Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response

Department of Radiation Oncology, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

Fox Chase Cancer Center, Philadelphia, PA 19111

A number of proteins are recruited to nuclear foci upon exposure to double-strand DNA damage, including 53BP1 and Rad51, but the precise role of these DNA damage–induced foci remain unclear. Here we show in a variety of human cell lines that histone deacetylase (HDAC) 4 is recruited to foci with kinetics similar to, and colocalizes with, 53BP1 after exposure to agents causing double-stranded DNA breaks. HDAC4 foci gradually disappeared in repair-proficient cells but persisted in repair-deficient cell lines or cells irradiated with a lethal dose, suggesting that resolution of HDAC4 foci is linked to repair. Silencing of HDAC4 via RNA interference surprisingly also decreased levels of 53BP1 protein, abrogated the DNA damage–induced G2 delay, and radiosensitized HeLa cells. Our combined results suggest that HDAC4 is a critical component of the DNA damage response pathway that acts through 53BP1 and perhaps contributes in maintaining the G2 cell cycle checkpoint.

Introduction

A number of proteins, including 53BP1 (Schultz et al., 2000; Anderson et al., 2001; Rappold et al., 2001; Xia et al., 2001), Rad51, γH2AX, NBS1/Mre11/Rad50 complex (Maser et al., 1997; Paull et al., 2000), and BRCA1 (Scully et al., 1997; Zhong et al., 1999) have been observed to accumulate at multiple foci in the nucleus in response to DNA damage. 53BP1 was first identified in a yeast two-hybrid screen as one of two proteins that interacted with the transactivation domain of p53. Recently it was shown that 53BP1 participates in the phosphorylation of p53 and Chk2 and in the maintenance of S and G2 cell cycle checkpoints after DNA damage (DiTullio et al., 2002; Fernandez-Capetillo et al., 2002; Wang et al., 2002). 53BP1 foci are detectable within minutes after exposure to ionizing radiation, the number of foci increases with increasing dose, and the foci colocalize with that of γH2AX, suggesting an early role in the DNA damage response for 53BP1, as perhaps a marker of unrepaired double-strand breaks. Recent studies of cell lines derived from H2AX knockout mice show that this gene mediates radiation resistance and is essential for various components of the DNA damage response pathway to form foci (Bassing et al., 2002; Celeste et al., 2002). Although these data point to a role of chromatin in the DNA damage response, it remains unclear to what extent these foci represent alterations of the underlying chromatin.

Chromatin undergoes expansion and compaction in the course of many fundamental cellular processes, including gene expression, differentiation, and cell cycle progression. These alterations of the chromatin are largely mediated by histone acetylases and histone deacetylases (HDACs). HDACs act on key acetylated lysine residues of core histones to induce chromatin compaction, which in turn results in gene silencing and heterochromatin formation (Taunton et al., 1996; Yang et al., 1996; Dangond et al., 1998; Emiliani et al., 1998; Buggy et al., 2000; Hu et al., 2000). Class I HDACs (HDAC1, HDAC2, HDAC3, and HDAC8) are similar to the yeast deacetylase Rpd3 (Yang et al., 1996; Dangond et al., 1998; Emiliani et al., 1998; Buggy et al., 2000; Hu et al., 2000). Class II HDACs (HDAC4, HDAC5, HDAC6, and HDAC7) possess catalytic domains homologous to that of yeast Hda1 (Rundlett et al., 1996; Fischle et al., 1999; Grozinger et al., 1999, 1999; Miska et al., 1999; Verdel and Knochlin, 1999;
Results

HDAC4 is recruited to nuclear foci after exposure to double-strand DNA damage

To investigate a potential role of HDACs in the DNA damage response in human cells, we studied the response of HDAC2, 4, and 6 to DNA damage. HeLa cells exposed to γ-irradiation (IR) or etoposide exhibited distinct foci of HDAC4 in their nucleus (Fig. 1 A and D), whereas unirradiated (Fig. 1 A) or UV exposure did not have this effect (Fig. 1 E). In contrast, DNA damage did not induce foci formation by HDAC2 (Fig. 1 I) or HDAC6 (Fig. 1 J) or noticeably alter their intracellular localization. We observed IR-induced HDAC4 foci in both transformed and untransformed cell lines, including the breast cancer cell lines MCF7, PA1, SKBR, and MO59J and K (both of gliomatous origin), the sarcoma cell lines U205, HT29, and HT1080 (latter two are colon cancer lines), and Wi38 and WSC.

