (Hogan et al., 1994). Mice were genotyped for the presence of the transgenes by PCR and Southern blot analyses. For PCR, the primers rTA01, 5′-cattgagttagtaggagc-3′, and rTA02, 5′-aaggttctttacttcg-3′, were used to identify the MMTV–rtTA transgene,
Dox/sucrose stock solution. and the two lines TA11 and TA32 were used in these studies. Dox (2 mg/
out of 29 TRE2–Axin–GFP founders possessed the integrated transgene, expressed the rtTA as determined by RT-PCR, was used in these studies. 3 transgene by PCR and Southern analyses. One of these lines, MTA4, which the MMTV–rtTA and TRE2–Axin–GFP transgenic mice, respectively.

72, within the noncoding exon3 of h
3
garet Neville for reagents.

We thank Xiaolin Liang and Zaiqi Wu for excellent technical assistance, Naoya Asai (Columbia University) for suggestions, Jan Kitajewska (Columbia University) for comments on the manuscript, and Roel Nusse and Margaret Neville for reagents.

References

