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Introduction
To avoid deleterious consequences of DNA damage, eukaryotic 

cells activate a signaling network that coordinates rapid detec-

tion of the DNA lesions with temporary delay of cell cycle pro-

gression and activation of repair machinery (Zhou and Elledge, 

2000). One important aspect that determines the effectiveness 

of these genome surveillance pathways is a carefully orches-

trated redistribution of their components to nuclear regions con-

taining the damaged DNA (J. Lukas et al., 2004). The cytological 

manifestation of nuclear rearrangements in response to ionizing 

radiation (IR) and/or radiomimetic drugs is the formation of the 

so-called IR-induced foci (IRIF; Shiloh, 2003).

IRIF are dynamic, microscopically discernible structures 

containing thousands of copies of proteins involved in various 

aspects of double-strand break (DSB) metabolism. As such, 

IRIF are widely used as a convenient marker of DSB location. 

Apart from various repair-associated DNA transactions (Essers 

et al., 2002), proteins associated with IRIF also participate in 

restructuring of large segments of chromatin in the vicinity of 

the DNA lesions (van Attikum and Gasser, 2005), thereby in-

creasing the accessibility of damaged DNA to the repair fac-

tors (Murr et al., 2006). In addition, sustained protein assembly 

in the DSB-fl anking chromatin seems to be required to pre-

serve the integrity of the epigenetic information encrypted in 

these regions (Koundrioukoff et al., 2004; van Attikum and 

Gasser, 2005).

Despite the general consensus that IRIF formation signi-

fi es an important step in cellular protection against the deleteri-

ous effects of DSB-generating insults, the question of how the 

genome surveillance pathways actually benefi t from the in-

creased local concentration of their regulators remains poorly 

understood. For instance, recent results unmasked an unex-

pected level of complexity by showing that Chk2, the integral 

component of the genome surveillance machinery, interacts 

with DSBs only transiently, without forming cytologically dis-

cernible foci. The existence of such a “cryptic” mode of Chk2–

DSB interaction indicates that some enzymatic transactions 
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e show that DNA double-strand breaks 

(DSBs) induce complex subcompartmental-

ization of genome surveillance regulators. 

Chromatin marked by 𝛄-H2AX is occupied by ataxia 

 telangiectasia–mutated (ATM) kinase, Mdc1, and 53BP1. 

In contrast, repair factors (Rad51, Rad52, BRCA2, and 

FANCD2), ATM and Rad-3–related (ATR) cascade (ATR, 

ATR interacting protein, and replication protein A), and 

the DNA clamp (Rad17 and -9) accumulate in subchro-

matin microcompartments delineated by single-stranded 

DNA (ssDNA). BRCA1 and the Mre11–Rad50–Nbs1 

complex interact with both of these compartments. 

 Importantly, some core DSB regulators do not form cyto-

logically discernible foci. These are further subclassifi ed 

to proteins that connect DSBs with the rest of the nucleus 

(Chk1 and -2), that  assemble at unprocessed DSBs (DNA-

PK/Ku70), and that exist on chromatin as preassembled 

complexes but  become locally modifi ed after DNA dam-

age (Smc1/Smc3). Finally, checkpoint effectors such as 

p53 and Cdc25A do not accumulate at DSBs at all. We 

propose that subclassifi cation of DSB regulators accord-

ing to their residence sites provides a useful framework 

for understanding their involvement in diverse processes 

of genome surveillance.
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associated with the DNA damage response do not strictly 

 require massive protein concentration at the DSB sites. In addi-

tion, relatively little attention has been paid to whether all 

 damage-induced foci, once formed, are structurally similar. 

Furthermore, it is unclear to which extent the protein assemblies 

at the DSB sites vary during the cell cycle progression. We 

 performed a systematic survey of protein redistribution after 

a defi ned DSB-generating insult and under standardized experi-

mental conditions. Our intention was to subclassify the key com-

ponents of the DSB network (sensors, signaling components, 

mediators, repair factors, and checkpoint effectors) according to 

the residence sites after DNA damage and to determine whether 

and how the protein assemblies at the DSB sites fl uctuate during 

the cell cycle.

Results
Experimental requirements to study spatial 
redistribution of DSB regulators
To obtain standardized experimental conditions, we generated 

DSBs by laser microirradiation (Lukas et al., 2003). The key 

advantage of the microlaser approach is its ability to target de-

fi ned nuclear volumes and generate a similar amount of DNA 

damage both in different areas in the same nucleus and in dis-

tinct nuclei within the microirradiated cell population (C. Lukas 

et al., 2004; Bekker-Jensen et al., 2005). Although several labo-

ratories have used this approach to study various aspects of the 

DNA damage response (for review see Lukas et al., 2005), we 

initiated this study by revisiting a key parameter that must be 

considered when interpreting redistribution of proteins after 

genotoxic insults: the type and amount of the DNA lesions. It 

has been shown that, like IR, the laser-induced DNA damage 

produces single- and double-strand DNA breaks and base mod-

ifi cations (Lukas et al., 2005). However, the relative distribution 

and the density of these chromosomal alterations are hugely in-

fl uenced by the laser type and energy output and by the type of 

photosensitizers. Our choice of a laser line within the UV-A 

spectrum (λ = 337 nm) and sensitization of cells with haloge-

nated thymidine analogues has been dictated by the need to 

generate experimental conditions where we can still benefi t 

from targeting the damage to the defi ned nuclear volumes, yet 

induce protein redistribution that both qualitatively and quanti-

tatively resembles that of the “classical” IRIF.

To rigorously test this approach, we took advantage of the 

fact that a subset of DSBs in mammalian cells is repaired by ho-

mologous recombination (Essers et al., 1997) and that these le-

sions could be identifi ed by detection of the single-stranded DNA 

(ssDNA) intermediates coated by the replication protein A (RPA; 

the RPA detection method used here recognizes selectively long 

stretches of ssDNA that result from enzymatic DSB resection). 

Because these RPA-coated ssDNA regions manifest as distinct, 

microscopically discernible foci that could be counted, we used 

this approach to quantify the amount of homologous recombina-

tion–repaired DSBs generated by the microlaser and IR, respec-

tively. We exposed cells to the microlaser and/or increasing doses 

(0–10 Gy) of IR, detected the ssDNA foci by immunostaining 

with an antibody to RPA, and recorded a series of 3D images to 

ensure detection of all RPA foci in the entire nuclear volumes. 