Figure 1. Recruitment of HDAC4 to nuclear foci after double-strand DNA damage. HeLa cells that were (A) unirradiated, (B) irradiated with 2 Gy, (C) irradiated and probed with secondary antibody only, (D) irradiated and probed with primary antibody (anti-HDAC4) immunodepleted with the immunizing antigen. (E) HeLa cells exposed to UV (50 J/m²) and (F) 20 μM etoposide were fixed after 1 h and stained with HDAC4 antibodies. (G and H) DAPI stain of cells exposed to UV (G) or etoposide (H). In A, B, D, and F, staining of HDAC4 is seen in the nucleus. In C and E, HDAC4 is not stained in the nucleus. (I) HDAC2 and (J) HDAC6. All staining of irradiated cells was performed 1 h after IR. Bar, 5 μm.
Thus, foci formation by HDAC4 in response to DNA damage appears to be a general cellular response that does not appear to be dependent on p53.

The formation of HDAC4 foci after exposure to DNA damage was not accompanied by significant changes in HDAC4 deacetylase activity or protein levels (Fig. 2, A and B). We noted however a dose-dependent increase in the average number of HDAC4 foci per cell (Fig. 2 C). IR resulted in approximately 30 foci per Gy up to 3 Gy, beyond which the increase in the number of foci with increasing dose was difficult to discern. Kinetics of foci formation was the same between cells exposed to nonlethal (1 Gy) and lethal (8 Gy) doses (Fig. 2 D). HDAC4 foci were evident within 5 min after IR and reached a maximum by 1 h. Interestingly, the number of foci in cells irradiated with 1 Gy progressively decreased to background levels by 24 h after IR. In contrast, the majority (87% ± 7%) of HeLa cells irradiated with 8 Gy retained their HDAC4 foci as long as 48 h after IR. Foci were evident beyond 48 h when there was a high level of cell death (unpublished data). The persistence of HDAC4 foci therefore appears to correlate with lethal doses of IR, which presumably result in accumulation of unrepaired DNA.

Figure 2. Dose and time dependency of DNA damage–induced HDAC4 foci. (A) HDAC4-associated deacetylase activity is not appreciably changed by IR. HDAC4 or Ncor was immunoprecipitated from HeLa lysates and assayed for deacetylase activity. Ncor and HDAC4 treated with TSA serve as positive and negative controls, respectively, for the deacetylase assays. (B) HDAC4 levels do not change after IR. Equal amounts of total protein (25 μg) from HeLa cells were separated via 4–20% gradient SDS-PAGE, transferred to nitrocellulose, and probed with rabbit preimmune serum (left), anti-HDAC4 (right), or anti-α-tubulin antibody (loading control) (bottom). Mock-irradiated (−IR) or irradiated (+IR) cells were harvested 1 h after 3 Gy. (C) HDAC4 foci formation is dependent on the dose of IR. HeLa cells exposed to increasing doses of IR were fixed after 1 h and stained for HDAC4 foci. At least 100 cells were counted for each dose. Error bars represent the SD, and each point represents the average of three experiments. (D) Kinetics of HDAC4 foci formation. HeLa cells irradiated with 1 and 8 Gy were fixed at various times, and the average number of cells showing induced HDAC4 foci was counted. Time is depicted on a log scale. (E) Comparison of the kinetics of foci formation amongst HDAC4, 53BP1, and Rad51. HeLa cells were irradiated (3 Gy), fixed at the indicated times, and separately stained for HDAC4, 53BP1, and Rad51 foci. Error bars represent the SD, and each point represents the average of three experiments. (F) Coimmunoprecipitation of HDAC4 and 53BP1. HeLa cells were lysed in NETN buffer (150 mM NaCl, 1 mM EDTA, 20 mM Tris, pH 8, 0.5% NP-40) and, for each sample, 50 μg of lysate from unirradiated (IR−) or irradiated (IR+) cells was incubated with the indicated antibodies or preimmune serum (IP). The immunoprecipitates were separated on 7.5% SDS-PAGE gels and probed for 53BP1 (top) and HDAC4 (bottom) (IB). Total cell lysate (25 μg, Whole cell) served as a positive control for the immunoblots. (G) Colocalization of HDAC4 foci relative to 53BP1 and Rad51 foci. HeLa cells were irradiated with 3 Gy and 1 h later costained with (a) rabbit anti-HDAC4 and (b) rat anti-53BP1. (c) Images from A and B were merged to reveal that most foci were coincident. The nuclei are outlined in blue. Bar, 5 μm.
HDAC4 interacts with 53BP1

