Ca2+ \textsubscript{cyt} negatively regulates the initiation of oocyte maturation

Lu Sun and Khaled Machaca

Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205

Ca2+ is a ubiquitous intracellular messenger that is important for cell cycle progression. Genetic and biochemical evidence support a role for Ca2+ in mitosis. In contrast, there has been a long-standing debate as to whether Ca2+ signals are required for oocyte meiosis. Here, we show that cytoplasmic Ca2+ (Ca2+ \textsubscript{cyt}) plays a dual role during Xenopus oocyte maturation. Ca2+ signals are dispensable for meiosis entry (germinal vesicle breakdown and chromosome condensation), but are required for the completion of meiosis I. Interestingly, in the absence of Ca2+, signals oocytes enter meiosis more rapidly due to faster activation of the MAPK-maturation promoting factor (MPF) kinase cascade. This Ca2+-dependent negative regulation of the cell cycle machinery (MAPK-MPF cascade) is due to Ca2+ \textsubscript{cyt} acting downstream of protein kinase A but upstream of Mos (a MAPK kinase). Therefore, high Ca2+ \textsubscript{cyt} delays meiosis entry by negatively regulating the initiation of the MAPK-MPF cascade. These results show that Ca2+ modulates both the cell cycle machinery and nuclear maturation during meiosis.

Introduction

Mammalian and amphibian oocytes arrest at the G2/M border of the cell cycle after oogenesis (Yamashita et al., 2000). Before these oocytes become fertilization competent, they undergo a so-called “oocyte maturation” period during which they acquire the ability to activate in response to sperm entry, and to support the early stages of embryonic development (Yamashita et al., 2000). During maturation, oocytes progress through meiosis and arrest at metaphase of meiosis II until fertilization.

Xenopus oocyte maturation provides a valuable model to elucidate the signal transduction cascade mediating meiosis entry and progression. In Xenopus, oocyte maturation is triggered by the hormone progesterone, which binds to a cell surface receptor and not the classical nuclear receptor/transcription factor. Progesterone leads to inhibition of cAMP-dependent PKA and translation of the proto-oncogene c-Mos, which induces the MAPK cascade culminating in the activation of maturation promoting factor (MPF; for review see Nebreda and Ferby, 2000). MPF is the central kinase that regulates meiotic progression, and consists of a catalytic p34cyc serine/threonine kinase subunit (Cdk 1), and a regulatory cyclin B subunit (Coleman and Dunphy, 1994). MPF is also activated by the removal of inhibitory phosphorylations by the Cdc25C phosphatase, which is induced by the polo-like kinase cascade (Nebreda and Ferby, 2000).

A variety of genetic and biochemical evidence support a role for Ca2+, and its downstream effectors CaM and Ca2+-CaM–dependent protein kinase II, in mitosis initiation and progression (Means, 1994; Whitaker, 1995). Ca2+ signals are required for nuclear envelope breakdown (NEBD), and chromosome condensation during mitosis (Steinhardt and Alderton, 1988; Twigg et al., 1988; Kao et al., 1990; Tombe et al., 1992; Giapa et al., 1994). Furthermore, the cytoplasmic Ca2+ (Ca2+ \textsubscript{cyt}) rise observed at fertilization is the universal signal for egg activation in all species investigated (Stricker, 2000). Ca2+ signals at fertilization release the metaphase II arrest by activating proteolytic degradation of cytotatic factor, thus inducing completion of meiosis II and entry into the mitotic cell cycle (Tunquist and Maller, 2003). In addition, Ca2+ release at fertilization induces both the fast and slow blocks to polyspermy in Xenopus eggs (Machaca et al., 2001). In contrast to the well-defined roles for Ca2+ signals in mitosis and after fertilization, Ca2+ \textsubscript{cyt} plays a dual role during Xenopus oocyte maturation.
fertilization, the role of Ca\(^{2+}\) signals during oocyte maturation remains contentious.

There has been a long-standing debate in the literature as to whether Ca\(^{2+}\) signals are required for *Xenopus* oocyte maturation/meiosis (Duesbery and Masui, 1996). Early reports argued that a Ca\(^{2+}\)\(_{cyt}\) rise is sufficient to induce oocyte maturation (Wasserman and Masui, 1975; Moreau et al., 1976; Schorderet-Slatkine et al., 1976). Furthermore, oocytes injected with high concentrations of Ca\(^{2+}\) buffers were unable to mature (Moreau et al., 1976; Duesbery and Masui, 1996). However, injection of IP\(_3\), which induces Ca\(^{2+}\) release, did not stimulate meiotic maturation (Picard et al., 1985). Additional support for a Ca\(^{2+}\) role in oocyte maturation comes from reports that measured a Ca\(^{2+}\)\(_{cyt}\) rise after progesterone addition using \(^{45}\)Ca\(^{2+}\) as a tracer, Ca\(^{2+}\) imaging, or Ca\(^{2+}\)-sensitive electrodes (Ó'Connor et al., 1977; Moreau et al., 1980; Wasserman et al., 1980). In contrast, others could not detect Ca\(^{2+}\)\(_{cyt}\) changes downstream of progesterone addition using similar techniques (Robinson, 1985; Cork et al., 1987). A role for CaM in *Xenopus* oocyte maturation has also been postulated (Wasserman and Smith, 1981) and challenged (Cicinelli and Smith, 1987). These conflicting reports argue that the relationship between Ca\(^{2+}\) and oocyte maturation is complex.

