The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans

Paolo M. Mangahas, Xiaomeng Yu, Kenneth G. Miller, and Zheng Zhou

We identify here a novel class of loss-of-function alleles of uncoordinated locomotion (unc)-108, which encodes the Caenorhabditis elegans homologue of the mammalian small guanosine triphosphatase Rab2. Like the previously isolated dominant-negative mutants, unc-108 loss-of-function mutant animals are defective in locomotion. In addition, they display unique defects in the removal of apoptotic cells, revealing a previously uncharacterized function for Rab2. unc-108 acts in neurons and engulfing cells to control locomotion and cell corpse removal, respectively, indicating that unc-108 has distinct functions in different cell types. Using time-lapse microscopy, we find that unc-108 promotes the degradation of engulfed cell corpses. It is required for the efficient recruitment and fusion of lysosomes to phagosomes and the acidification of the phagosomal lumen. In engulfing cells, UNC-108 is enriched on the surface of phagosomes. We propose that UNC-108 acts on phagosomal surfaces to promote phagosome maturation and suggest that mammalian Rab2 may have a similar function in the degradation of apoptotic cells.

Introduction

During phagocytosis, a cell ingests objects >0.5 μm in diameter. The phagocytic removal of apoptotic and degenerating cells plays key roles in developmental processes such as organ sculpting, tissue remodeling, and axon pruning and actively prevents tissue injury, inflammation, and autoimmune responses (for reviews see Savill and Fadok, 2000; Fainzilber and Twiss, 2006).

During the development of Caenorhabditis elegans, somatic and germ cells undergo programmed cell death. Apoptotic cells can be visualized using Nomarski differential interference contrast (DIC) microscopy as highly refractile discs, referred to as “cell corpses” (Sulston and Horvitz, 1977). As in other metazoans, apoptotic cells in C. elegans are rapidly removed via phagocytosis (Ellis et al., 1991a). Somatic cell corpses are ingested by a variety of neighboring cells that include hypodermal cells, pharyngeal muscles, and intestinal cells (Sulston and Horvitz, 1977; Sulston et al., 1983; Zhou et al., 2001b). Apoptotic germ cells are specifically cleared by gonadal sheath cells, which wrap around the germ line syncytium (Gumienny et al., 1999). Once ingested, the cell corpse is sequestered within the phagosome, a compartment derived from the plasma membrane of the engulfing cell, where it is degraded (Robertson and Thomson, 1982).

Genetic screens for C. elegans mutants that contain persistent cell corpses have identified at least eight genes required for their removal: cell death abnormal (ced)-1, -2, -5, -6, -7, -10, and -12 (for review see Zhou et al., 2004) and dynamin 1 (dyn-1; Yu et al., 2006). Double mutant analyses suggest that they function in two parallel and partially redundant pathways to control the cell corpse removal: ced-2, -5, -10, and -12 in one pathway and ced-1, -6, -7, and dyn-1 in the other (Fig. 1A; for review see Reddien and Horvitz, 2004; Yu et al., 2006).

In the first pathway, a CED-2/CrkII, CED-5/Dock180, and CED-12/ELMO1 protein complex activates CED-10/Rac1 GTPase to promote the reorganization of the actin cytoskeleton (Wu and Horvitz, 1998b; Reddien and Horvitz, 2000; Gumienny et al., 2001; Wu et al., 2001; Zhou et al., 2001a). In the second pathway, the CED-7/ABC transporter functions, at least in part, to facilitate the presentation of phosphatidylinositol and perhaps other “eat me” signals on the surface of cell corpses to attract phagocytes (Wu and Horvitz, 1998a; Zhou et al., 2001b; Venegas and Zhou, 2007). The phagocytic receptor CED-1, which is expressed on the surface of engulfing cells, recognizes these eat me signals, clusters around cell corpses, and initiates engulfment...
regulation of CED-1 and -6, DYN-1 promotes the recruitment and fusion of intracellular vesicles to the surface of extending pseudopods and maturing phagosomes (Yu et al., 2006). The delivery of these vesicles is likely to provide membrane for cell surface extension and digestive enzymes for the degradation of apoptotic cells. An additional activity of CED-1 and -6 in actin polymerization mediated through CED-10 has also been suggested (Kinchen et al., 2005).