DNA damage induces 53BP1 to form foci within minutes after DNA damage, suggesting that they participate in the early steps of the DNA damage response pathway. In contrast, Rad50 and Rad51 foci appear hours after DNA damage (Paull et al., 2000). We found that HDAC4 formed foci with kinetics very similar to 53BP1. The average number of foci containing either 53BP1 or HDAC4 reached maximal levels by 1 h after 3 Gy and then progressively decreased to near baseline by 36 h (Fig. 2 E). The similarity in the kinetics of HDAC4 and 53BP1 foci formation motivated us to look further for interactions between HDAC4 and 53BP1. Immunoprecipitation experiments showed that HDAC4 and 53BP1 formed a complex in HeLa cells, but the formation of this complex was unaffected by DNA damage (Fig. 2 F). However, immunocytochemical data clearly showed that HDAC4 and 53BP1 colocalized at DNA damage–induced foci (Fig. 2 G). At later times after radiation when Rad51 foci began to accumulate, the numbers of HDAC4 and 53BP1 foci were reduced. The majority of Rad51 foci did not colocalize with HDAC4, although it may be possible that Rad51 was localized to sites that had previously been occupied by HDAC4 (see Figs. S1 and S2, available at http://www.jcb.org/cgi/content/full/jcb.200209065/DC1).

HDAC4 foci induced by IR persist in radiosensitive cells

We next examined in a range of human cell lines the genetic determinants that specified HDAC4 foci formation. We found that HDAC4 foci formation did not depend on DNA damage response genes, i.e., ATM (ataxia telangiectasia mutated), Nibrin, or DNA-PK, as cell lines defective for these genes formed foci with similar kinetics as HeLa cells (Fig. 3). However, the repair-deficient cell lines differed from HeLa (and other repair-proficient) cells in the persistence of HDAC4 foci after exposure to low doses of IR. For example, HDAC4 foci readily formed 1 h after radiation in the ATM-deficient FT169A cell line, as well as in its isogenic derivatives Y25 (in which ATM is restored by expression of a full-length cDNA) and PEB (expressing empty vector and hence remaining ATM deficient). 24 h after IR, HDAC4 foci were significantly reduced only in the ATM-positive Y25 cells (Fig. 3, A–D). A similar difference in the resolution of HDAC4 foci was observed between DNA-PK–deficient MO59J cells and DNA-PK–positive MO59K cells. Al-