We decided to revisit the role of Ca\(^{2+}\) during oocyte maturation/meiosis by framing the problem in terms of the spatially distinct sources of Ca\(^{2+}\) signals. Ca\(^{2+}\)\(_{cyt}\) signals can be generated either due to Ca\(^{2+}\) release from intracellular Ca\(^{2+}\) stores (ER) or Ca\(^{2+}\) influx from the extracellular space. In fact, these two Ca\(^{2+}\) sources are mechanistically linked through the store-operated Ca\(^{2+}\) entry (SOCE) pathway, which is activated in response to intracellular Ca\(^{2+}\) stores depletion. Therefore, Ca\(^{2+}\)\(_{cyt}\) is regulated by the balance between Ca\(^{2+}\) release and Ca\(^{2+}\) influx. By manipulating Ca\(^{2+}\) store load and the extent of Ca\(^{2+}\) influx through SOCE, we show here that Ca\(^{2+}\) signals are not required for meiosis entry. On the contrary, high Ca\(^{2+}\)\(_{cyt}\) delays meiosis entry. However, in the absence of Ca\(^{2+}\)\(_{cyt}\) signals oocytes arrest in meiosis I, form abnormal spindles, and do not extrude a polar body. Surprisingly, MAPK and MPF kinetics in oocytes deprived of Ca\(^{2+}\) signals are normal. We further mapped the site of action of Ca\(^{2+}\)\(_{cyt}\) on meiosis entry and show that Ca\(^{2+}\)\(_{cyt}\) negatively regulates the cell cycle machinery by acting downstream of PKA and upstream of Mos. These data argue that Ca\(^{2+}\) signals regulate the timing of meiosis entry, and that they are required for the completion of meiosis I. The dual role of Ca\(^{2+}\)\(_{cyt}\) revealed by these studies help explain some of the controversy surrounding the role of Ca\(^{2+}\) in oocyte maturation, and provides a framework to explore the role of Ca\(^{2+}\)-dependent signaling cascades in meiosis.

Results

Depleting intracellular Ca\(^{2+}\) stores accelerates entry into meiosis

Maturing oocytes in media with different Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]) does not affect the time course or extent of
germinal vesicle (nucleus) breakdown (GVBD; Fig. 1, A and C), which is indicative of meiosis entry. The rate of maturation in the population was quantified as the time required for 50% of the oocytes to undergo GVBD (GVBD_{50}). Because the rate and extent of GVBD were unaffected in low Ca^{2+} (L-Ca) medium, this shows that Ca^{2+} influx is not required for entry into meiosis (Fig. 1, C and D).

To test whether intracellular Ca^{2+} levels affect oocyte maturation, we emptied Ca^{2+} stores either by treating cells with thapsigargin, an inhibitor of the ER Ca^{2+} ATPase (SERCA), or with the Ca^{2+} ionophore ionomycin. Thapsigargin leads to Ca^{2+} store depletion because of a poorly defined Ca^{2+} leak pathway from the ER (Camello et al., 2002). Emptying Ca^{2+} stores activates Ca^{2+} influx through SOCE (Parekh and Pfenner, 1997). Because the extent of Ca^{2+} influx through SOCE depends on [Ca^{2+}] in the medium, oocytes incubated in high Ca^{2+} (H-Ca) medium will have more Ca^{2+} influx than those in normal Ca^{2+} (N-Ca) medium, and no Ca^{2+} influx is expected in L-Ca medium (see Fig. 4).

Emptying Ca^{2+} stores with either thapsigargin or ionomycin in N-Ca does not affect the time to GVBD_{50} (Fig. 1, B and C, Thap-N-Ca and Ion-N-Ca), but decreases maximal levels of GVBD (Fig. 1 D, Thap-N-Ca and Ion-N-Ca). In H-Ca, emptying Ca^{2+} stores results in high percentage of cellular degeneration due to excessive Ca^{2+} influx, thus prohibiting analysis of the rate of meiosis entry because GVBD_{50} is rarely reached under these conditions (Fig. 1 B, Thap-H-Ca and Ion-H-Ca). In contrast, emptying Ca^{2+} stores in L-Ca medium accelerates the rate of maturation (Fig. 1, B and C, Thap-L-Ca and Ion-L-Ca), without affecting maximal maturation levels (Fig. 1 D, Thap-L-Ca and Ion-L-Ca). In L-Ca medium with Ca^{2+} stores depleted, oocytes are unable to generate Ca^{2+} signals after progesterone addition because Ca^{2+} stores are depleted and Ca^{2+} influx is prevented in L-Ca medium (see Fig. 4); nonetheless they enter meiosis at an accelerated rate. These data show that Ca^{2+} signals are not required for GVBD and argue that Ca^{2+}_{cyt} negatively regulates meiosis entry.

Although Ca^{2+} signals after progesterone addition are dispensable for GVBD, it is conceivable that Ca^{2+}_{cyt} signals generated before progesterone addition are required for meiosis entry. To determine whether this is the case, we depleted Ca^{2+} stores with thapsigargin and waited for extended periods of time before inducing maturation with progesterone. We reasoned that if Ca^{2+} signals are required for GVBD, the longer we wait after depriving oocytes of Ca^{2+} signals the less effective progesterone will be in inducing maturation. Depleting stores for as long as 48 h does not affect the extent of oocyte maturation (Fig. 1 F), but still enhances oocyte maturation rate (Fig. 1 E). These results support the conclusion that Ca^{2+} signals are not required for entry into meiosis.

Lowering Ca^{2+}_{cyt} levels accelerates meiosis entry

The more rapid maturation observed in L-Ca medium when Ca^{2+} stores are depleted, argues that Ca^{2+}_{cyt} negatively regulates meiosis entry. It follows then that buffering Ca^{2+}_{cyt} at low levels should also accelerate meiosis entry. This is indeed the case as injection of 500 μM 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) alone or in combination with thapsigargin in varying orders, results in a more rapid maturation (Fig. 2, A and B). BAPTA and thapsigargin treatments accelerate maturation to a similar extent with no significant additive effect. However, the longer the interval between BAPTA injection and progesterone addition the more rapid the maturation rate (Fig. 2 B). In all treatments the extent of maturation was comparable (Fig. 2 C). Similar results were obtained when BAPTA was injected at 1 mM (unpublished data). These data argue that at resting Ca^{2+}_{cyt} levels some Ca^{2+}-dependent pathways are active and negatively regulate meiosis entry.

As reported by others, injecting high BAPTA concentrations (2.5–5 mM) blocks GVBD, arguing that Ca^{2+} is required for GVBD (Moreau et al., 1976; Duesbery and Masui, 1996). However, at such high BAPTA concentrations we observe significant levels of oocyte degeneration, bringing into question the specificity of this treatment. As shown below, injecting BAPTA at 500 μM effectively buffers Ca^{2+}_{cyt} transients (Fig. 4). In addition, depleting Ca^{2+} stores in the absence of extracellular Ca^{2+}, thus depriving oocytes of Ca^{2+} signals, does not block GVBD. Furthermore, treating oocytes...
with the heavy metal chelator TPEN blocks oocyte maturation (unpublished data). Based on these findings, it is possible that high BAPTA concentrations block GVBD in a Ca$^{2+}$-independent manner, either due to a nonspecific effect of BAPTA, or chelation of other metal ions because BAPTA is a potent chelator of transition metals (Arslan et al., 1985).