Examination of these images revealed that both laser and IR pro-

duced RPA foci of a similar size (Fig. 1 A, left) and, importantly, 

that the total amount generated by the microlaser (under settings 

used for all experiments in this study) was very similar to that 

generated by 3 Gy of IR (Fig. 1 A, right).

Because the biological effect of DSBs is a combination 

of their absolute amount and their relative density in a given 

Figure 1. The local impact of laser microirradiation. (A) U2OS cells were 
either sensitized with BrdU followed by laser microirradiation or cultured 
without any presensitization followed by exposure to IR. 1 h later, the cells 
were fi xed, immunostained with an antibody to the p32 subunit of RPA, 
and subject to z stack recording. (left) Representative 3D projections of 
cells exposed to the microlaser and 3 Gy of IR, respectively, are shown. 
(right) Quantifi cation of the RPA foci in the microirradiated tracks or in the 
whole cell nuclei exposed to IR was obtained from 10 independent cells for 
each treatment. (B) U2OS cells were treated by the microlaser or exposed 
to increasing doses of IR. 1 h later, the cells were fi xed and processed for 
RPA immunodetection as in A. A region spanning the entire microirradi-
ated nuclear track containing the RPA foci (left) was placed over the maxi-
mum nuclear diameter of the IR-treated cells (right). The graph summarizes 
quantifi cation of the RPA foci in these regions from 10 independent cells 
for each treatment. All images in this section are 3D projections as in A. 
(C) U2OS cells were microirradiated as in A. 1 h later, the cells were fi xed 
and coimmunostained with antibodies to γ-H2AX and phospho-serine 15 of 
p53 (S15-P). The total nuclear fl uorescence associated with S15-P was de-
termined and compared with that measured in cells exposed for 1 h to the 
indicated doses of IR. The blue line marks the nucleus of an unirradiated 
cell to illustrate the background fl uorescence associated with the S15-P 
 antibody. The graph represents quantifi cation of the S15-P fl uorescence 
 intensities from at least 50 cells for each treatment. Error bars indicate 
standard deviation. Bars, 10 μm.
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 nuclear volume, we set out to also assess the local impact of both

laser microirradiation and IR. We fi rst determined the size of the 

region spanning the entire nuclear volume exposed to the micro-

laser (Fig. 1 B, top left) and then placed the same region over 

the maximum nuclear diameter of cells exposed to increasing 

doses of IR (Fig. 1 B, right; note that these images are also 3D 

projections). Subsequent counting of the RPA foci revealed that 

the DSB density in the microlaser tracks was similar to that pro-

duced in comparable nuclear volumes of cells exposed to 10 Gy

of IR (Fig. 1 B). This approach allowed us to locate the micro-

laser response to a dose range of between 3 and 10 Gy of IR.

To further refi ne the estimate of the damage extent gener-

ated by the microlaser, we directly assessed its impact on p53 

phosphorylation on Ser15. This DSB-induced, ataxia telangiec-

tasia–mutated kinase (ATM)–mediated phosphorylation event 

was chosen because of the unique capacity of p53 to become 

targeted by activated ATM without the sustained focal accumu-

lation of either of these proteins at the DSB sites (Bakkenist and 

Kastan, 2003). As a result, cells treated with a DSB-generating 

insult respond by a homogeneous increase of phosphorylated 

p53 throughout the entire nucleus (Fig. 1 C, left), thereby 

 providing a sensitive surrogate for the extent of DNA damage 

induced by diverse DSB-generating stimuli. Quantitative mea-

surement of the immunofl uorescent signal associated with 

Ser15 phosphospecifi c antibody revealed that the amount of 

DNA damage delivered by the microlaser was comparable to 

that generated by IR in a dose range of between 4 and 6 Gy 

(Fig. 1 C, right).

Collectively, these data provide structural and functional 

evidence that the moderate quanta of focused UV-A light in 

BrdU-sensitized cells elicit cellular responses similar to those 

generated by the commonly used doses of IR and indicate that, 

under these conditions, the microlaser is a suitable tool for an 

in-depth analysis of spatial organization of the DSB-induced 

genome surveillance machinery. In the following sections, we 

provide evidence that proteins involved in the DSB response 

could be subclassifi ed according to their distinct intranuclear 

redistribution and that the residence site of a particular DSB 

regulator helps refi ne its role in the complex cellular response to 

chromosomal breakage.

DSB-fl anking chromatin
First, a group of proteins assembled within the entire regions 

of modifi ed chromatin that surrounds the DNA breaks and 

spans up to a megabase distance from the initial DSB lesion 

(Table I). The diagnostic cytological manifestation of this pat-

tern was a complete colocalization with the γ-H2AX–decorated 

chromatin and could be best illustrated on the example of the 

DSB-induced redistribution of Mdc1 and 53BP1, both in micro-

laser-generated DSB tracks (Fig. 2 A) and in IRIF induced 

by moderate doses of IR (Fig. S1 A, available at http://www.

jcb.org/cgi/content/full/jcb.200510130/DC1). Interaction of both 

proteins with the DSB-modifi ed chromatin was also reproduced 

in primary human fi broblasts (Fig. S2) and in living cells ex-

pressing GFP-Mdc1 and GFP-53BP1 (see Fig. 9). The observed 

spreading of these so-called checkpoint mediators throughout 

the entire DSB-fl anking “microenvironment” is consistent with 

the recent fi ndings describing the ability of Mdc1 and 53BP1 

to interact with posttranslationally modifi ed histones (Stewart 

et al., 2003; Huyen et al., 2004; C. Lukas et al., 2004; Stucki 

et al., 2005).

Other proteins in this category include the ATM kinase 

and the components of the Mre11–Rad50–Nbs1 nuclease com-

plex (MRN; Fig. 2; see Fig. 5 A for Nbs1). Interaction of all 

these proteins with the DSB-fl anking chromatin makes sense 

in light of the recent discoveries. We have previously shown 

(C. Lukas et al., 2004) that the retention of MRN at the DSB sites 

required direct binding of its Nbs1 component to Mdc1, the lat-

ter being the main recognition module of γ-H2AX within the 

DSB-fl anking chromosomal microenvironment (Stucki et al., 

2005). In addition, it has been reported that the recruitment of 

activated ATM to the DSB sites is mediated via the COOH-

 terminal region of Nbs1 (Falck et al., 2005; You et al., 2005). 

Thus, the ability of Nbs1 to bind Mdc1 on one hand and Nbs1’s 

potential to recruit ATM on the other provide a basis for a large-

scale concentration of these factors around the DSB-containing 

chromosomal lesions.