Figure 3. DNA repair–deficient cell lines are unable to efficiently resolve HDAC4 foci. Cells deficient for ATM, DNA-PK, and Nibrin were exposed to 1 Gy of IR and fixed and stained for HDAC4 1 and 24 h after IR. The average percentage of each cell line showing IR-induced HDAC4 was determined and the data presented in a histogram. Representative images of the HDAC4 staining pattern in the respective cell lines 24 h after IR are presented in the right panels. (A) 1 h after IR (1 Gy), respectively 95 ± 4.3% and 89 ± 4.0% of ATM-deficient FT169A and ATM-restored Y25 cells showed induced foci, a difference that was statistically insignificant. In contrast, 24 h after IR, respectively 82 ± 3.1% and 33 ± 5.9% of FT169A and Y25 cells showed induced foci (P < 0.001). PEB cells, derived from FT169A cells via stably transfecting with the empty parental vector (and which remain deficient for ATM protein and radiosensitive) continued to show high levels of induced HDAC4 foci after IR. Representative images of (B) FT169A (ATM–), (C) Y25 (ATM+), and (D) PEB (ATM control) cell lines 24 h after IR. (E) 1 h after IR, respectively 93 ± 6.7% and 95 ± 3.4% of DNA-PK–deficient MO69J and DNA-PK–proficient MO59K cells showed induced foci, a difference that was not significant. In contrast, 24 h after IR, respectively 86 ± 10.5% and 40 ± 9.6% of MO59J and MO59K showed induced foci (P < 0.001). Representative images of (F) MO59J (DNA-PK–) and (G) MO59K (DNA-PK+) cells 24 h after IR. In the MO59K cells with persistent foci, the number of foci per cell was also consistently fewer than in the MO59J cells (average of 11 ± 3.1 vs. 45 ± 3.7 foci, respectively, per MO59K vs. MO59J cell; P < 0.001). (H) Nibrin-deficient cells (NBS–) showed high levels of HDAC4 foci at both 1 (95 ± 5.4% of cells) and 24 h (83 ± 2.6%) after IR. In contrast, respectively 89 ± 2.4% and 9 ± 3.1% of HeLa cells (HeLa) showed foci. TSA treatment of HeLa cells (HeLa + TSA) did not prevent foci formation, but inhibited their resolution (93 ± 4.5% and 31 ± 14.5% of HeLa cells pretreated with TSA showed foci at 1 and 24 h after IR). Representative images of (I) Nibrin-deficient (NBS–), (J) HeLa (HeLa), and (K) HeLa cells pretreated with TSA (HeLa + TSA) 24 h after IR. Bar, 5 μm. Data represent the average of three experiments. The nuclei are outlined in blue. Error bars indicate the SD.
though MO59K cells did not completely resolve their HDAC4 foci, the average number of foci was less than in the MO59J cells (Fig. 3, E–G). We believe that MO59K cells did not efficiently resolve HDAC4 foci because of their inherent radiosensitivity relative to HeLa cells (Wang et al., 1997; unpublished data), which efficiently resolve foci at low doses of IR (Fig. 3 J). Lastly, we examined HDAC4 foci formation in the radiosensitive Nijmegen breakage syndrome (NBS) mutant cell lines and found that they too retained high levels of foci 24 h after IR (Fig. 3 J). We found that foci formation by HDAC4 in HeLa cells was unimpeded by TSA. However, the resolution of HDAC4 foci in HeLa cells was partially inhibited by TSA (Fig. 3, H and K).

HDAC4 foci are detected in interphase cells

HDAC4 foci were induced by DNA damage in nearly all cells, suggesting it was not limited to a specific phase of the cell cycle. We sought to confirm this in both asynchronous and synchronized HeLa cells (Fig. 4 A). Using cyclin E expression to distinguish G1–S from G2 cells, we found IR-induced HDAC4 foci in both. Next, we irradiated synchronized cells in S phase and then harvested when cells were beginning to progress into G2 (Fig. 4 B) or mitosis (Fig. 4 C). The average number of foci per cell was not decreased in the G2 cells but, interestingly, was decreased in prophase cells and not evident in mitotic cells (Fig. 4 D). These observations, however, do not permit us to distinguish whether HDAC4 foci form less efficiently in mitotic cells or whether the foci resolve as cells enter mitosis.