High Ca$^{2+}$$_{cyt}$ delays meiosis entry

If Ca$^{2+}$$_{cyt}$ negatively regulates meiosis entry it is expected that raising Ca$^{2+}$$_{cyt}$ levels would lead to a slower rate of oocyte maturation. To test whether this is the case we induced different levels of Ca$^{2+}$ influx through SOCE by depleting Ca$^{2+}$ stores with thapsigargin and incubating oocytes with solutions containing 5 mM, 1.5 mM, 0.6 mM, and 50 μM Ca$^{2+}$ (H-5, H-3, H-1.5, N-Ca, and L-Ca, respectively). Inducing maturation in solutions with different Ca$^{2+}$ concentrations (H-5, H-3, and H-1.5) has no effect on the rate of oocyte maturation, except for L-Ca medium where maturation rate was more rapid (Fig. 3, A and C). Although this enhancement was more pronounced in this set of experiments, Fig. 1 shows a similar tendency toward a more rapid maturation in L-Ca medium. More importantly, after store depletion with thapsigargin, the higher the concentration of extracellular Ca$^{2+}$ the slower the rate of maturation (Fig. 3, B and C). Furthermore, the extent of maturation was reduced in H-Ca containing solutions (H-5, H-3, and H1.5). At both 3 and 5 mM of extracellular Ca$^{2+}$ (H-5 and H-3) some cellular degeneration was observed, but at 1.5 mM of extracellular Ca$^{2+}$ the oocytes were healthy, but the rate of oocyte maturation was slower. These data show that the higher the level of Ca$^{2+}$ influx the slower the rate of maturation, supporting the conclusion that high Ca$^{2+}$$_{cyt}$ levels negatively regulate meiosis entry.

Ca$^{2+}$-activated Cl$^{-}$ current (I$_{Cl,Ca}$) as markers for Ca$^{2+}$$_{cyt}$ levels

To confirm that the different treatments are modulating Ca$^{2+}$$_{cyt}$ levels as predicted, we used endogenous Ca$^{2+}$-acti- vated Cl$^{-}$ current (I$_{Cl,Ca}$), as an in situ marker of Ca$^{2+}$$_{cyt}$ levels (Fig. 4). We have shown previously that I$_{Cl,Ca}$ provides an accurate measure of both Ca$^{2+}$ release and influx (Machaca and Hartzell, 1999). During Ca$^{2+}$ release I$_{Cl,Ca}$ is activated as a sustained current (I$_{Cl1}$) at depolarized voltages (+40 mV; Fig. 4 A, left, trace t). I$_{Cl}$ is sustained because during Ca$^{2+}$ release Ca$^{2+}$$_{cyt}$ levels remain high for the duration of the voltage pulse. In contrast, during Ca$^{2+}$ influx I$_{Cl,Ca}$ is activated as a transient current (I$_{ClT}$) only when the +40 mV pulse is preceded by a hyperpolarization step (~140 mV) to induce Ca$^{2+}$ influx (Fig. 4 A, right, traces w–z). I$_{ClT}$ is transient because Ca$^{2+}$ flows into the cell during the preceding ~140 mV pulse, and then dissipates rapidly resulting in current inactivation (Machaca and Hartzell, 1999). We have shown using simultaneous electrical recording and Ca$^{2+}$ imaging that I$_{Cl,Ca}$ faithfully reports the levels and kinetics of Ca$^{2+}$ release and influx (Machaca and Hartzell, 1999). However, it is important to note that although I$_{Cl,Ca}$ provides an accurate measure of Ca$^{2+}$ release and Ca$^{2+}$ influx, it does not directly reflect Ca$^{2+}$ levels deep in the cytosol as these channels localize to the plasma membrane.

To determine store Ca$^{2+}$ load in the different treatments, we incubated oocytes in Ca$^{2+}$-free Ringer (F-Ca), and depleted Ca$^{2+}$ stores with ionomycin. Because no Ca$^{2+}$ influx is possible in Ca$^{2+}$-free solution, the level of I$_{ClT}$ activated in response to ionomycin provides a measure of the extent of store Ca$^{2+}$ load (Fig. 4, A and B). After the dissipation of the Ca$^{2+}$ release transient indicated by the return of I$_{ClT}$ to baseline (Fig. 4 B, squares), oocytes were sequentially exposed to L-Ca, N-Ca, H1.5-Ca, H3-Ca, and H5-Ca to determine the extent of Ca$^{2+}$ influx (Fig. 4, B, D, and F). This protocol was applied to control untreated oocytes (Fig. 4 B) or to oocytes incubated in thapsigargin to fully deplete Ca$^{2+}$ stores (Fig. 4 D), or injected with 500 μM BAPTA (Fig. 4 F). The levels of Ca$^{2+}$ release as indicated by I$_{ClT}$ and the levels of Ca$^{2+}$ influx as indicated by I$_{Cl}$ were quantified in the different treatments (Fig. 4, C, E, and G). In control oocytes ion-
Ca\(^{2+}\) role in meiosis | Sun and Machaca

A

B

C

D

E

F

G

Figure 4. \(I_{\text{Ca,Cl}}\) as marker for \(Ca^{2+}\) levels. \(I_{\text{Ca,Cl}}\) was recorded from control cells (untreated), cells treated with thapsigargin (2 \(\mu\)M, 3 h), or injected with 500 \(\mu\)M BAPTA to estimate store
Ca\(^{2+}\) load and the levels of Ca\(^{2+}\) influx. \(I_{\text{Ca,Cl}}\) provide endogenous reporters of Ca\(^{2+}\) release from stores \(I_{\text{C1}}\) and Ca\(^{2+}\) influx from the extracellular space \(I_{\text{C1T}}\) as described in the text. (A) Voltage protocol and
representative current traces of the \(I_{\text{Ca,Cl}}\) and \(I_{\text{C1T}}\) is a sustained current recorded upon depolarization to
+40 mV (trace t), whereas \(I_{\text{C1T}}\) is a transient current detected only when the +40 mV pulse is preceded by a hyperpolarization step to -140 mV (traces x-z). Note that at high 5 mM Ca\(^{2+}\) levels, Ca\(^{2+}\) influx at ~140 mV activates an inward Cl\(^{-}\) current (trace z). The current traces shown are from the control
ocyte in B. The time at which each trace was

