A NEW EMBEDDING TECHNIQUE FOR ELECTRON MICROSCOPY,
COMBINING A WATER-SOLUBLE EPOXY RESIN (DURCUPAN)
WITH WATER-INSOLUBLE ARALDITE

WILLY STÄUBLI. From the Research Laboratories of the Pharmaceutical Department of CIBA,
Limited, Basle, Switzerland

A new water-soluble embedding agent, trial product CIBA X 133/2097\(^1\) has recently been
introduced for selected electron microscopic investigations (1). Durcupan subsequently proved
to be miscible with the water-insoluble epoxy resin Araldite\(^2\) which is commonly used for tissue
embedding (2). In this way, animal tissues can be embedded in Araldite without being brought into
contact with ethanol or acetone. By replacing Durcupan with Araldite as final embedding
medium, ultrathin sections are more readily obtained than by employing Durcupan alone. The
method described below displays some points of resemblance to the one devised by Craig et al. (3)
for Epon 812.

MATERIALS AND METHODS

Liver, kidneys, and pancreas of white rats were
fixed in 2 per cent osmium tetroxide for 1 hour
at a temperature of 4°C. The tissue was then
dehydrated at a temperature of 4°C in accordance
with the following schedule:—

<table>
<thead>
<tr>
<th>Time</th>
<th>Water</th>
<th>Durcupan</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–30 min.</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>15–30 min.</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>15–30 min.</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>30–60 min</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>30–60 min</td>
<td>—</td>
<td>100</td>
</tr>
</tbody>
</table>

The tissue, now free of water and impregnated
with Durcupan at room temperature was em-
bedded in Araldite by passing it through the
following sequence of baths, Araldite II being kept at 50°C:—

<table>
<thead>
<tr>
<th>Time</th>
<th>Durcupan</th>
<th>Araldite I</th>
<th>Araldite II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hr.</td>
<td>70</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>1 hr.</td>
<td>50</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Several hrs.</td>
<td>30</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>or overnight</td>
<td>—</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>1 hr.</td>
<td>—</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3 X 30 min.</td>
<td>—</td>
<td>—</td>
<td>100</td>
</tr>
</tbody>
</table>

Araldite I consists of Araldite M (10 ml) and
hardener 964 B (10 ml); Araldite II contains in
addition the accelerator 964 C (0.4 ml). The tissue
was allowed to harden for 24 to 48 hours at a
temperature of 50°C.

The blocks thus obtained were cut without
difficulty. Ultrathin sections were produced by
cutting with a diamond knife on a Porter-Blum or
LKB microtome.

For the material shown in Figs. 1, 2, and 5 the
staining agent used was lead hydroxide (4); in
Figs. 3 and 6 it was a mixture of saturated uranyl
acetate and 1 per cent potassium permanganate
(5), without washing with citric acid, and in Fig.
4 it was saturated uranyl acetate.

The microscope employed was an Elmiskop I,
operated with a double condenser and a 50 \(\mu\)
objective aperture.

OBSERVATIONS

Fig. 1 shows a segment from the cytoplasm of a rat
liver cell. Besides the mitochondria with their
characteristic internal structure, one can also see
parts of the Golgi apparatus and of the endo-
plasmic reticulum, the structure of which is more

\(^1\) Commercially available under the registered trade
mark Durcupan (Fluka AG., Buchs, Switzerland).

\(^2\) Registered trade mark of CIBA Ltd.
clearly visible in Fig. 2. A cut microbody (6) can be observed in the center of Fig. 1. If the section has been suitably cut, the dense core of the microbodies displays parallel striations, the period of which, measured with a microdensitometer, is approximately 48 Å (Fig. 3).

Fig. 4 shows a section through three exocrine pancreatic cells bordering on a gland duct. Dense zymogen granules and a few mitochondria can be seen in the cytoplasm which is rich in endoplasmic reticulum. The nuclei of the pancreatic cells sometimes contain dense granules measuring 100 to 250 mÅ in diameter (Fig. 5). It is not possible to decide whether there is a connection between these granules and the "perichromatin granules" described by Watson (7).

Fig. 6 represents a segment from an epithelial cell of the proximal tubule of the kidney. The invaginations of the cell membrane display a distinct double structure (insert, Fig. 6).

SUMMARY

A new method for embedding animal tissues without using either ethanol or acetone as dehydrating agent has been described. Ultrathin sections are readily obtained.

Received for publication, July 20, 1962.

REFERENCES

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>bm</td>
<td>basement membrane</td>
</tr>
<tr>
<td>cm</td>
<td>cell membrane</td>
</tr>
<tr>
<td>d</td>
<td>pancreatic duct</td>
</tr>
<tr>
<td>er</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>G</td>
<td>Golgi apparatus</td>
</tr>
<tr>
<td>m</td>
<td>mitochondrion</td>
</tr>
<tr>
<td>mb</td>
<td>microbody</td>
</tr>
<tr>
<td>N</td>
<td>nucleolus</td>
</tr>
<tr>
<td>nm</td>
<td>nuclear membrane</td>
</tr>
<tr>
<td>z</td>
<td>zymogen granule</td>
</tr>
</tbody>
</table>

Figure 1

Part of a rat liver cell. × 27,000.

Figure 2

Ergastoplasmic profiles of a hepatic cell. × 28,000.

Figure 3

Microbody with dense core showing striations. × 128,000.
Figure 4
Exocrine pancreatic cells bordering on a pancreatic duct. × 5,000.

Figure 5
Nucleus of a pancreatic cell with intranuclear dense granules (arrows). × 17,000.

Figure 6
Part of an epithelial cell of the proximal tubule of rat kidney. × 36,000. Insert showing double structure of the cell membrane. × 90,000.