Silencing of HDAC4 expression via RNA interference (RNAi) results in decreased 53BP1 protein

To assess further the functions of HDAC4, we silenced its expression by RNA interference (RNAi) (Elbashir et al.,...
We found that short interfering RNA (siRNA) directed against two regions of HDAC4 efficiently repressed levels of HDAC4 protein at 48 h after transfection. A control siRNA that was unrelated to HDAC4 had no effect (Fig. 5 A). We conducted a time course experiment to determine the optimal time when HDAC4 expression was at its lowest after siRNA treatment. Considerable amounts of HDAC4 protein were detectable 12 h after transfection, but the level of protein progressively decreased such that very little HDAC4 protein was detectable by 36 h, indicating that

![Figure 5. RNAi efficiently silences HDAC4 and 53BP1 protein expression.](image1)

*(A) HeLa cells were transfected with siRNA targeting two different sequences in HDAC4 or control siRNA, harvested 36 h later, and immunoblotted for HDAC4 and α-tubulin (loading control). Whole cell lysates from untransfected cells serve as a positive control. (B) Time course of HDAC4 siRNA-mediated silencing of protein expression. Parallel plates of HeLa cells were treated with HDAC4 siRNA and harvested at the times indicated. All lysates were separated on 7.5% SDS-PAGE and immunoblotted for HDAC4 or α-tubulin, indicating maximal silencing of the targeted HDAC4 protein by 36 h. (C and D) HDAC4 siRNA diminishes foci formation after IR. HeLa cells were treated with oligofectamine only, control siRNA, or HDAC4 siRNA and irradiated 36 h later with 2 Gy. 1 h after IR, the cells were fixed and immunofluorescence for HDAC4 was performed. Representative cells are shown in C. The number of HDAC4 foci found in each cell was counted. At least 300 cells were counted for each treatment group. (D) The average number of HDAC4 foci per cell for each treatment group is displayed in the histograms. (E) HDAC4 and 53BP1 siRNA silence expression of their targeted protein, as well as each other. HeLa cells were transfected with HDAC4 or 53BP1 siRNA and harvested 48 h later. Lysates were separated on SDS-PAGE and immunoblotted for 53BP1, HDAC4, and α-tubulin. (F) siRNA-mediated silencing of 53BP1 and HDAC4 protein expression is achieved by 24 h after treatment. Parallel plates of HeLa cells were transfected with 53BP1 siRNA and harvested at the indicated times after transfection. Cell lysates were separated by 7.5% SDS-PAGE and immunoblotted with anti-53BP1, HDAC4, and α-tubulin antibodies. (G) HDAC4 and 53BP1 siRNA reduce only their target mRNA. RT-PCR was performed on total mRNA extracted from HeLa cells 48 h after treatment with control, HDAC4, or 53BP1 siRNA. RT-PCR was performed in parallel under identical conditions using primer pairs targeting 53BP1, HDAC4, or GADPH (as control), and the final product was separated via electrophoresis in ethidium bromide–labeled agarose and photographed under UV illumination. Each RT-PCR reaction yielded a single band as shown. (H and I) HDAC4 siRNA diminishes 53BP1 foci formation after IR. HeLa cells were transfected with oligofectamine control, HDAC4 siRNA, control siRNA, or 53BP1 siRNA and irradiated 36 h later with 2 Gy. 1 h after IR, the cells were fixed, immunofluorescence for 53BP1 was performed, and the average number of foci per cell was determined and displayed in the histograms in H. Representative cells are shown in I.
it is optimal to assess silencing after 24 h (Fig. 5 B). We next examined the effect of the HDAC4 siRNA on foci formation after IR. As expected, HDAC4 foci formation after IR was substantially reduced with both HDAC4 siRNAs, whereas the control siRNA had no effect (Fig. 5, C and D).