obtained is indicated in B. (B-G) Oocytes were incubated in Ca\(^{2+}\)-free Ringer (F-Ca) and treated
with ionomycin to release store Ca\(^{2+}\). The levels of \(I_{\text{C1T}}\) induced in response to ionomycin provide a
measure of store Ca\(^{2+}\) load. \(I_{\text{C1T}}\) (squares) is plotted as the maximal current at the end of the +40 mV pulse as indicated by the arrow in A (left). After

store depletion oocytes were sequentially exposed to solutions containing the indicated Ca\(^{2+}\) concen-
tration: L (50 \(\mu\)M Ca\(^{2+}\)), N (0.6 mM Ca\(^{2+}\)), H1.5 (1.5 mM Ca\(^{2+}\)), H3 (3 mM Ca\(^{2+}\)), and H5 (5 mM
Ca\(^{2+}\)). Store depletion activates Ca\(^{2+}\) influx through

the SOCE pathway, which activates \(I_{\text{C1T}}\). \(I_{\text{C1T}}\) (circles) is plotted as the maximal current during the second
+40 mV pulse as indicated by the arrow in A (right). B, D, and F show the time course of \(I_{\text{C1T}}\) and \(I_{\text{C1T}}\) in control, thapsigargin, and BAPTA-treated cells, respectively. The time of solution changes and

ionomycin (Ion.) addition are indicated above each
panel. C, E, and G show statistical analysis of \(I_{\text{C1T}}\) and \(I_{\text{C1T}}\). \(I_{\text{C1T}}\) levels were significantly different in the
three treatments (P = 0.0041, n = 5–7). No \(I_{\text{C1T}}\) was
detected in the thapsigargin treatment indicating complete Ca\(^{2+}\) store depletion. For \(I_{\text{C1T}}\) in each

panel the asterisks indicate significantly different
means: (C) Con, P ≤ 0.015, n = 5; (E) Thaps, P ≤
0.00012, n = 7; (G) BAPTA, P = 0.00022, n = 6.

Ca\(^{2+}\) influx is observed in F-Ca or L-Ca solutions, and

higher levels of Ca\(^{2+}\) influx, as indicated by \(I_{\text{C1T}}\), are detected in solutions containing increasing Ca\(^{2+}\) (Fig. 4 D, circles;

Fig. 4 E). Ca\(^{2+}\) influx levels in thapsigargin-treated cells

were similar to those in control cells (Fig. 4, C and E).

BAPTA injection dramatically reduces both Ca\(^{2+}\) release

\(I_{\text{C1T}}\) and Ca\(^{2+}\) influx \(I_{\text{C1T}}\) transients (Fig. 4, F and G). Small

levels of Ca\(^{2+}\) release are observed in BAPTA-injected

cells (Fig. 4 F, squares; Fig. 4 G, Ca Rel.), indicating that

Ca\(^{2+}\) stores still contain Ca\(^{2+}\), but that as Ca\(^{2+}\) is released it

is chelated by BAPTA, thus drastically reducing the levels of
free Ca\(^{2+}\) available to activate \(I_{\text{C1T}}\). The same is true during the

Ca\(^{2+}\) influx phase in different [Ca\(^{2+}\)] (Fig. 4, F and G).

No Ca\(^{2+}\) influx can be detected in L-Ca solution, and small
levels of I_{CaT} are observed in N-Ca through H3-Ca. Only H5-Ca produced evident, but small I_{CaT} consistently (Fig. 4 G). This indicates that the primary effect of BAPTA injection is to buffer Ca2+_cyt at low levels. The fact that BAPTA injection enhances the rate of meiosis entry in a similar fashion to store depletion argues that this enhancement is due to a reduction of Ca2+_cyt levels. It is noteworthy that Ca2+_store depletion has been shown to alter ER protein expression (Soboloff and Berger, 2002), however, based on the BAPTA data and the delayed maturation rate with high Ca2+_cyt, it is unlikely that this is affecting meiosis entry.

Kinetics of MAPK and MPF activation

We assayed the rate and extent of oocyte maturation above based on the GVBD time course. GVBD marks entry into meiosis but does not provide any information about meiosis progression. Oocyte maturation is considered complete once oocytes reach metaphase of meiosis II. Although, the data presented so far show that Ca2+ signals are not required for entry into meiosis, they do not address whether meiosis/oocyte maturation can progress normally in the absence of Ca2+ signals. To determine whether interfering with Ca2+ signaling pathways affects meiosis progression, we tested the activation kinetics of the MAPK-MPF kinase cascade, which regulates meiosis transitions (Nebreda and Ferby, 2000). As described above (Figs. 1 and 2), treating cells with either thapsigargin or injecting BAPTA accelerates meiosis entry (Fig. 5 A). In N-Ca medium, MAPK phosphorylation is first detected 2 h before GVBD, peaks at GVBD, and remains high for the remainder of maturation (Fig. 4 B, N-Ca). MAPK activates with similar kinetics in L-Ca, or after the thapsigargin (Thaps) or BAPTA treatments (Fig. 5 B). However, consistent with the GVBD time course, MAPK activated 1 h earlier in L-Ca medium and 2 h earlier after thapsigargin or BAPTA treatments (Fig. 5 B). These data show that in the absence of Ca2+ signals MAPK is induced earlier, but has normal kinetics after GVBD.

MPF activates in a characteristic fashion during oocyte maturation with a sharp peak at GVBD followed by a decline to an intermediate level that is indicative of the meiosis I to meiosis II transition, and rises again as oocytes progress through meiosis II (Fig. 4 C, N-Ca). MPF activity in oocytes matured in L-Ca medium follows the same kinetics except that peak MPF activity (GVBD) occurs ~1 h earlier than in N-Ca. This is consistent with the MAPK activation kinetics (Fig. 5 B) and the rate of GVBD (Fig. 5 A). MPF kinetics in the thapsigargin and BAPTA treatments are normal, except that, as for GVBD and MAPK, MPF activity peaks 2 h earlier than in the N-Ca treatment (Fig. 5 C, Thaps and BAPTA). Interestingly, an increase in MPF activity is detected as early as 1 h before GVBD (Fig. 5 C, Thaps and BAPTA, arrows). Such a premature activation of MPF is never observed in...
N-Ca or L-Ca. Therefore, MAPK and MPF activation kinetics (Fig. 5, B and C) correlate well with each other and with the rate of GVBD (Fig. 5 A), and show that reducing Ca\(^{2+}\)\(_{cyt}\) transients leads to premature activation of the MAPK-MPF kinase cascade. This premature activation explains the accelerated maturation rate in treatments that reduce Ca\(^{2+}\)\(_{cyt}\) transients. Therefore, Ca\(^{2+}\)\(_{cyt}\) modulates meiosis entry by negatively regulating the MAPK-MPF cascade.