Besides dyn-1, not much is known about the genes that control intracellular vesicle trafficking during the removal of apoptotic cells. In this paper, we find a novel function for the gene unc-108 in the degradation of engulfed cell corpses.
Results

n3263 mutants are defective in the removal of both somatic and germ cell corpses

To identify additional genes required for the removal of apoptotic cells, we performed a genetic screen for late-stage embryos that contain multiple cell corpses visible using DIC microscopy (Ced phenotype; Zhou et al., 2001a; Yu et al., 2006). One of the recessive mutants is n3263.

During embryonic development, 113 somatic cells undergo apoptosis (Sulston et al., 1983). In wild-type embryos, many cell corpses are visible during midembryogenesis (from the bean to twofold stages), as a large number of cells die during this period (Fig. 1 B). However, by the late fourfold stage of embryogenesis (just before hatching), virtually all of these cell corpses are cleared because of their rapid engulfment and degradation (Fig. 1, B and C). n3263 mutants contain excess refractile discs that resemble cell corpses at both mid and late embryonic stages (Fig. 1, B and C).

Two lines of evidence indicate that these objects are cell corpses. First, loss-of-function mutations in the proapoptotic ced-3/caspase and ced-4/Apaf1 genes, which result in the blockage of developmental cell deaths (for review see Metzstein et al., 1998), prevent the appearance of cell corpse–like objects in n3263 mutants, which indicates that apoptosis is required for their generation (Fig. 1 D). Second, a CED-1::GFP reporter on the surface of engulfing cells (Zhou et al., 2001b) clusters around these objects in n3263 embryos, which suggests that they express the eat me signals and are thus likely to be apoptotic cells (Fig. 1 E).

To determine whether the extra cell corpses observed in n3263 mutant embryos result from excessive apoptosis, we recorded using DIC microscopy (see Materials and methods) each cell death that occurred 200–400 min after the first embryonic cell division. We found that the number as well as timing of cell deaths in n3263 embryos closely resembled that of the wild type (Fig. 1 F). These results indicate that the execution of programmed cell death remains largely unaffected. Thus, the excess cell corpses observed in n3263 embryos are unlikely to be a result of ectopic cell death.

Although n3263 mutants display more cell corpses during all embryonic stages compared with the wild type embryos, these cell corpses are eventually cleared so that by hatching almost none remain (Fig. 1, B and C). We recorded the duration for which individual cell corpses were visible under DIC optics (see Materials and methods). In wild-type embryos, the vast majority (90%, n = 30) of cell corpses disappeared within 30 min of their appearance and no cell corpse persisted for >50 min (Fig. 1 G). In contrast, 56.7% (n = 30) of cell corpses in n3263 mutants persisted for >30 min after their appearance (Fig. 1 G). Collectively, these observations suggest that the increased number of cell corpses observed in n3263 mutants is caused by a prolonged removal time.

About 300–500 germ cells undergo apoptosis in the adult hermaphrodite gonad. Dying germ cell nuclei in the distal section of the syncytial germline rapidly cellularize and are engulfed by the gonadal sheath cell (Gumienny et al., 1999). Because of efficient removal, very few germ cell corpses are visible in the wild type at any given stage despite the continuous occurrence of apoptosis (Fig. 1 C and see Fig. 4 C). n3263 mutants display a more than threefold increase in germ cell corpses compared with the wild type at the same stage (Fig. 1 C and see Fig. 4 C), which indicates similar defects in their removal.

n3263 mutants are uncoordinated in locomotion

n3263 mutants display a recessive uncoordinated locomotion (Unc) phenotype (Fig. 2 D). These mutants are slow in forward locomotion. Although able to initiate backing upon a gentle tap to the head, they are unable to sustain this movement. This Unc phenotype cosegregated with the Ced phenotype during all the crosses performed (see Materials and methods), which indicates that these two defects may be caused by the same mutation. However, unlike the Ced phenotype, which can be rescued by the maternal wild-type gene product, the Unc phenotype is zygotic (see the following section; Fig. 2 E).