We next explored the effect of silencing HDAC4 expression via RNAi results in decreased cell viability

We further studied the effects of silencing HDAC4 on cell cycle distribution and cellular viability after DNA damage. Treatment with HDAC4 siRNA did not appear to have a major effect in altering the cell cycle distribution of unirradiated HeLa cells, compared with cells treated with control siRNA (Fig. 6, A and B) or untreated cells (unpublished data). IR of HeLa cells treated with control siRNA resulted in the expected accumulation of cells in G2, characteristic of the IR-induced checkpoint. In contrast, treatment with HDAC4 siRNA markedly decreased the proportion of cells with G2/M DNA content but was accompanied by an increase in cells with DNA content less than 2N (sub-G1) (Fig. 6, A and B). This reduction in G2/M cells was not due to an S-phase delay because HDAC4 siRNA did not affect the cell's ability to arrest in G2 in response to DNA damage (Fig. 5, H and I). Together, these experiments further suggest that HDAC4 interacts in the DNA damage response pathway that involves 53BP1, perhaps as components of the same protein complex.

Silencing of HDAC4 expression via RNAi results in decreased cell viability

We further studied the effects of silencing HDAC4 on cell cycle distribution and cellular viability after DNA damage. Treatment with HDAC4 siRNA did not appear to have a major effect in altering the cell cycle distribution of unirradiated HeLa cells, compared with cells treated with control siRNA (Fig. 6, A and B) or untreated cells (unpublished data). IR of HeLa cells treated with control siRNA resulted in the expected accumulation of cells in G2, characteristic of the IR-induced checkpoint. In contrast, treatment with HDAC4 siRNA markedly decreased the proportion of cells with G2/M DNA content but was accompanied by an increase in cells with DNA content less than 2N (sub-G1) (Fig. 6, A and B). This reduction in G2/M cells was not due to an S-phase delay because HDAC4 siRNA did not affect the cell's ability to arrest in G2 in response to DNA damage (Fig. 5, H and I). Together, these experiments further suggest that HDAC4 interacts in the DNA damage response pathway that involves 53BP1, perhaps as components of the same protein complex.

Discussion

Our studies have revealed a new role for a HDAC in the DNA damage response pathway. In response to double-stranded DNA breaks, HDAC4, but not HDAC2 or 6, rapidly formed foci that are coincident with the DNA damage response protein 53BP1. Foci formation by HDAC4 occurred throughout interphase and was observed in a wide panel of tumor and normal cell lines. HDAC4 foci formation did not depend on DNA damage response genes ATM, DNA-PK, or NBS, but their resolution was greatly delayed or blocked in these mutant cell lines. This is similar to the finding that ATM is not required for foci formation by 53BP1. When HeLa cells were exposed to a nonlethal dose of IR, where cells are presumably able to repair damaged DNA, HDAC4 foci were efficiently resolved. However, at lethal doses, where cells are presumably unable to effectively repair all of the damaged DNA, the HDAC4 foci persisted. We believe that the efficiency of resolution of HDAC4 foci correlates with cellular radiosensitivity. DNA-PK-defective MOS97 cells are highly radiosensitive and were much less efficient at resolving their HDAC4 foci than DNA-PK-positive MOS9K cells. MOS9K cells, more radiosensitive than HeLa cells, were in turn less efficient at resolving foci than HeLa cells. The failure to resolve HDAC4 foci may reflect the radiosensitizing properties of TSA. These observations together suggest that HDAC4 foci formation is a general cellular response to DNA damage, and...
conversely, impaired resolution of HDAC4 foci may be correlated with radiosensitivity.

These data suggest that HDAC4 foci may facilitate recruitment of, or stabilize, repair factors such as 53BP1, which in turn may help maintain damage-induced cell cycle checkpoints. The interaction between HDAC4 and 53BP1 is established here by the findings that the two proteins colocalize and coimmunoprecipitate, as well as the unexpected...
The localized concentration of protein complexes may then within megabases of an actual DNA double-strand break. For example, 53BP1 and other factors capable of signal transduction may accumulate into a chromatin microenvironment which the cell to stall at a checkpoint to allow the repair to be completed, while possibly serving as a marker to facilitate repair. These results, therefore, may be consistent with the observations reported here suggest that it may be fruitful to pursue strategies to block HDAC function in combination with standard treatments, such as radiation and chemotherapy, to maximize the killing of cancer cells.