Spindle formation and nuclear maturation

Kinase data in oocytes deprived of Ca\(^{2+}\) signals (Thaps and BAPTA) suggest that in the absence of Ca\(^{2+}\)\(_{cyt}\) signals meiosis proceeds normally after GVBD. To determine whether this is the case we imaged meiotic spindle structure and chromosome dynamics in oocytes matured in N-Ca, L-Ca, and oocytes treated with thapsigargin or BAPTA (Fig. 6). This allowed us to assess the progression of nuclear maturation, and directly compare it to MPF, MAPK, and GVBD kinetics because all three experiments were performed on the same batch of oocytes.

Control oocytes matured in N-Ca medium progress normally through meiosis (Fig. 6 A, Table I, N-Ca). At GVBD oocytes were at the late prophase I stage (Fig. 6 A, N-Ca, P), which refers to oocytes that have undergone GVBD, have condensed chromosomes, and organized microtubules around the chromosomes, but have not yet formed a bipolar spindle (Fig. 6 A, N-Ca, P). At 0.5 h after GVBD prometaphase I structures (30%; Table I) are observed with a typical bipolar spindle and associated chromosomes (Fig. 6 A, N-Ca, PM I). This is followed by metaphase I with chromosome lined up at the metaphase plate (Fig. 6 A, N-Ca, M I) at ~1 h after GVBD (Table I). Between 2–4 h after GVBD oocytes progress from M I to metaphase II (Table I) at which stage they arrest. Examples of anaphase I (A), prometaphase II (PM II), and metaphase II spindles are shown in Fig. 6 A (N-Ca).

Surprisingly, oocytes matured in L-Ca medium alone or treated with thapsigargin or BAPTA formed abnormal spindles. The progression through meiosis was not significantly different between the three treatments which will be discussed as a group. At GVBD a large percentage of these oocytes (≥57%; Table I) had condensed chromosomes, but the microtubule were still dispersed over a large area. We refer to this stage as early prophase (EP; Fig. 6 A), because eventually these oocytes do progress to the late prophase stage (P) as described for the control group (N-Ca) above (Table I). However, oocytes matured in L-Ca medium or treated with thapsigargin or BAPTA rarely progress to prometaphase I and never reach metaphase I (Fig. 6 A; Table I). Instead, they form abnormal structures at different rates depending on the treatment as detailed in Table I. Based on the severity of defects we divided abnormal spindles into three groups: (1) We refer to small and/or slightly disorganized spindles as prometaphase like (PM-L; Fig. 6 A). These spindles are the least disorganized and are observed throughout the time period studied (Table I). (2) The second group represents completely disrupted spindles (Ab) with no clear structure and with the microtubules highly condensed and/or spread over a large area. In most but not all instances condensed chromosomes were still
associated with the disrupted spindle (Fig. 6 A, Ab), (3) The last and most interesting group we refer to as the double spindle (DS) group (see Fig. 6 A). These double spindles were most common in the L-Ca group (Table I), but were also observed in the thapsigargin treatment (Fig. 6 A, Thaps, DS).

It is interesting that the highest percentage of disrupted spindles (Ab) in the experimental groups (L-Ca, Thaps, and BAPTA) is observed at 2–3 h after GVBD which corresponds to the meiosis I to meiosis II transition in control oocytes. At later time points, spindle structures are improved (PM-L), as if the cells are attempting to go through meiosis II. This is supported by the appearance of DS structures at 3–4 h after GVBD arguing that although these oocytes do not progress normally through meiosis I, they attempt to form a meiosis II spindle, that in some cases lead to the observed double-spindle structures. This might be expected with normal MAPK and MPF kinetics past GVBD in all the treatments (Fig. 5), which will drive these cells into meiosis II despite the abnormal progression through meiosis I. The fact that MAPK and MPF kinetics are normal past GVBD in the L-Ca, thapsigargin, and BAPTA treatments (Fig. 5), but that meiotic spindles are disorganized show that interfering with Ca\(^{2+}\) signaling during meiosis uncouples the MAPK-MPF cascade from spindle structure regulation. Furthermore, these results show that although Ca\(^{2+}\) signals are not required for meiosis entry (GVBD and chromosome condensation), they are necessary for progression through meiosis I and for bipolar spindle formation.

Polar body emission

Spindle structure data show that interfering with Ca\(^{2+}\) signaling leads to abnormal spindles, arguing that oocytes do not complete meiosis I. To directly confirm this, we assessed polar body emission from 1–4 h after GVBD in the different treatments (Fig. 6, B and C). In N-Ca medium, polar bodies were observed in the majority of the cells, but as expected from the spindle structure experiments, oocytes matured in L-Ca medium or treated with thapsigargin or BAPTA rarely extrude a polar body (Fig. 6 C). This shows that interfering with Ca\(^{2+}\) signaling inhibits the completion of meiosis I.

The fact that oocytes matured in L-Ca medium had abnormal spindle structure and could not finish meiosis I argues that either Ca\(^{2+}\) influx from the extracellular space is required during the early stages of oocyte maturation for normal meiosis progression, or that oocytes are unable to form a polar body at low extracellular Ca\(^{2+}\). To differentiate
between these possibilities we assessed polar body emission in oocytes incubated in N-Ca solution until GVBD and then switched to L-Ca solution (N-L); or in oocytes incubated in L-Ca solution until GVBD and then switched to N-Ca medium (L-N). Oocytes in the N-L group, but not the L-N group, emitted polar bodies to the same extent as the N-Ca control group (Fig. 6, B and C), arguing that Ca\(^{2+}\) influx in the early stages of oocyte maturation is required for meiosis I progression.