Cloning unc-108

We mapped the n3263 mutation to a 178-kb region on chromosome I and identified a cosmid clone, F53F10, that fully rescued the Ced and Unc phenotypes of n3263 (see Materials and methods; Figs. 2 A and 3 C). F53F10 contains unc-108 (F53F10.4), which encodes the C. elegans homologue of the small GTPase Rab2 (Fig. 2 B and C; Simmer et al., 2003). In n3263 animals, we identified a missense mutation in the unc-108 coding sequence that affects G13, a residue in the PM1 (phosphate-magnesium binding) motif that is absolutely conserved among Ras superfamily members (Fig. 2, B–D; Valencia et al., 1991). This mutation is predicted to severely inactivate Rab2 (see the following sections). We found that unc-108(+) cDNA under the control of ~2.3 kb of its upstream regulatory sequence (Punc-108) completely rescued the Ced and Unc phenotypes of n3263 mutants (Fig. 3 C). Introduction of the G13Q mutation to unc-108 cDNA abolished its rescuing activity, demonstrating that this mutation causes the Ced and Unc phenotypes observed in n3263 animals (Fig. 3 C).

Two distinct classes of unc-108 mutant alleles

We isolated two additional recessive alleles of unc-108 in a screen for mutations that improve the growth and reduce the hyperactive locomotion of a goa-1 (GaO, G protein O, α subunit) mutant (Williams et al., 2007). ce363 encodes an I11F substitution close to the N terminus, whereas ce365 results in a C213S mutation in the prenylation motif that may disrupt membrane localization of UNC-108 (Fig. 2, C and D). Both ce363 and ce365 mutants display Ced and Unc phenotypes (Figs. 2 D and S1 A, available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1) and fail to complement unc-108(n3263) (not depicted). Furthermore, unc-108(RNAi) recapitulates the Ced and Unc defects of n3263, ce363, and ce365 (Fig. S1, B and C), which indicates that these phenotypes arise from the loss of unc-108 function.

ok1246, a deletion generated by the C. elegans Gene Knockout Consortium (http://www.wormbase.org), removes the entire coding region of unc-108 and most likely represents a null
Figure 2. **unc-108 encodes a homologue of human Rab2 and controls locomotion and cell corpse removal.** [A] Position of the unc-108 locus on chromosome I. Among the cosmid clones tested (lines with bars on both sides), F53F10 rescued the n3263 phenotypes. [B] Structure of unc-108. Exons (boxes) are connected by introns (lines). The coding region is shown in black and the untranslated region is in gray. Positions of mutations are indicated. [C] Alignment of human Rab2A and UNC-108. PM1–3, motifs that bind the phosphate groups of GTP and the Mg$^{2+}$ cofactor; G1–G3, motifs that contact the guanine base; switch 1 and 2, domains predicted to undergo dramatic conformational change upon GTP hydrolysis; RabF, signature residues conserved among Rab family members (Pereira-Leal and Seabra, 2000, 2001). The positions and amino acid substitutions resulting from the five point mutations are indicated. Pre, prenylation site. [D and E] Molecular lesions and quantification of phenotypes in the indicated genetic backgrounds. The numbers of cell corpses are reported as mean ± SD (n = 15). (asterisks) Data from Simmer et al. (2003).
We generated unc-108(n3263)/unc-108(ok1246) heterozygote progeny (unc-108 n3263/ok1246) and found they were viable and fertile yet exhibited Unc and Ced (Fig. 2 E). Furthermore, their ok1246 homozygous progeny (unc-108 n3263/ok1246) display Unc and Ced and arrest as L1- or L2-stage larvae (Fig. 2 E). These observations suggest that the loss of zygotic unc-108 is sufficient to cause the Unc phenotype but that loss of both maternal and zygotic unc-108 is required for the accumulation of cell corpses.

Figure 3. unc-108 is strongly expressed and performs distinct functions in neurons and engulfing cells. (A) DIC (a–e) and corresponding GFP (f–j) images of wild-type embryos expressing Punc108 gfp::unc-108[+] . Anterior is shown on top. Cell types that express GFP include hypodermal (arrows) and intestinal (asterisks) cells and pharyngeal muscles (arrowhead). (B) Expression of the Punc108 gfp::unc-108[+] and Prab-3 rfp reporters in neurons of the ventral cord (cell bodies are indicated with arrows) in an L2 larva. Bars, 5 μm. (C) Tissue-specific rescue of Unc and Ced defects of unc-108(n3263) mutants. Transgenes are introduced as extrachromosomal arrays. The number of DIC(+) cell corpses at two- and fourfold embryonic stages are reported as mean ± SD (n = 15). N.D., not determined.

