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The failure to timely activate Cdc5 could contribute to the lack 

of sister separation in these conditions but cannot be the only 

culprit. In fact, Cdc5 inactivation leads to ineffi cient separation 

of telomeric regions but has no or little effect on that of centro-

meric and arm sequences (Alexandru et al., 2001). In addition, 

Cdc5 is not required for the onset of anaphase of cdc24 cdc55∆ 

cells. If the failure to separate sister chromatids when the mor-

phogenetic checkpoint is active were merely due to delayed 

Cdc5 activation, anaphase should be resumed by ectopic Mcd1 

cleavage, which we show not to be the case. Therefore, sister 

chromatid cohesion seems to be maintained by the morpho-

genesis checkpoint through a previously unanticipated mecha-

nism that does not depend only on securin stabilization and Polo 

kinase inactivation.

PP2ACdc55 and the control of sister 
chromatid separation
We find that inactivation of the protein phosphatase PP2ACdc55 

is sufficient to allow sister chromatid separation when the 

morphogenesis checkpoint is activated. Unlike upon dele-

tion of SWE1, which completely abolishes the cell’s ability 

to respond to morphogenetic defects, this is not achieved 

through switch off of checkpoint signaling, because lack of 

PP2ACdc55 activates by itself the checkpoint and induces Swe1 

stabilization by causing morphogenetic defects (Jiang, 2006). 

In agreement with a critical function for PP2ACdc55 in control-

ling sister separation when the morphogenesis checkpoint is 

 active, deletion of CDC55 turned out to be lethal for cla4 

and cdc12 mutants (unpublished data), whose morphogene-

sis defects are known to activate the checkpoint (Lew, 2003). 

Recently, PP2A bound to Rts1/B56, the other regulatory 

 subunit, has been found to protect centromeric cohesion dur-

ing mitosis and meiosis I, in both yeast and human cells 

(Kitajima et al., 2006; Riedel et al., 2006). In our experi-

mental conditions, PP2ARts1 seems to have only a minor role, 

perhaps restricted to centromeric regions, in preventing 

chromatid dissociation.

Cdc55 was previously implicated in maintaining sister 

chromatid cohesion in response to activation of the spindle 

assembly checkpoint (Minshull et al., 1996), suggesting that 

PP2ACdc55 acts as anaphase inhibitor in several conditions. 

However, in nocodazole-treated cdc55∆ cells, sister chroma-

tid separation is accompanied by Mcd1 proteolytic cleavage 

(Yellman and Burke, 2006; this study), whereas we could not 

fi nd evidence for such event in cdc55∆ cells undergoing ana-

phase in the presence of morphogenetic defects. In agree-

ment with our data, Cdc55 has recently been shown to prevent 

chromatid separation independently of securin degradation and 

Mcd1 cleavage in cells with telomeric DNA lesions (Tang and 

Wang, 2006).

How could PP2ACdc55 prevent sister chromatid separation 

in G2? For instance, it could regulate a pathway of cohesin re-

moval similar to the prophase pathway of higher eukaryotic 

cells, although so far Mcd1 cleavage by separase seems to be 

the only necessary and suffi cient event for cohesin removal 

from yeast chromosomes (Uhlmann, 2003). If PP2ACdc55 were 

to inhibit cohesin dissociation independently of Mcd1 cleavage, 

its inactivation could allow anaphase in the absence of separase. 

In contrast to recently published data (Tang and Wang, 2006), 

we fi nd that both the esp1-1 mutation (Ciosk et al., 1998) and 

Figure 10. CDC55 overexpression delays 
anaphase independently of securin. Wild-type 
(wt; ySP3575), GAL1-CDC55 (ySP5690), and 
GAL1-CDC55 pds1∆ (ySP5752) strains carry-
ing the tetO/tetR-GFP construct to detect peri-
centromeric sequences at chromosome V were 
grown in YEPR at 25°C, arrested in G1 by 
α-factor, and released in YEPRG at 25°C (time 0). 
Cells were analyzed at different times for DNA 
contents (histograms), budding, sister chroma-
tid separation, spindle formation/elongation, 
and nuclear division (graphs). Pictures show 
merged micrographs of tubulin (red) and DNA 
(blue) at 150 min. 