Ca\(^{2+}\) cyt acts between PKA and Mos to negatively regulate entry into meiosis

To better define the mechanism by which Ca\(^{2+}\) cyt negatively regulates meiosis entry, we mapped the site of action of Ca\(^{2+}\) cyt on the cell cycle machinery using an epistatic approach. For these experiments thapsigargin-treated oocytes represented the experimental group deprived of Ca\(^{2+}\) signals. Control oocytes were activated in N-Ca solution. Our approach was to activate the cell cycle machinery at different points along the MAPK-MPF signal transduction cascade, and determine whether the enhancing effect of Ca\(^{2+}\) deprivation on the rate of maturation is still observed. Oocytes were activated with progesterone, or by injection of an inhibitor of PKA inhibitor (PKI), Mos RNA (Mos), cyclin B1 RNA (Cy), or \(\Delta87\) cyclin B1 protein (CyP; Fig. 7 A). Thapsigargin treatment enhanced the rate of oocyte maturation to a similar extent in oocytes activated with progesterone or PKI (Fig. 7 A, PKI). Thapsigargin-treated oocytes activate faster than controls after Mos RNA injection, but the effect on Ca\(^{2+}\) deprivation on the rate of maturation is smaller than
in the case of progesterone (Fig. 7 A, Mos). Because the kinetics of the kinase cascade downstream of Mos are similar in control and thapsigargin-treated oocytes (Fig. 7 C; Fig. 5), we wondered whether the faster maturation rate in thapsigargin-treated Mos-injected oocytes is due to an effect of Ca$^{2+}$ deprivation on RNA translation. To determine whether this is the case we induced meiosis by directly activating MPF through the expression of cyclin B1 to activate the free cdc2 pool in the oocyte. Similar to Mos RNA injection, thapsigargin-treated oocytes activated faster than controls after cyclin B1 RNA injection (Fig. 7 A, Cy). In contrast, injecting oocytes with cyclin B1 protein induces GVBD with a similar time course in both thapsigargin-treated and control oocytes (Fig. 7 A, CyP). The rate of oocyte maturation with the different activators is summarized in Fig. 7 B. Because the rate of maturation varies between activators we normalized maturation rate for each activator to the rate of activation in N-Ca$^{2+}$ deprivation (Fig. 7 B) to allow a better visualization of the relative effect of Ca$^{2+}$ deprivation on maturation. For example, although cyclin B activates maturation faster than Mos (Fig. 7 A), the relative enhancement in the rate of maturation (~20% faster) is similar between the two activators in the absence of Ca$^{2+}$ signals (Fig. 7 B). This argues that the more rapid maturation in oocytes deprived of Ca$^{2+}$ signals after both Mos and cyclin RNA injections is due to an effect of Ca$^{2+}$ on translation of the injected RNAs. This conclusion is supported by the fact that control and thapsigargin-treated oocytes mature at similar rates when activated with Δ87cyclin B1 protein. However, the different responses after cyclin RNA or protein injections could be due to an effect of Ca$^{2+}$ on protein turnover because we injected full-length cyclin B1 RNA and Δ87cyclin B1 protein, which is missing the first 87 aa and is thus nondegradable because it lacks the destruction box (Kumagai and Dunphy, 1995). Nonetheless, we favor an effect of Ca$^{2+}$ on RNA translation because maturation is enhanced to a similar level when oocytes are activated with Mos or Cyclin B1, two activators that induce the cell cycle kinase cascade at different points.

These data show that Ca$^{2+}$ negatively regulates meiosis entry by acting on at least two sites between PKA inhibition and Mos activation. One site is downstream of PKA inhibition and the other site appears to be mRNA translation, and Mos activation. One site is downstream of PKA inhibition to the rate of activation in N-Ca$^{2+}$ deprivation and involves the expression of cyclin B1 to activate the free cdc2 pool in the oocyte. Similar to Mos RNA injection, thapsigargin-treated oocytes activated faster than controls after cyclin B1 RNA injection (Fig. 7 A, Cy). In contrast, injecting oocytes with cyclin B1 protein induces GVBD with a similar time course in both thapsigargin-treated and control oocytes (Fig. 7 A, CyP). The rate of oocyte maturation with the different activators is summarized in Fig. 7 B. Because the rate of maturation varies between activators we normalized maturation rate for each activator to the rate of activation in N-Ca$^{2+}$ deprivation (Fig. 7 B) to allow a better visualization of the relative effect of Ca$^{2+}$ deprivation on maturation. For example, although cyclin B activates maturation faster than Mos (Fig. 7 A), the relative enhancement in the rate of maturation (~20% faster) is similar between the two activators in the absence of Ca$^{2+}$ signals (Fig. 7 B). This argues that the more rapid maturation in oocytes deprived of Ca$^{2+}$ signals after both Mos and cyclin RNA injections is due to an effect of Ca$^{2+}$ on translation of the injected RNAs. This conclusion is supported by the fact that control and thapsigargin-treated oocytes mature at similar rates when activated with Δ87cyclin B1 protein. However, the different responses after cyclin RNA or protein injections could be due to an effect of Ca$^{2+}$ on protein turnover because we injected full-length cyclin B1 RNA and Δ87cyclin B1 protein, which is missing the first 87 aa and is thus nondegradable because it lacks the destruction box (Kumagai and Dunphy, 1995). Nonetheless, we favor an effect of Ca$^{2+}$ on RNA translation because maturation is enhanced to a similar level when oocytes are activated with Mos or Cyclin B1, two activators that induce the cell cycle kinase cascade at different points.

These data show that Ca$^{2+}$ negatively regulates meiosis entry by acting on at least two sites between PKA inhibition and Mos activation. One site is downstream of PKA inhibition and the other site appears to be mRNA translation, which is required for the induction of the cell cycle machinery (Fig. 7 D). Furthermore, the fact that the rate of maturation is enhanced to a similar extent in oocytes activated with progesterone and PKI (Fig. 7, A and B, PKI) argues that Ca$^{2+}$ acts downstream of PKI (Fig. 7 D).

Ca$^{2+}$ negatively regulates the initiation of the MAPK-MPF cascade

To confirm that Ca$^{2+}$ acts upstream of Mos we analyzed in more details the steps of the cell cycle machinery downstream of Mos in both control and thapsigargin-treated oocytes (Fig. 7 C). As described above MAPK activates significantly earlier in thapsigargin-treated oocytes consistent with the GVBD time course (Fig. 7 C). p90RSK, the downstream substrate of MAPK is activated with a similar time course to MAPK. For these experiments we analyzed lysates from oocytes at GVBD and at GVBD$_{50}$. For the latter time point lysates from oocytes that have undergone GVBD (w) or not (nw) were collected. Interestingly, p90RSK was phosphorylated to higher levels in the GVBD$_{50}$-nw group in thapsigargin-treated oocytes as compared with controls, thus confirming the earlier activation of the MAPK cascade in thapsigargin-treated oocytes.