allele (Fig. 2 B). unc-108(ok1246) homozygotes descended from the unc-108(ok1246)/+ heterozygotes (unc-108 m^ok1246/+ z^ok1246, m, maternal genotype; z, zygotic genotype) display a recessive Unc phenotype characteristic of other loss-of-function mutants of unc-108. unc-108 m^ok1246/+ z^ok1246 animals cease development at L1 or L2 larval stages yet do not contain extra cell corpses at either two- or fourfold embryonic stages (Fig. 2 E). Similarly, n3263 homozygous embryos descended from n3263/+ mothers (unc-108 m^n3263/+ z^n3263) are non-Ced (Fig. 2 E).
The severity of the Ced phenotype displayed by unc-108(n3263) embryos is similar to that displayed by unc-108(n3263) homozygotes, which indicates that n3263 is a strong or possibly null allele with regard to the Ced phenotype. For this reason, we characterize unc-108(n3263) mutants in our subsequent experiments. We categorize n3263, ce363, ce365, and ok1246 as class I recessive Unc and Ced alleles. The total loss of zygotic unc-108 may also cause developmental arrest, as observed from unc-108(n3263) embryos. However, the possibility that this larval arrest is a result of a closely linked mutation has not been eliminated.

unc-108 mutants were originally isolated as dominant Unc mutants (Park and Horvitz, 1986). Two alleles, n501 and n777, bear mutations in conserved residues (D112N and S149F, respectively) in the G2 and G3 (guanine-binding) motifs, which form part of the pocket that holds the guanine base (Fig. 2 C; Valencia et al., 1991; Simmer et al., 2003). Results from structural modeling predict that the D112N and S149F mutations would result in the loss of hydrogen bonds that stabilize guanine nucleotide binding (see following section). Interestingly, although both display a Unc phenotype characteristic of all unc-108 mutants, neither n501 nor n777 has excess cell corpses in embryos (Fig. 2 D). We categorize these alleles as class II dominant-negative Unc non-Ced alleles.

Structural studies of point mutations in UNC-108

To predict the biochemical properties of the proteins encoded by dominant-negative class II mutants, we generated structural models of wild-type UNC-108 and the D122N and S149F mutant proteins. Although the structure of the GDP-bound human Rab2A has been studied (Eathiraj et al., 2005), the structure of GTP-bound conformation has not been solved. In order to model UNC-108 in the GTP-bound state, we used the structures for human Rab11A as templates (Pasqualato et al., 2004; Pasqualato and Cherif, 2005). Rab11 belongs to the same subfamily as Rab2 (Pereira-Leal and Seabra, 2001) and is the closest homologue for which the GDP- and GTP-bound structures have been determined (Fig. S2 A and B, available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1).

The interactions that stabilize GTP binding in UNC-108 mirror those originally found in the human Ras (hRas) GTPase (Pai et al., 1989, 1990). Specifically, the C-terminal side chain of D122 (corresponding to hRas D119) is predicted to form hydrogen bonds with the endocyclic and exocyclic NH moieties of the guanine base (Fig. S2 C). Although S149 (hRas S145) does not form direct interactions with the guanine nucleotide, the hydroxyl group in its side chain may form a hydrogen bond with D122 (Fig. S2 C). This interaction stabilizes the G3 loop, particularly the position of A150 (hRas A146), whose main chain amine forms a hydrogen bond with the keto group of the guanine base (Pai et al., 1989, 1990). Although the D122N and S149F mutations are not predicted to dramatically alter the global structure of UNC-108, the positions and of the moieties present in the side chains of these mutations result in the loss of conserved hydrogen bonds that are required for binding guanine nucleotides (Fig. S2 D and E). Additionally, the aromatic ring of F149 might hinder the formation of a hydrogen bond between D122 and the endocyclic N of the guanine base.