PP2ACDC55 AND CHROMATID COHESION IN G2 • CHIROLI ET AL. 609

overexpression of nondegradable Pds1 (Cohen-Fix et al., 1996) 

prevent cdc55∆ cells from undergoing anaphase (unpublished 

data), suggesting that separase is still required for sister chro-

matid separation in the absence of PP2ACdc55. It should be noted, 

however, that separase has additional functions that are unre-

lated to its role in Mcd1 cleavage (Sullivan et al., 2001; Stegmeier 

et al., 2002; Sullivan and Uhlmann, 2003; Papi et al., 2005). 

Interestingly, Cdc55 has recently been shown to interact physi-

cally with Esp1 and to prevent the early anaphase release 

of Cdc14 by causing dephosphorylation of its inhibitor Net1 

(Queralt et al., 2006). This raises the possibility that lack of 

PP2ACdc55 causes the unscheduled activation of Cdh1/APC, and 

thereby Pds1 degradation, by promoting Cdc14 release. Although 

this could partly explain the separation of sister chromatids in 

nocodazole-treated cdc55∆ cells, we show here that nuclear 

division of cdc55∆ cells when the morphogenesis checkpoint 

is active is independent of Cdc14 function, suggesting that 

PP2ACdc55 must have other roles, besides inhibiting Cdc14 dis-

sociation from Net1, before the onset of anaphase. Therefore, 

a more direct role of PP2ACdc55 in controlling sister chromatid 

separation in G2 must be invoked.

Putative targets of PP2ACdc55 
in the control of anaphase
The importance of PP2ACdc55 as anaphase inhibitor is under-

scored by the synthetic lethality of pds1∆ cdc55∆ double mu-

tants, where sister chromatid separation could be so premature 

as to cause lethal chromosome missegregation. In addition, 

CDC55 overexpression delays chromatid dissociation indepen-

dently of securin. In agreement with a crucial function as ana-

phase inhibitor, PP2ACdc55 phosphatase activity decreases at the 

onset of anaphase (Queralt et al., 2006).

An obvious candidate for being dephosphorylated 

by PP2ACdc55 to prevent sister chromatid dissociation was 

Mcd1, especially in light of recent data indicating that the 

other PP2A complex, PP2ARts1/B56, prevents precocious loss of 

centromeric cohesion by counteracting Mcd1 phosphorylation 

by Polo kinase (Kitajima et al., 2006; Riedel et al., 2006). 

However, as discussed above, PP2ACdc55 might target other 

proteins beside Mcd1. For instance, it could dephosphorylate 

other cohesin subunits and prevent cohesin unloading through a 

pathway analogous to the vertebrate prophase pathway. Despite 

the efforts, we could not detect any difference in the electro-

phoretic mobility of other cohesin subunits, such as Scc3 and 

Pds5, in cdc55∆ versus wild-type cells (unpublished data). 

Alternatively, PP2ACdc55 could regulate other chromatin-bound 

proteins, such as the condensin complex. It is worth mention-

ing that the human condensin HCP-6 interacts with and is 

dephosphorylated by PP2A bound to the B subunit (Yeong et al., 

2003). Finally, another putative target of PP2ACdc55 might be 

Esp1, which interacts physically with Cdc55 (Queralt et al., 

2006). Although separase has been proposed to down-regulate 

PP2ACdc55 activity, separase regulation of by PP2ACdc55 can also 

be envisaged.

In summary, a crucial role for PP2ACdc55 in maintaining sister 

chromatid cohesion in response to several stress conditions is 

emerging, making it a key factor for preserving genome stability. 

Mutations in Drosophila melanogaster PP2A B subunit, the Cdc55 

counterpart, cause chromosome segregation defects (Mayer-Jaekel 

et al., 1993), and mammalian PP2A is considered to be a principal 

guardian against malignant transformation (Janssens et al., 2005). 

Understanding the molecular mechanisms by which PP2ACdc55 

controls the onset of anaphase under different conditions might 

shed light on processes that prevent chromosome missegregation, 

which is intimately linked to tumorigenesis.