Xenopus oocytes contain two pools of cdc2, the catalytic subunit of MPF: the preMPF and the free cdc2 pool. The preMPF pool which is activated at GVBD, contains cdc2 associated with cyclin B. Pre-MPF is kept inactive by phosphorylation on Tyr15 of cdc2 (Nebreda and Ferby, 2000). The free cdc2 pool is activated after association with B-type cyclins synthesized during meiosis I (Hochedegger et al., 2001). To determine which pool of cdc2 is activated in thapsigargin-treated oocytes we probed Western blots with a phosphospecific antibody against Tyr15 of cdc2 (Fig. 7 C, P-Y15-cdc2), and determined MPF activity as the H1-kinase activity from preMPF pool which is activated at GVBD (Fig. 7, Thaps, G50 nw), confirming the early activation of MPF before GVBD observed in Fig. 5.

These data show that in the absence of Ca$^{2+}$, signals the cell cycle kinase cascade downstream of Mos activates normally. Therefore, the more rapid entry into meiosis (GVBD) observed in oocytes deprived of Ca$^{2+}$ signals the entry of this kinase cascade upstream of Mos. Blocking Ca$^{2+}$, signals relieves this negative regulation thus allowing more rapid induction of the MAPK-MPF cascade and GVBD.

Discussion

In contrast to the established role of Ca$^{2+}$ signaling in mitosis (Whitaker and Larman, 2001), the requirement for Ca$^{2+}$ in both Xenopus and mammalian oocyte meiotic maturation has been difficult to define (Homa et al., 1993; Duesbery and Masui, 1996). To delineate the function of Ca$^{2+}$ during Xenopus oocyte meiosis we manipulated Ca$^{2+}$, extracellular Ca$^{2+}$, and store Ca$^{2+}$ load and tested the effect on nuclear maturation and the cell cycle machinery. Our data show that Ca$^{2+}$ has two opposing roles during Xenopus oocyte maturation: It negatively regulates meiosis entry by delaying the activation of the cell cycle machinery, and it is required for completion of meiosis I (Fig. 7 D).

Ca$^{2+}$ negatively regulates the activation of the cell cycle kinase cascade

Progesterone leads to lower cAMP levels and PKA inhibition within 10 min (Sadler and Maller, 1981), but the next known step in the pathway, that is polyadenylation of maternal RNAs to induce their translation, does not occur until much later (Sheets et al., 1995). The molecular steps during this time lag are not known. Our data show that Ca$^{2+}$ is an important regulator of the transition between PKA inhibition and mRNA translation. Ca$^{2+}$ negatively regulates the activation of the cell cycle machinery by acting on at least two
sites between PKA and Mos (Fig. 7 D). One site of action appears to be mRNA translation. Therefore, the level of Ca\(^{2+}\)\(_{\text{cyt}}\) provides a timing mechanism for entry into meiosis by regulating the initiation of the MAPK-MPF cascade downstream of PKA inhibition (Fig. 7 D). It is tempting to propose that by acting in this capacity Ca\(^{2+}\)\(_{\text{cyt}}\) could synchronize morphological and biochemical changes during oocyte maturation. Under such a scenario, which is completely speculative at this point, Ca\(^{2+}\)\(_{\text{cyt}}\) levels could signal the physiological preparedness of the oocyte to begin maturation. Relatively low Ca\(^{2+}\)\(_{\text{cyt}}\) levels would be indicative of proper functioning of the Ca\(^{2+}\) signaling machinery, and thus a healthy oocyte that is ready to mature. In contrast, relatively high Ca\(^{2+}\)\(_{\text{cyt}}\) levels would indicate a compromised oocyte where Ca\(^{2+}\)\(_{\text{cyt}}\) would negatively regulate initiation of maturation. It is interesting in this context that Ca\(^{2+}\)\(_{\text{cyt}}\) acts upstream of Mos, that is before the oocyte activates the cell cycle machinery and commits to maturation. The proposed role of Ca\(^{2+}\)\(_{\text{cyt}}\) in synchronizing morphological and biochemical changes in the oocyte during maturation is further supported by the fact that disrupting Ca\(^{2+}\)\(_{\text{cyt}}\) signaling un couples the nuclear cell cycle from the MAPK-MPF kinase cascade (Fig. 6).

Ca\(^{2+}\)\(_{\text{cyt}}\) is required for completion of meiosis I

Oocytes deprived of Ca\(^{2+}\) signals do not complete meiosis I as they do not extrude a polar body. Rather, they form abnormal spindles early in meiosis I despite normal MAPK and MPF kinetics. This shows that progression through meiosis I requires Ca\(^{2+}\), possibly Ca\(^{2+}\) influx before GVBD because oocytes are dependent on extracellular Ca\(^{2+}\) only before GVBD (Fig. 6). A Ca\(^{2+}\) influx requirement before GVBD fits nicely with the regulation of SOCE during oocyte maturation because SOCE inactivates at the GVBD stage due to MPF activation (Machaca and Haun, 2000, 2002).

Interestingly, others have shown that inhibition of the MAPK cascade (Gross et al., 2000), down-regulation of MPF (Nakajo et al., 2000), or inhibition of protein synthesis (Kanki and Donoghue, 1991) block completion of meiosis I. These treatments lead to a decrease in MPF activity, and induce an interphase-like state that is usually absent between meiosis I and II. In contrast, interfering with Ca\(^{2+}\) signaling blocks meiosis I completion, but is not associated with an interphase-like state. Rather, spindle structure is disrupted and polar body formation inhibited, but the chromosomes remain condensed. Furthermore, MPF activity cycles normally with a dip in activity between 1–2 h after GVBD, the expected time for meiosis I to meiosis II transition. These data show that disruption of Ca\(^{2+}\) signaling uncouples the cell cycle machinery (MAPK-MPF) from nuclear maturation (i.e., bipolar spindle formation and completion of meiosis I).

It is interesting that the disrupted meiosis I spindle does not activate a spindle checkpoint to arrest the cell cycle. However, there is good evidence against the existence of a meiosis I spindle checkpoint in *Xenopus* oocytes. Blocking the activity of the APC/C or the checkpoint protein Mad2 does not affect progression through meiosis I (Peter et al., 2001; Taieb et al., 2001). This is consistent with our observation of a lack of cell cycle arrest in the absence of Ca\(^{2+}\) signals despite disrupted meiosis I spindles.