An important denominator shared by all proteins in this 

category is their ability to assemble at the DSB-fl anking chro-

matin throughout most of the cell cycle. We have consistently seen 

that all of the �200 cells microirradiated in each experiment re-

sponded by a robust accumulation of these proteins in the micro-

irradiated tracks (unpublished data). Such a uniform response 

did not indicate cell cycle–dependent interactions. More specifi -

cally, Mdc1 (Fig. 2 B; see Fig. 4 C) and other proteins described 

in this section (unpublished data) readily accumulated in the 

 microirradiated nuclear regions in cells with various intensities 

of cyclin A or B1 (cells in S and G2), as well as in cells lacking 

a detectable amount of both cyclins (cells in G1). Together, these 

data suggest that the assembly of proteins at the DSB-fl anking 

chromatin can occur throughout the interphase.

Table I. Spatial redistribution of proteins in response 
to DSB- generating insults

DSB-fl anking 
chromatina

ssDNA 
microcompartmentsb

No retention
at DSBsc

ATMd ATRe DNA-PKf

Nbs1e ATRIPg Ku70f

Mre11 RPAg Smc1f

Rad50 Rad17 Smc3e

Mdc1e,g Rad9 Chk1e

53BP1e,g Rad51g Chk2e

BRCA1 Rad52e p53e,g

BRCA2g Cdc25A

FANCD2

Nbs1e

Mre11

Rad50

BRCA1

aInteractions operating throughout the interphase.
bS/G2-restricted interactions.
cSee text for further subclassifi cation.
dInteraction with the ssDNA microcompartments cannot be excluded.
eConfi rmed on the level of GFP.
fSome retention could be observed in extremely dense DSB regions.
gConfi rmed by more than one antibody.
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Interactions restricted 
to ssDNA-containing microcompartments
Another group of proteins assembled in much smaller areas 

(“microfoci”) located to the center of the microirradiated tracks 

and surrounded by relatively vast regions of γ-H2AX–modifi ed 

chromatin (Fig. 3). This spatial pattern could be resolved on the 

standard IRIF level (Fig. S1 A), it could be observed in primary 

human fi broblasts (Fig. S2), and it is discernible in living cells 

expressing GFP-tagged proteins (see Fig. 9). We also verifi ed 

that the cytological appearance of these microfoci was not af-

fected by various fi xation protocols, the relative affi nity of anti-

bodies, and/or the image acquisition conditions (Fig. S1 B; 

unpublished data). As the proteins in this category typically in-

clude nuclear factors involved in DNA repair by homologous 

recombination (Rad51, Rad52, BRCA2, and FANCD2), these 

microfoci likely represent either individual DSBs or closely 

neighboring DSBs assembled in repair centers (Lisby et al., 

2003). The same compartments are occupied by the ATR kinase 

and the protein machinery (ATR interacting protein [ATRIP] 

and RPA) required for ATR’s assembly at the DSB sites (Cortez 

et al., 2001). Finally, Rad17 and -9, both components of the 

proliferating cell nuclear antigen–like sliding clamp loaded 

on DNA after DNA damage, also show similar localization 

 patterns (Table I).

Two prominent features discriminate these DSB-induced 

microcompartments from the chromatin-mediated interactions. 

First, accumulation of all proteins in this category is restricted 

to areas of ssDNA formed after resection of the initial DSB le-

sions (Fig. 4 A). This is illustrated by a close overlap of FANCD2 

with ssDNA (Fig. 4 B), the latter structure being revealed by 

immunostaining of BrdU without previous DNA denaturation 

(Raderschall et al., 1999; see Materials and methods). Second, 

not all microirradiated cells were able to generate detectable 

stretches of ssDNA (and the corresponding focal protein accu-

mulation), despite the fact that all such cells responded by an 

equally robust phosphorylation of H2AX (Fig. 4 A) and/or Mdc1 

assembly (Fig. 2 B). Indeed, coimmunostaining experiments 

 revealed that the interaction of FANCD2, Rad51, and other 

 proteins from this category with the ssDNA microcompartments 

could only be detected in cells that expressed cyclin B1 and/or A 

(Fig. 2 B and Fig. 4, B–D). These fi ndings are consistent with 

the recent study showing that the DSB resection is cell cycle 

Figure 2. Protein interactions with the DSB-fl anking chromatin. (A) Expo-
nentially growing U2OS cells were sensitized with BrdU and micro-
irradiated. 1 h later, the cells were fi xed and stained with the indicated 
antibodies. Insets show higher magnifi cations of the microirradiated fi elds. 
(B) Accumulation of checkpoint mediators at the sites of DNA damage 
can occur throughout interphase. U2OS cells stably expressing GFP-tagged 
Mdc1 were treated as in A. After fi xation, the cells were immunostained for 
cyclin A and the p32 subunit of RPA to indicate the cell cycle position 
(schematically illustrated in the right panel). Bars, 10 μm.

Figure 3. Protein assemblies restricted to subchromatin microfoci. U2OS 
cells were microirradiated as in Fig. 2. Immunostaining with target specifi c 
antibodies (FANCD2, Rad51, RPA, and ATRIP) and a direct imaging 
of GFP-ATR revealed that accumulation of these proteins is restricted to 
 nuclear subdomains that are distinct from the DSB-fl anking chromatin 
 compartments (the latter marked by γ-H2AX). Bars, 10 μm.
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dependent (Jazayeri et al., 2006) and suggest that, unlike the 

chromatin-mediated interactions, accumulation of proteins in 

the ssDNA microcompartments is temporally restricted to S and 

G2 phases. The latter conclusion is also consistent with a report 

showing that the recruitment of Rad51 to the laser-generated 

DSBs and/or IRIF requires postreplicative DNA (Tashiro et al., 

2000) and with experiments in yeast that failed to detect Rad51 

in IRIF during the G1 phase (Lisby et al., 2004). On the other 

hand, we note that a recent study reported accumulation of 

Rad51 in laser-damaged nuclei also during G1 (Kim et al., 

2005). However, these authors used a relatively high laser en-

ergy in unsensitized cells, resulting in visible morphological 

destruction of the microirradiated nuclear areas, a condition that 

could have overpowered the physiological restrictions for Rad51 

to attempt DSB repair in the context of prereplicative chromatin 

(see also the following sections).

Nbs1 and BRCA1 interact 
with both DSB-fl anking chromatin 
and the ssDNA microcompartments
The components of the MRN complex share the striking feature 

to interact with both the DSB-fl anking chromatin (Fig. 5 A) and 

the microfoci described in the previous section (Fig. 5, B and C). 