Materials and methods
Strains, media, and reagents
All yeast strains (Table S1, available at http://www.jcb.org/cgi/content/
full/jcb.200609088/DC1) were derivatives of or were backcrossed at 
least three times to W303 (ade2-1, trp1-1, leu2-3,112, his3-11,15, ura3, 
ssd1). Cells were grown in YEP medium (1% yeast extract, 2% bactopep-
tone, and 50 mg/l adenine) supplemented with 2% glucose (YEPD), 2% 
raffi nose (YEPR), or 2% raffi nose and 1% galactose (YEPRG). Unless other-
wise stated, α-factor, nocodazole, Lat-A, and Lat-B were used at 3 μg/ml, 
15 μg/ml, 0.1 mM, and 0.2 mM, respectively. For galactose induction of 
α-factor–synchronized cells, galactose was added half an hour before re-
lease. MET3-CDC20 cells were grown in synthetic medium lacking methio-
nine, whereas the MET3 promoter was shut off by resuspending cells in 
YEPD medium supplemented with 2 mM methionine.

Plasmid constructions and genetic manipulations
To clone CDC55 under the GAL1-10 promoter (plasmid pSP376), a BglII–PstI 
PCR product containing the CDC55 coding region and 140 bp of down-
stream sequence was cloned in the BamHI–PstI site of a GAL1-10–bearing 
YIplac211 vector. pSP376 integration was directed to the URA3 locus by 
BglII digestion. Copy number of the integrated plasmid was verifi ed by 
Southern analysis. CDC55, SWE1, PPH21, and PPH22 chromosomal dele-
tion were generated by one-step gene replacement (Wach et al., 1994).

Immunoprecipitations, kinase assays, and Western blot analysis
Immunoprecipitations were performed as described by Fraschini et al. 
(2001); lysis buffer was supplemented with 0.1% Triton X-100 (Fluka). 
Cdc5 kinase assays were performed according to Charles et al. (1998). 
For Western blot analysis, TCA protein extracts were prepared according to 
Fraschini et al. (1999). Nondenaturing protein extracts were prepared ac-
cording to Chiroli et al. (2003). Proteins transferred to Protran membranes 
(Schleicher and Schuell) were probed with 9E10 mAb for myc-tagged 
proteins, with 12CA5 or 16B12 mAb (Babco) for HA-tagged proteins, and 
with polyclonal antibodies against Clb2 and Swi6. Secondary antibodies 
were obtained from GE Healthcare, and proteins were detected by an 
enhanced chemiluminescence system according to the manufacturer.

Other techniques
Flow cytometric DNA quantitation, in situ immunofl uorescence, and chro-
mosome spreads were performed according to Fraschini et al. (1999). Nu-
clear division was scored with a fl uorescent microscope on cells stained 
with propidium iodide. Visualization of Tet operators using GFP was per-
formed as described in Michaelis et al. (1997). Catenation assays were 
performed according to Bachant et al. (2002). To detect spindle formation 
and elongation, α-tubulin immunostaining was performed with the YOL34 
monoclonal antibody (Serotec) followed by indirect immunofl uorescence 
using rhodamine-conjugated anti-rat antibody (1:100; Pierce Chemical 
Co.). Cdc14 immunostaining was performed with sc-12045 polyclonal 
antibodies (Santa Cruz Biotechnology, Inc.) followed by indirect immuno-
fl uorescence using CY3-conjugated anti-goat antibody (GE Healthcare). 
Immunostaining of myc- and HA-tagged proteins was done by incubation 
with the 9E10 mAb and 16B12 mAb (Babco), respectively, followed by 
indirect immunofl uorescence using CY3-conjugated goat anti–mouse anti-
body (GE Healthcare). Digital images were acquired on a fl uorescent 
microscope (Eclipse E600; Nikon) equipped with a charge-coupled device 
camera (DC350F; Leica) at 20°C with an oil 100× 1.3 NA Plan Fluor 
objective (Nikon), using FW4000 software (Leica).

Online supplemental material
Fig. S1 shows that Cdc5 protein levels and associated kinase are delayed 
in response to morphogenetic defects. Fig. S2 shows that mutations in the 
catalytic subunit of PP2A that impair its interaction with Cdc55 promote 
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nuclear division when the morphogenesis checkpoint is activated. Fig. S3 
shows that Mcd1 falls off chromatin but its proteolytic cleavage is unde-
tectable in cdc55∆ cells overexpressing Cla4t. Fig. S4 shows that sister 
separation in the absence of Cdc55 upon nocodazole treatment correlates 
with Mcd1 cleavage. Table S1 describes the genotypes of strains used in 
this work. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200609088/DC1.
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