Recently, Castro et al. (2003) described a similar block of meiosis I after inhibition of Aurora A kinase or its substrate Eg5 (a kinesin-like protein) in *Xenopus* oocytes. Unfortunately, these authors did not assess spindle morphology, but they showed that blocking Aurora A inhibits polar body formation with chromosomes maintaining their condensed state long after GVBD (Castro et al., 2003). Members of the Aurora kinase family associate with the spindle and have been shown to be important for both meiosis and mitosis transitions. Therefore, it is possible that Ca\(^{2+}\)-dependent pathways somehow modulate Aurora A kinase activity which in turn regulates spindle structure. This possibility remains to be explored.

Role of Ca\(^{2+}\) signaling in GVBD

During mitosis NEBD has been shown to be dependent on Ca\(^{2+}\) (Poenie et al., 1985; Steinhardt and Alderton, 1988; Twigg et al., 1988; Kao et al., 1990; Wilding et al., 1996), and studies in sea urchin embryos suggest that Ca\(^{2+}\) exerts its effect through CaMKII activation (Bätinger et al., 1990). In contrast, during meiosis GVBD is Ca\(^{2+}\)-independent as shown here for *Xenopus* oocytes, and in both mouse (Carroll and Swann, 1992; Tombels et al., 1992) and starfish oocytes (Wirchel and Steinhardt, 1990). One exception to this rule are some bivalve molluscs where GVBD has been shown to require Ca\(^{2+}\) (Deguchi and Osanai, 1994), but unlike amphibian and mammalian oocytes, in this case oocyte maturation and GVBD occur after fertilization which invariably induces a Ca\(^{2+}\) cytoplasmic rise. Nonetheless, the differential requirement of NEBD on Ca\(^{2+}\) signals during meiosis and mitosis is surprising because both NEBD and GVBD require the activation of MPF (Lenart and Ellenberg, 2003), and it is reasonable to assume that the basic structural properties of the nuclear envelope are similar in mitotic and meiotic cells. It has been argued that a Ca\(^{2+}\) signal is still required for GVBD but occurs very early or even before the initiation of oocyte maturation in some species (Tombels et al., 1992; Homa et al., 1993). This does not seem to be the case for *Xenopus*, because as shown in Fig. 1 F, eliminating Ca\(^{2+}\) signals for as long as 48 h before inducing oocyte maturation has no effect on GVBD, strongly arguing that GVBD is Ca\(^{2+}\) independent. Therefore, the differential requirement for Ca\(^{2+}\) during the breakdown of the nuclear envelope suggests that NEBD and GVBD are mechanistically distinct.

In conclusion, our results show that Ca\(^{2+}\) signals are dispensable for GVBD and chromosome condensation, that Ca\(^{2+}\) controls the timing of meiosis entry by negatively regulating the initiation of cell cycle machinery, and that N-Ca\(^{2+}\) homeostasis is important for bipolar spindle formation and completion of meiosis I. These results provide a framework to further explore and better define the role of Ca\(^{2+}\)-dependent signaling pathways in meiosis and oocyte maturation.

Materials and methods

Oocyte maturation

Xenopus oocytes were obtained as described previously (Machaca and Haun, 2002). The control L-15 solution contains 0.63 mM Ca\(^{2+}\). Ca\(^{2+}\) was buffered at 50 μM in the low solution as calculated using the MaxChelator program (http://www.stanford.edu/~cpatton/maxc.html) by the addition of...
0.58 mM EGTA. For the H-Ca 1-15 solutions Ca^{2+} was added to the indicated concentration as CaCl_2. In all experiments, GVBD was visually confirmed by fixing oocytes in methanol and bisecting them in half.

Electrophysiological methods

Recording of the I_{Ca,Cl} was performed as described previously (Machaca and Haun, 2000). I_{Ca,Cl} were recorded in the following solutions: F-Ca containing micromolar: 96 NaCl, 2.5 KCl, 4.37 MgCl_2·6H_2O, 0.63 CaCl_2·2H_2O, 0.58 EGTA, 10 Hepes, pH 7.4. Normal Ringer (N-Ca, 0.63 mM Ca^{2+}) and H-Ca solutions (1.5, 3, and 5 mM Ca^{2+}) had the following composition: 96 NaCl, 2.5 KCl, 10 Hepes, pH 7.4; with Ca^{2+} concentrations adding up to 5 mM.

Western blots and MPF kinase assays

MPF kinase activity was assayed by phosphospecific antibodies against phospho-Tb5873 of p90Rsk and phospho-Tyr15 of cdc2 (Cell Signaling). MPF activity was also assayed by lysates affinity purified on p13tev beads using histone-H1 kinase as a substrate essentially as described previously (Howard et al., 1999).

Plasmids and reagents

Heat stable PKI was purchased from Calbiochem. Cyclin B1 and Mos RNAs were synthesized from a pXen-GST-Mos and pSP64-cyclinB1xen plasmids provided by A. Macnicol (University of Arkansas for Medical Sciences; Freeman et al., 1991; Howard et al., 1999) using the mMessage mMachine transcript kit (Ambion). The His-tagged Δ87cyclin B1 protein was used as described previously (Machaca and Haun, 2002).

Spindle and polar body staining and image acquisition

Oocytes were fixed in 100% methanol, bisected in half, and incubated in DM1A an antibinin/mL Sigma-Alrich) in TBS containing 2% BSA, followed by a Cy2-conjugated donkey anti–mouse secondary (Jackson Immunoresearch Laboratory) for 24 h each. The oocytes were washed, dehydrated in benzyl alcohol/benzyl benzoate (1:2). Images were collected using a Fluoview 2.1 and figures were compiled using Adobe Photoshop 7.0. For each spindle a z section was obtained and projected onto a single plane to visualize the entire spindle. For polar body emission studies oocytes were fixed in methanol, stained with Sytox orange, and visualized by confocal microscopy as described for the spindle staining.

We thank members of the Machaca Lab for critical reading of the manuscript, A. Macnicol for providing plasmid constructs, and A. Charlesworth for help with the p13tev MPF assay. This work was supported by grant GM-61829 from the National Institutes of Health.

Submitted: 23 September 2003
Accepted: 26 February 2004

References