The ability of Nbs1 to interact with the latter compartments 

could be revealed by its ability to form microfoci even in cells 

with reduced levels of H2AX, that is, after disruption of the key 

step in forming the DSB-induced chromatin microenvironment 

(Fig. 5 B). These data extend our earlier observation that a very 

similar pattern of Nbs1 redistribution was observed in cells 

where the integrity of the DSB-fl anking chromatin was dis-

rupted by the down-regulation of the γ-H2AX–binding protein 

Mdc1 (C. Lukas et al., 2004). To determine whether these micro-

foci represent the ssDNA compartments, we microirradiated 

Mdc1-defi cient cells and coimmunostained Nbs1 with anti-

bodies to RPA and BrdU (the latter without previous DNA de-

naturation). Indeed, both of these ssDNA markers showed tight 

colocalization with a fraction of Nbs1 that assembled in the 

 microirradiated tracks under these conditions (Fig. 5 C). Con-

sistent with the cell cycle–dependent formation of the ssDNA 

compartments, the retention of Nbs1 in these microfoci was 

much more pronounced in cells capable of resecting the pri-

mary lesions and generating cytologically discernible stretches 

of ssDNA (Fig. 5 C, bottom). Thus, in addition to its ability to 

assemble in the large DSB-fl anking chromosomal regions, Nbs1 

can interact with the ssDNA microcompartments in a  chromatin-

independent manner. This is consistent with a study detect-

ing an extraction-resistant pool of Mre11 in the center of 

γ-H2AX–coated chromosomal domains (Aten et al., 2004) and 

with the recently reported causative role of MRN in the forma-

tion of the ssDNA microcompartments (Jazayeri et al., 2006). 

Furthermore, the ability of Nbs1 to assemble in the ssDNA micro-

compartments can explain the H2AX-independent accumula-

tion of the MRN components in early stages of the DSB response 

(Celeste et al., 2003).

The only other protein capable of simultaneous interac-

tion with both ssDNA compartments and the DSB-fl anking 

chromatin is BRCA1. After laser microirradiation, BRCA1 

clearly spreads throughout the entire chromatin regions marked 

by γ-H2AX and/or by retention of typical chromatin binding 

proteins, such as 53BP1 (Fig. 6, A and B, top). Like in all other 

chromatin-specifi c interactions described in the previous sec-

tions, this pattern of BRCA1 redistribution could be detected 

throughout the interphase, although the amount of BRCA1 

 retained in the microirradiated G1 cells is less pronounced 

 because of the lower abundance of the total BRCA1 protein in this 

Figure 4. Protein assembly in the ssDNA microcompartments is restricted 
to the S and G2 phases of the cell cycle. (A) U2OS cells were microirradi-
ated as in Fig. 2. 1 h later, the ssDNA was revealed by immunodetection 
of BrdU without previous denaturation or nuclease treatment. Cells were 
coimmunostained with an antibody to γ-H2AX to demonstrate the location 
of the ssDNA microfoci within the larger regions of the DSB-modifi ed chro-
matin and to show that generation of ssDNA occurred only in a subset 
of the microirradiated cells. (B) Cells were treated, and the ssDNA was 
detected as in A. Coimmunostaining of FANCD2 (shown here as an 
 example) and other proteins from the spatial category (unpublished data) 
revealed close colocalization with ssDNA. (C) U2OS cells stably express-
ing GFP-Mdc1 were microirradiated and 1 h later subject to ssDNA detec-
tion as in A. In parallel, the cells were immunostained for cyclin B1 to 
indicate the cell cycle position. Cyclin B1 and ssDNA do not overlap and 
are therefore displayed in the same channel (red). (D) U2OS cells were 
treated as in A and coimmunostained with antibodies to Rad51, γ-H2AX 
(to detect the microirradiated tracks), and cyclin B1 (to reveal the cells in 
S/G2). The latter two proteins are simultaneously displayed in the same 
channel (red). Bars, 10 μm.
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cell cycle stage (Fig. 6 C). Importantly, although disruption of 

this compartment by Mdc1 down-regulation triggered dissocia-

tion of BRCA1 from the DSB-fl anking chromatin, it did not 

 impair a productive assembly of BRCA1 at the subchromatin 

microfoci (Fig. 6, A and B, bottom). Additional evidence for the 

chromatin-independent role of BRCA1 comes from the obser-

vation that reducing BRCA1 levels by siRNA precluded assem-

bly of important repair factors (BRCA2 and Rad51; both are 

known to function downstream of BRCA1) at the ssDNA 

 microcompartments (Fig. S3 D, available at http://www.jcb.org/

cgi/content/full/jcb.200510130/DC1). Collectively, these re-

sults add an important spatial dimension to the emerging func-

tional interplay between Mdc1 and BRCA1 (Lou et al., 2003; 

Stewart et al., 2003) by showing that it is the chromatin bound 

(but not the ssDNA associated) fraction of BRCA1 whose 

 retention at the DSB sites is controlled by Mdc1.

It is important to emphasize that the complex interaction 

pattern of Nbs1 and BRCA1 described in this section is quite 

unique, likely refl ecting the central position of the MRN com-

plex and BRCA1 in DSB recognition and signaling (Petrini and 

Stracker, 2003; Greenberg et al., 2006). For instance,  uncoupling 

of the typical chromatin binding proteins 53BP1 (Fig. S3 A) and 

Mdc1 (Fig. S3 B) from their respective histone residues 

was suffi cient to completely abrogate their ability to accum-

ulate at the DSB sites, despite the fact that, under the same ex-

perimental conditions, the ssDNA compartments were clearly 

Figure 5. Nbs1 interacts with both chromatin and the ssDNA subcom-
partments. (A) U2OS cells were microirradiated as in Fig. 2 and coimmuno-
stained with the indicated antibodies. Under these standard conditions, 
Nbs1 occupies broad areas of γ-H2AX–decorated chromatin. (B) U2OS 
cells were transfected with control or H2AX-targeting siRNA oligonucle-
otides as indicated. 4 d later, the cells were microirradiated, incubated for 
1 h, preextracted (see Materials and methods), and immunostained with 
an antibody to Nbs1. Note that in H2AX-depleted cells, Nbs1 assembles 
at the DSB sites in a form of subchromatin microfoci. (C) U2OS cells with 
stably down-regulated Mdc1 by short hairpin RNA were treated and immuno-
stained for endogenous Nbs1 as in B. ssDNA compartments were detected 
by antibodies to RPA (top) or BrdU (bottom). Note that the fraction of Nbs1 
that remains assembled at the DSB sites under these conditions is restricted 
to ssDNA (insets) and could be readily detected only in cells that are able 
to form these compartments (S/G2 phase). Arrows indicate the direction of 
the laser line during microirradiation. Bars, 10 μm.