Materials and methods

Antibodies

Polyclonal antibodies were generated by using full-length human HDAC2, 4, and 6 expressed in bacteria to immunize rabbits. For each antigen, the

![Diagram of HDAC and 53BP1 in DNA damage response](http://example.com/diagram.png)

Figure 7. Silencing of HDAC2 and HDAC6 does not abrogate the G2 checkpoint. Parallel plates of cells were treated with control, HDAC2, HDAC4, or HDAC6 siRNA. After 36 h, cells were harvested for immunoblotting (A) and cell cycle analysis by FACS® (B). (A) Immunoblot of cell lysates from cells treated with siRNA. Cell lysates were separated on 7.5% SDS-PAGE, transferred onto nitrocellulose, and the membranes were probed with anti-HDAC4, HDAC6, HDAC2, Mad1, or tubulin. These show efficient silencing of the target proteins by the HDAC2, 4, and 6 siRNA. Mad1 and tubulin are not affected by the specific siRNA treatments and serve as loading controls. (B) Cell cycle distribution of treated cells. Cell cycle analysis shows that the silencing of HDAC4 protein had the most conspicuous effect on abrogation of the G2 checkpoint after IR, relative to silencing of HDAC2 and HDAC6.
antibody was purified from at least two rabbits and confirmed to have equivalent specificity. The serum was affinity purified using protein immo-

bilonized on Affigel beads (Bio-Rad Laboratories). Specificity of the antibody was further confirmed by preabsorbing purified antibody with the

immunizing antigen (Fig. S4, available at http://www.jcb.org/cgi/content/full/jcb.200209065/DC1). Anti-53BP1 antibody was generated against the cor-

responding domain in human 53BP1 encoded by the 1.5-kb HindIII-EcoRI fragment of XLS3BP1 (the 53BP1 CDNA was a gift from Y. Adachi, Univer-

sity of Edinburgh, Edinburgh, UK). Anti-HDAC4, anti-53BP1, anti-Mad1 (gift from M. Campbell, Yen lab), anti–CENP-F (Yen lab), anti–α tubulin (Sigma-Aldrich), and anti–cyclin B1 (BD Biosciences) were used at 1:1,000 for staining and/or immunodetection. Anti–cyclin E (HE12, sc-247; Santa

Cruz Biotechnology, Inc.) and anti–Rad51 antibody (rabbit polyclonal, cata-

log no. PC130, Oncogene Research Products; mouse monoclonal, RAD51–14B4, GeneTex) was used at 1:500. The anti–phosphohistone H3 antibody recognizes histone H3 phosphorylated on serine 10 (no. 06–570; Upstate Biotechnology) and was used at 1:1,000. Cells were fixed with methanol/acetic acid 50:50 at the indicated times after IR before staining with the respective antibodies.

Cell lines
All cells were grown in DME medium supplemented with 20% FBS at 37°C with 5% CO2. The ATG-deficient FT169A (ATM–), ATM-restored YZ3 cells (ATM+), consisting of FT169A transfected with and stably expressing full-length ATM, and ATM-deficient vector-control PEB cells (ATM control, consisting of FT169A cells transfected with the parental vector only) were provided by Y. Shiloh (Tel Aviv University, Ramat Aviv, Israel). Nibrin-deficient human cells were obtained from the American Type Culture Collection. Cells grown on coverslips were irradiated with cesium-137 γ rays from a J.L. Shepherd and Associates 81–148R panoramic irradiator at a dose rate of 1.35 Gy/min. UV IR was delivered in a single pulse (50 J/m2) using a Stratalinker UV source (Stratagene). Before UV IR, the culture medium was removed, and the medium was replaced immedi-

ately after IR. All cells were returned to the incubator for recovery and harvested at the indicated times. Etoposide was used at 20 μg/ml for 20 min. To block cells in mitosis, cells were exposed to 0.04 μg/ml of nocodazole for 15 h.