Figure 6. Spatial pattern of BRCA1 assembly at the DSB sites. (A) U2OS 
cells were transfected with control or Mdc1-targeting siRNA oligonucleo-
tides for 4 d. The cells were then microirradiated and 1 h later fi xed and 
coimmunostained with antibodies to γ-H2AX and BRCA1. (B) U2OS cells 
were treated with the siRNA oligonucleotides as in A. 1 h after microirradi-
ation, the cells were fi xed and immunostained with the indicated  antibodies. 
Note that in the absence of Mdc1 (A and B, bottom), BRCA1 is lost 
from the DSB-fl anking chromatin but remains assembled in the microfoci 
along the microirradiated tracks. The complete loss of 53BP1 from the DSB 
sites (B, bottom left) serves as a control of effi cient Mdc1 down-regulation. 
(C) U2OS cells were microirradiated and 1 h later fi xed and immuno-
stained with antibodies to BRCA1 and cyclin A (the latter to reveal the 
cells in S/G2 phases). BRCA1 assembly could be detected also in the 
G1 cell (marked by the green arrow), although the overall abundance of 
BRCA1 in the nucleus and at in the DSB tracks is reduced compared with 
the S/G2 cells.
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formed (Fig. 5, B and C; and Fig. 6, A and B). Furthermore, 

 although down-regulation of Mdc1 impaired stable interaction 

of 53BP1 with the DSB-fl anking chromatin (Fig. 6 B; Bekker-

 Jensen et al., 2005), it did not prevent productive assembly of 

ATRIP and Rad51, the typical components of the ssDNA 

 compartments (Fig. S3 C). Thus, the majority of the DSB regu-

lators studied so far tend to interact rather exclusively with ei-

ther ssDNA or the DSB-fl anking chromatin, and the retention of 

proteins in these respective compartments seems to be regulated 

by mutually independent mechanisms. Interestingly, one study 

(Ward et al., 2004) reported that cells defi cient in H2AX 

(a chromatin component) are not able to retain ATR (the ssDNA 

component) at stalled replication forks. Thus, the rather strict 

spatial subcompartmentalization of checkpoint regulators de-

scribed here might be specifi c for DBSs, likely because of the 

complexity of the DNA and chromatin rearrangements required 

for effi cient repair of these serious chromosomal lesions.

Chk1 does not stably accumulate 
at the DSB sites
Some proteins intimately involved in the genome surveil-

lance network do not visibly accumulate at the damage sites, 

a striking phenomenon that we have previously described for 

the Chk2 kinase (Lukas et al., 2003). The new addition to this 

spatial category provided here is Chk1 (Fig. 7 A, top; see Fig. 9 

for GFP-Chk1 in living cells). The inability of Chk1 to form 

cytologically discernible foci was not caused by the lack of its 

activation after laser microirradiation because the microirradi-

ated cells readily induced phosphorylation of Chk1 on Ser317 

(Fig. 7 A, bottom), one of the ATR target sites whose phosphor-

ylation accompanies activation of Chk1 (Zhao and Piwnica-

Worms, 2001). An important aspect of this spatial pattern is that 

phosphorylated Chk1 (Fig. 7 A) and Chk2 (Lukas et al., 2003) 

do not concentrate around the DNA damage sites but rapidly 

spread to the entire nucleus. Together with the evidence that 

Chk1 phosphorylation by ATR requires physical interaction of 

these two components directly at the sites of damaged DNA 

and/or stalled replication forks (Chen and Sanchez, 2004; 

Smits et al., 2006), these results indicate that Chk1 (like Chk2) 

facilitates signal transduction between focal DNA lesions 

and relatively immobile effector structures (replication origins, 

stalled replication forks, and gene promoters) elsewhere in the 

undamaged parts of the nucleus. The distinction between Chk1 

and -2 in this respect is that although Chk2 could be activated 

throughout the interphase (Lukas et al., 2003), Chk1 function is 

temporally limited because of the fact that the ssDNA formation 

and ATR signaling is restricted to S/G2 phases of the cell cycle 

(Jazayeri et al., 2006).

Other DSB interactions that do not readily 
form cytologically discernible foci
Several other proteins known to function on various levels of 

the DSB-induced signaling did not readily accumulate at the 

DSB sites (Table I). The inability of DNA-PK, Ku70, Smc1, 

and Smc3 to form cytologically discernible foci was not re-

stricted to a single time point (we failed to detect increased 

local accumulation of any of these proteins between 5 min 

and 8 h after DNA damage); neither was it infl uenced by the 

cell type, DSB insult, fi xation, and/or imaging conditions 

(Figs. 7, 9, S1, and S2). However, we note that the DNA damage–

induced redistribution of some of these factors had been stud-

ied before and produced confl icting results. We therefore set 

out to critically reexamine some of these cases and explain 

the discrepancies.

On one hand, our inability to detect cytologically detect-

able accumulation of DNA-PK and its regulatory subunit Ku70 

both in locally microirradiated cells (Fig. 7 B and 9 A) and after 

global exposure to the commonly used dose range of IR (Figs. 

S1 A and S2) is consistent with the results obtained by Jakob 

et al. (2002), who generated DSBs by irradiating cells with 

charged ion beams. On the other hand, another group has 

Figure 7. DSB responses without cytologically discernible protein retention. 
(A) U2OS cells were microirradiated as in Fig. 2 and coimmunostained 
with antibodies to γ-H2AX, total Chk1, or Chk1 phosphorylated on serine 
317 (S317-P), as indicated. Although the cells contained DSBs only within 
the nuclear tracks exposed to the laser (see the γ-H2AX pattern), the acti-
vated form of Chk1 was disseminated throughout the nucleus. The dotted 
yellow line marks the boundary between microirradiated and control 
cells. (B) U2OS cells were treated as in A and immunostained with anti-
bodies to DNA-PK, Ku70, total Smc1, or Smc1 phosphorylated on serine 
957 (S957-P), as indicated. Although the total Smc1 protein did not 
 massively relocate to the DSB sites, it became locally phosphorylated 
within the microirradiated regions. Bars, 10 μm.
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 reported local accumulation of DNA-PK in nuclei exposed to 

Nd:YAG laser (Kim et al., 2005). To fi nd the reason for these 

differences, we tried to modify our experimental conditions and 

test whether any of those would be able to locally increase the 

concentration of DNA-PK/Ku70 to the levels detectable by light 

microscopy. Neither variation of the laser dosage in sensitized 

cells nor the extension of the assay period from several seconds 

to many hours produced such results, despite generating clear 

and robust DSB response, including induction of γ-H2AX and 

recruitment of the DNA-PK–related ATM and ATR kinases (see 

Figs. 2 and 3 for examples). Only a substantial increase of the 

laser output in nonsensitized cells was able to induce weak but 

detectable accumulation of DNA-PK/Ku70 at the microirradi-

ated tracks (Fig. 8 A, left). However, such treatment also pro-

duced massive local damage of the overall nuclear structure 

(never seen after microirradiating the sensitized cells by moder-

ate laser doses and/or after IR), manifest, for instance, by a de-

crease of DNA staining within the microirradiated areas (Fig. 

8 A, inset).  Similar signs of general nuclear disruption (areas 

with markedly altered optical density) were observed also in the 

previous study describing local accumulation of DNA-PK/Ku70 

(Kim et al., 2005).

Interestingly, the same group applied these assay condi-

tions to demonstrate local accumulation of Smc1, the structural 

component of the multiprotein cohesin complex (J.S. Kim et al., 

2002). Also in this case, we were able to reproduce these re-

sults but, again, only after exposing the unsensitized cells to 

very high laser energy that was accompanied by local disrup-

tion of the overall nuclear structure (Fig. 8 A, right). Neither 

IR (up to 10 Gy; Fig. S1) nor moderate laser microirradiation in 

sensitized cells (Fig. 7 B) showed any signs of cytologically 

discernible accumulation of Smc1. Similar results (no accumu-

lation after moderate doses of IR and/or laser) were obtained 

with GFP-Smc3, the heterodimerizing partner of Smc1 (Fig. 9 

and Fig. S4, available at http://www.jcb.org/cgi/content/full/

jcb.200510130/DC1).

Hence, despite both DNA-PK/Ku70 and Smc1 being inte-

gral components of various facets of DBS response (S.T. Kim 

et al., 2002; Yazdi et al., 2002; Lieber et al., 2003; Kitagawa 

et al., 2004; Strom et al., 2004; Unal et al., 2004), local accumu-

lation of these proteins to a degree that could be resolved by 

light microscopy seems to require enormous local concentra-

tion of DSBs. Indeed, when we tested the conditions compatible 

with Ku70 and/or Smc1 recruitment to DSBs by the same assay 

described in Fig. 1, we observed that the nuclear areas exposed 

to the high laser energy were unable to resolve clear RPA foci. 

Instead, these regions showed signs of a uniform and strong 

RPA accumulation, indicating extremely high density of DSBs 

(Fig. 8 B). At the same time, the relative abundance of the typi-

cal chromatin binding protein, such as 53BP1, was reduced in 

these regions compared with moderate laser doses in sensitized 

cells (Fig. 8 B, right), indicating that the high laser energy out-

put not only generates a massive DNA damage by itself but 

also triggers local destruction of histones and/or the other chro-

matin-associated protein complexes. Such extreme density (and 

complexity) of chromosomal damage likely saturates the cellu-

lar capacity to repair the lesions, thereby generating conditions 

that may stabilize (or aggregate) the templates for the assembly 

of proteins that specifi cally interact with DNA ends (Lieber 

et al., 2003). Based on these results and considerations, we pro-

pose that the assembly of the DNA-PK/Ku70 holoenzyme and 

loading of the Smc1/3-containing cohesin complex is spatially 

Figure 8. Local accumulation of Ku70 and Smc1 in cells 
exposed to high doses of laser irradiation. (A) U2OS cells 
cultured without presensitization with halogenated thymi-
dine analogues were locally irradiated with a high laser 
dose (73% energy output). Although such treatment in-
duced local accumulation of Ku70 (left) and Smc1 (right) 
in the irradiated tracks, it was also accompanied by a 
pronounced destruction of the laser-exposed nuclear re-
gions manifest by the decreased DNA staining (see the in-
set for magnifi cation). (B) U2OS cells were either sensitized 
by BrdU and microirradiated with moderate laser dose 
(55% energy output; top) or cultured without presensitiza-
tion and exposed to high laser dose (73% energy output; 
bottom). 1 h later, the cells were fi xed and coimmuno-
stained with antibodies to RPA and 53BP1 (three indepen-
dent cells for each treatment are shown). Although exposure 
to the low laser energy was compatible with local DSB 
processing, formation of RPA foci and a robust assembly 
of 53BP1, the high laser dose generated extreme density 
of the RPA (without a clear resolution into individual repair 
foci) and impaired assembly of 53BP1 at the DSB-fl anking 
chromatin. Bars, 10 μm. D
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restricted to unprocessed and/or only partially processed DNA 

breaks and that, within a range of physiologically relevant doses 

of DSB-generating insults, these microcompartments are be-

yond the resolution of light microscopy and do not manifest as 

cytologically discernible nuclear foci.

Local phosphorylation of Smc1 without 
its large-scale physical recruitment
Importantly, the latter conclusion does not contradict a recent 

report describing IRIF containing the ATM-phosphorylated 

Smc1 (Kitagawa et al., 2004). Indeed, we were able to repro-

duce these results by detecting local phosphorylation of Smc1 

on serine 957 (one of the key ATM target sites) after moderate 

doses of laser microirradiation that did not cause any discern-

ible accumulation of the total Smc1 protein (Fig. 7 B, compare 

the two bottom panels). Thus, it appears that in addition to co-

hesin, which assembles at the DSBs de novo (Strom et al., 2004; 

Unal et al., 2004), and the amount of which (at least in mamma-

lian cells) is likely limited below the levels that could be re-

solved by light microscopy, there must be a sizable pool of 

Smc1 throughout the undamaged chromatin as a result of the 

physiological processes accompanying DNA replication. 