RNAi
RNAi was performed with siRNA that was commercially synthesized (Dharmacon) and used as described in protocols provided by the manufac-

turer. Cells were treated with siRNA to a final concentration of 10 μM. siRNA against HDAC6 was applied twice on consecutive days, whereas all other siRNAs were applied once and harvested as described for each ex-

periment. Paired siRNA sequences targeting each protein were as follows: HDAC4, GACGCCGCAUGGAGACUG and CGUUAACAUCAUGGUG; HDAC2, GCCCUAGAUAAGGUGGAAGG and CAUGGGGGAAGAGAGGGAUGG and CAUCUUCUCCGCGUCCUGG. Control siRNA consisted of the unannealed single-strand RNA and siRNA targeted against luciferase (both of which did not affect levels of endogenous proteins).

Assays
HDAC assays were performed as previously described (Huang et al., 2000). In brief, [3H]Acetylated histones purified from HeLa cells (25,000 cpm/10 μg) were incubated with enzymes at 37°C for 15 min. The reaction was stopped by the addition of concentrated HCl, extracted with 1 ml of ethylacetate, and the amount of radioactivity released into the organic

fraction was measured. Etoposide was used at 20 μg/ml for 20 min.

Plating efficiency was defined as the proportion of cells that remained vi-

able 8 h after trypsinization and replating in fresh media. Cell viability was assessed by trypan exclusion. Clonogenic survival assays were performed as previously described (Biade et al., 2001), except that cells were counted and plated 48 h after treatment with siRNA and colonies of at least 50 cells were counted 14 d after plating. Statistical analyses were performed with SPSS for WindowsRelease 10 and Microsoft Excel (Office 2000).

Online supplemental material
Additional data (Figs. S1–S4) regarding antibody specificity, Rad51 local-

ization after IR, and phosphorylated histone H3 (Pi-Histone H3) labeling of siRNA-treated cells are available as supplemental material (http://

www.jcb.org/cgi/content/full/jcb.200209065/DC1).

We are grateful to Dr. T. Halazonetis for helpful comments. Drs. G.K.T. Chan and S.T. Liu, Mr. James Hittle, and Ms. Jennifer DeVirgilis in the Yen lab provided technical advice and assistance. Dr. Fang Liu and Ms. Kimmerly Clark of the Yen lab assisted in the protein assays and RT-PCR.

G.D. Kao is a recipient of an award from the WWE Smith Charitable Trust. T.J. Yen, R.J. Muschel, and W.G. McKenna are supported by PO1-CA57138-05. T.J. Yen was also supported by grants from the National Institutes of Health, PO1 core grant CA6927, and an Appropriation from the Commonwealth of Pennsylvania.

Submitted: 12 September 2002
Revised: 28 January 2003
Accepted: 5 February 2003

References
Anderson, L., C. Henderson, and Y. Adachi. 2001. Phosphorylation and rapid re-

21:1719–1729.

ing radiation sensitivity and genomic instability in the absence of histone

Bennett, C.B., J.R. Snipes, J.W. Westmoreland, and M.A. Resnick. 2001. SRF func-

Boulton, S.J., and S.P. Jackson. 1998. Components of the Ku-dependent non-ho-

mologous end-joining pathway are involved in telomere length mainte-

nance and telomeric silencing. EMBO J. 17(60):1819–1828.

Celeste, A., S. Petersen, P.J. Romanienko, O. Fernandez-Capetillo, H.T. Chen, O.A. Sedelnikova, B. Reina-San-Martin, V. Coppolla, E. Meffre, M.J. Difil-

point pathway that is constitutively activated in human cancer. Nat. Cell

Biol. 4:998–1002.