 Indeed, loading of the vertebrate cohesin on chromatin is trig-

gered by formation of the prereplication complexes, an event 

that occurs early during the cell cycle (telophase in cycling cells 

and G1 after stimulation from quiescence; Takahashi et al., 

2004). The spatial pattern of the Smc1 response to DNA dam-

age reported here (readily detectable local phosphorylation 

without discernible increase of the total protein concentration) 

indicates that after DSB generation, this prereplication complex–

loaded fraction of cohesin remains bound to chromatin and 

 becomes locally accessible to the ATM-mediated phosphoryla-

tion. In this regard, it is important to note that phosphorylated 

Smc1 spreads throughout the entire regions of γ-H2AX–

 decorated chromatin (Fig. 7 B, bottom). This is consistent 

with our fi ndings that all three components required for the 

DSB-induced Smc1 phosphorylation—ATM, Nbs1, and 

BRCA1 (S.T. Kim et al., 2002; Kitagawa et al., 2004)—avidly 

interact with this DSB-generated nuclear subcompartment 

(Figs. 2, 5, and 6).

Pan-nuclear effectors of the DSB signaling
Some integral components of the DSB-induced genome surveil-

lance network did not accumulate at the damaged areas under 

any of the conditions explored in this study, including the high-

energy laser illumination described in the preceding section 

(Table I; Lukas et al., 2003). The key proteins in this category, 

p53 and Cdc25A, share their functional position within the DSB 

network by serving as the key effectors of the DNA damage–

 induced genome surveillance pathways (Kastan and Bartek, 

2004). Their lack of direct physical engagement with DSBs in-

dicates that the effi cient DSB-induced gene expression (p53) 

and cell cycle arrest (Cdc25A and p53) requires a specifi c sig-

naling component capable of rapid and effi cient connection of 

these effector molecules with the focal DNA lesions. The spa-

tial properties of activated Chk1, Chk2 (Lukas et al., 2003), and 

ATM (Bakkenist and Kastan, 2003) render these kinases the 

most plausible candidates for a “messenger” function.

Discussion
Our study provides evidence that after DSB-generating insults, 

a mammalian nucleus undergoes a complex compartmentaliza-

tion refl ected by distinct patterns of protein redistribution. The 

essence of our results is summarized in Table I. For the sake of 

clarity, the key implications of how the residence sites of the 

studied proteins help us better understand their roles in the DSB 

response were systematically discussed while describing the in-

dividual spatial categories in the preceding sections. We would 

Figure 9. The major spatial patterns of DSB-induced protein redistribution 
visualized in living cells. (A) U2OS cell lines stably expressing the indicated 
DSB regulators tagged with GFP and/or the GFP spectral variants were 
sensitized with BrdU and microirradiated with moderate laser doses, as in 
Fig. 2. 1 h later, the microirradiated regions were retrieved and the micro-
laser-induced protein redistribution was recorded in living cells. Insets 
show higher magnifi cation of the microirradiated fi elds; arrows indicate 
the laser direction through the respective nuclei. (B) The same set of cell 
lines as in A was exposed to 4 Gy of IR, and the living cells were recorded 
1 h later. All localization patterns in A and B were maintained from the fi rst 
signs of their appearance for up to several hours after microirradiation and 
IR exposure, respectively. Bars, 10 μm.
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like to complement these specifi c conclusions with more gen-

eral and conceptual ramifi cations of the reported results.

In particular, we would like to emphasize that among the 

diverse modes of protein redistribution after a DSB-generating 

insult, only the proteins assembled in the DSB-fl anking chro-

matin regions and the ssDNA microcompartments could be 

readily detected as intranuclear foci. An important implication 

of this fi nding is that within the range of physiologically rele-

vant doses of DNA damage, the IRIF formation (and/or the pro-

tein assembly at the laser-damaged nuclear tracks) cannot serve 

as the only criterion for the direct involvement of a given pro-

tein in the DSB response. This conclusion is supported by add-

ing several new members to the expanding family of proteins 

that, although functionally distinct, share the capability of a 

productive interaction with DSBs without a massive increase in 

their local concentration. Thus, in addition to signaling kinases 

whose interaction with the DSB sites is too transient to manifest 

as foci (Chk1 and -2), other proteins in this category assemble 

at DSB intermediates whose size is below the resolution of light 

microscopy (DNA-PK/Ku70). In addition, Smc1 is likely just 

one example of a larger group of proteins that stably interact 

with chromatin even in undamaged nuclei and yet become en-

gaged in the DSB signaling and/or repair after local modifi ca-

tion by enzymes recruited to the sites of DNA damage.

In conclusion, we hope that the results reported here will 

provide the necessary framework to add more proteins to the 

emerging “spatial map” of the DSB-induced genome surveil-

lance network. If coordinated in terms of experimental condi-

tions, subclassifi cation of proteins according to their residence 

sites before and after DNA damage may help validate, predict, 

or even exclude their roles in the increasingly complex DSB 

 response. One example illustrating the potential usefulness of the 

spatial dimension in approaching some lingering questions in 

the fi eld is the redistribution of the key apical kinases induced 

by DSBs. Most notably, ATM, ATR, and DNA-PK each occupy 

distinct nuclear subcompartments (DSB-fl anking chromatin, 

 ssDNA microcompartments, and unprocessed DSB ends, re-

spectively). Because defi ciency of the respective kinases is ac-

companied by distinct phenotypes (Abraham, 2004), it is clear 

that these kinases, despite sharing several downstream sub-

strates, have limited capability to substitute each other. Although 

the regulatory network determining the exact function of each 

of these kinases is very complex, their relocation to distinct com-

partments after DNA damage can, at least partly, explain their 

overlapping versus nonoverlapping potential.

Materials and methods
Cell culture and generation of DNA damage
The U2OS cell line and the BJ fi broblasts were seeded onto glass coverslips 
(Menzel) and grown in DME supplemented with 10% fetal bovine serum 
and standard antibiotics. The U2OS-derived cell lines stably expressing 
GFP-Mdc1, -53BP1, -ATR, and -Chk1 were described previously (Kramer 
et al., 2004; C. Lukas et al., 2004; Bekker-Jensen et al., 2005; Jazayeri 
et al., 2006). The YFP-Rad52 construct was generated by subcloning the 
Rad52 cDNA (a gift from R. Kanaar, Erasmus Medical Centre, Rotterdam, 
Netherlands) to the pEYFP-N expression plasmid (CLONTECH Labora-
tories, Inc.). Generation of the GFP-Smc3 plasmid is described in detail in 
Fig. S4. The U2OS cell lines stably expressing YFP-Rad52 and GFP-Smc3 

were generated by cotransfecting the respective expression plasmids to-
gether with the pBabe-puro plasmid containing the puromycin resistance 
cassette. Upon selection with 1 μg/ml puromycin (Sigma-Aldrich) for 10 d, 
resistant clones were tested for the expression and functionality of the GFP/
YFP-tagged proteins (see Fig. S4 for characterization of the GFP-Smc3–
 expressing cells). Laser microirradiation to generate DSBs in defi ned nuclear 
volumes was performed essentially as described previously (Lukas et al., 
2003; C. Lukas et al., 2004; Bekker-Jensen et al., 2005). In brief, the cul-
ture medium was supplied with 10 μM BrdU (Sigma-Aldrich) for 24 h to 
sensitize the cells to DSB generation by UV-A laser (λ = 337 nm). Before 
laser treatment, the coverslips were transferred to a phenol red–free CO2-
independent medium (Invitrogen). After microirradiation of �200 cells 
(a procedure lasting in total for <10 min), the coverslips were incubated for 
1 h in the incubator before fi xation. IR was delivered by an x-ray generator 
(HF160 [Pantak]; 150 kV; 15 mA; dose rate: 2.18 Gy/min) as previously 
described (Syljuasen et al., 2004).

RNA interference and plasmids
siRNAs against H2AX and Mdc1 were described previously (C. Lukas 
et al., 2004). The control siRNA was against HSP70B (Bekker-Jensen et al., 
2005). Cells were transfected with the siRNA duplexes with oligofectamine 
(Invitrogen) according to the manufacturer’s instructions and incubated for 
96 h before further treatment. For generation of stable Mdc1 knockdown, 
the oligonucleotides 5′-gatccccgtctcccagaagacagtgattcaagagatcactgtcttct-
gggagacttttt and 5′-agctaaaaagtctcccagaagacagtgatctcttgaatcactgtcttct-
gggagacggg were annealed and ligated into the pSUPER plasmid digested 
with HindIII and BglII. For generation of stable 53BP1 knockdown, the 
oligonucleotides 5′-gatccccgaacgaggagacggtaatattcaagagatattaccgtctcc-
tcgttcttttt and 5′-agctaaaaagaacgaggagacggtaatatctcttgaatattaccgtctcctc-
gttcggg were annealed and processed as above. The resulting constructs 
were transfected into U2OS cells and selected with Puromycin as described 
previously (C. Lukas et al., 2004).

Antibodies and microscopy
Rabbit polyclonal antibodies against the following targets were used: 
Smc1 (Abcam), Smc3 (Abcam), Smc1-S957P (Novus Biologicals), p53-
S15P (Santa Cruz Biotechnology, Inc.), TRF2 (Santa Cruz Biotechnology, 
Inc.), ATRIP (a gift from R. Abraham, The Burnham Institute, La Jolla, CA), 
Rad17 (Santa Cruz Biotechnology, Inc.), Rad9 (Santa Cruz Biotechnology, 
Inc.), Rad51 (Santa Cruz Biotechnology, Inc.), FANCD2 (Novus Biologi-
cals), Nbs1 (Novus Biologicals), ATM (Abcam), 53BP1 (Santa Cruz Bio-
technology, Inc.), γ-H2AX (Upstate Biotechnology), cyclin A (Santa Cruz 
Biotechnology, Inc.), and Chk1-S317P (Cell Signaling). The following 
mouse monoclonal antibodies were used: DNA-PK (Lab Vision), Ku70 
(Lab Vision), Chk1 (DCS-310; Abcam), RPA p32 (Lab Vision), BRCA2 
( Calbiochem), Mre11 (GeneTex), BRCA1 (Santa Cruz Biotechnology, Inc.), 
γ-H2AX (Upstate Biotechnology), and cyclin B1 (Santa Cruz Biotechnol-
ogy, Inc.). Sheep anti-Mdc1 antibody was a gift from S. Jackson (W ellcome 
Trust/Cancer Research UK Gurdon Institute, Cambridge, UK) and M. Stucki 
(University of Zürich, Zürich, Switzerland). Anti-BrdU mouse monoclonal 
antibody (RPN20AB) to detect ssDNA was obtained from GE Healthcare 
and was applied without any preceding DNA denaturation or nuclease 
treatment (Raderschall et al., 1999). Other immunostaining steps were 
identical to those described in the following section.

Cells were fi xed for 15 min in 4% formaldehyde and permeabilized 
in 0.2% Triton X-100 for 5 min. To facilitate discrimination of the chromatin-
associated versus ssDNA bound pools of Nbs1 (Fig. 5, B and C), cells 
were preextracted for 5 min at 4°C with a buffer containing 25 mM Hepes, 
pH 7.5, 50 mM NaCl, 1 mM EDTA, 3 mM MgCl2, 300 mM sucrose, and 
0.5% Triton X-100 as described previously (C. Lukas et al., 2004). Cover-
slips were incubated with primary antibodies for 1 h followed by second-
ary antibodies coupled to Alexa 488, 568, or 647 (Invitrogen) for 30 min. 
Where indicated, the DNA stain ToPro3 (Invitrogen) was added to the last 
washing solution. Coverslips were mounted onto glass slides (Menzel) with 
DAPI-containing mounting medium (Vector Laboratories) and subject to 
two- or three-color confocal microscopy on an LSM-510 (Carl Zeiss Micro-
Imaging, Inc.) mounted on an Axiovert 100M (Carl Zeiss MicroImaging, 
Inc.) equipped with Plan-Neofl uar 40×/1.3 oil-immersion objective, as 
previously described (Bekker-Jensen et al., 2005). For quantitative assess-
ment of the DNA damage–induced p53 phosphorylation, masks were 
manually drawn around the individual nuclei, and the mean fl uorescence 
associated with antibody to phosphorylated serine 15 of p53 (S15-P) sub-
tracted for the background fl uorescence was determined using the ImageJ 
software (NIH). The obtained values were exported to Prism4 (GraphPad) 
software for further data processing.
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Online supplemental material
Fig. S1 shows the spatial patterns of DSB-induced protein redistribution re-
solved on the level of the IRIF and provides evidence that the DSB-induced 
redistribution of proteins to distinct nuclear subcompartments was assayed 
under unsaturated conditions for image acquisition. Fig. S2 shows the 
main spatial patterns of DSB-induced protein localization in primary cells 
(the BJ strain of human diploid fi broblasts). Fig. S3 provides evidence for 
autonomous protein interactions with distinct DSB-generated nuclear sub-
compartments. Fig. S4 describes generation and characterization of the 
GFP-Smc3 cohesin subunit. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200510130/DC1.
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