The G1Q substitution encoded by unc-108(n3263) affects a residue that is absolutely conserved among members of the Ras superfamily of small GTPases. The amino acid backbone for position 13 (10 in hRas) is in a conformation that severely penalizes the replacement of glycine by any other amino acid (Pai et al., 1990). The replacement of G13 with a bulky residue (Q) in UNC-108 is thus predicted to result in a dramatic shift in the position of the PM1 loop, which is almost certain to disrupt the interaction with guanine nucleotides and may also affect the overall protein structure. In addition, G13 is part of the N-terminal β sheet implicated in interaction with downstream effectors of Rab2 (Tisdale, 2003; Tisdale et al., 2004). The G1Q mutation might also affect the association of UNC-108 with its effectors. Together, these effects are likely to result in a strong loss of UNC-108 activity.

unc-108 expression is detected in engulfing cell types and in neurons

We observed broad expression of a GFP::UNC-108 fusion protein under the control of Punc-108 in wild-type C. elegans. GFP signal was detected in pharyngeal, intestinal, and hypodermal cells that are known to function as phagocytes during embryogenesis (Fig. 3 A). In addition, we observed robust GFP expression in most if not all neurons, including head, ventral cord, and tail neurons in larvae and adults coexpressing Punc-108::GFP::unc-108(+) and a neural-specific Pcdh-3::GFP reporter (Fig. 3 B and not depicted; Choi et al., 2006).

unc-108 acts in engulfing cells for cell corpse removal and in neurons for normal locomotion

We examined whether the expression of unc-108(+) specifically in engulfing or dying cells could rescue the Ced phenotype of unc-108(n3263). The expression of unc-108(+) using engulfing cell-specific Pegl-1 (Zhou et al., 2001b) rescues the Ced phenotype of unc-108(n3263) embryos, yet fails to rescue the Unc phenotype (Fig. 3 C). In contrast, the expression of unc-108(+) under the control of Pegl-1 in dying somatic cells (Conradt and Horvitz, 1999) does not significantly alleviate the Ced phenotype in unc-108(n3263) mutants (Fig. 3 C). These results indicate that the unc-108 activity in engulfing but not dying cells is sufficient for the removal of cell corpses.

However, although the expression of unc-108(+) under the control of neuron-specific Pcdh-3 does not rescue the Ced phenotype of unc-108(n3263) mutants, it completely rescues the Unc phenotype (Fig. 3 C), which implies that the abnormal locomotion results from the loss of unc-108 function in neurons. These findings suggest that unc-108 performs independent functions in engulfing cells and neurons. The expression of unc-108(+) in dying cells does not rescue the Unc phenotype (Fig. 3 C).

unc-108 is likely to function downstream of the engulfment ced genes

To determine if unc-108 functions in either of the two pathways acting in cell corpse removal (Fig. 1 A) or an independent
pathway, we constructed double mutants between \textit{unc-108(n3263)} and reference alleles of the seven engulfment \textit{ced} genes. Double mutants of \textit{unc-108(n3263)} and the null mutations \textit{ced-1(e1735), ced-5(n1812)}, or \textit{ced-7(n1996)} (Wu and Horvitz, 1998a,b; Zhou et al., 2001b) display Ced phenotypes comparable in severity to that of \textit{ced-1(e1735), ced-5(n1812)}, or \textit{ced-7(n1996)} single mutants (Fig. S3 A), available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1). Furthermore, \textit{unc-108(n3263)} fails to enhance the Ced phenotype of either \textit{ced-1(e1735), ced-5(n1812)}, or \textit{ced-7(n1996)} double mutants (Fig. S3 A). These observations imply that \textit{unc-108} does not simply function exclusively in either one of the two pathways; otherwise, the Ced phenotype of at least one of the single mutants that function in parallel to \textit{unc-108} would be enhanced by the \textit{n3263} mutation. Furthermore, \textit{unc-108} does not appear to function in a third, independent pathway either, in which case the null mutant phenotypes in both of the known pathways should be enhanced by \textit{unc-108(n3263)}.

We observed an enhancement of the Ced phenotype of \textit{ced-2(n1994), ced-6(n2095), ced-10(n1993)}, and \textit{ced-12(n3261)} single mutants by \textit{unc-108(n3263)} (Fig. S3 A). However, \textit{ced-2(n1994), ced-6(n2095), ced-10(n1993)}, and \textit{ced-12(n3261)} may represent partial loss-of-function alleles in corresponding genes (Liu and Hengartner, 1998; Reddien and Horvitz, 2000; Zhou et al., 2001a), which makes the interpretation of these results complicated. However, with the exception of \textit{unc-108(n3263); ced-6(n2095)}, none of these double mutant combinations display a Ced phenotype significantly more severe than that of \textit{ced-1(e1735), ced-5(n1812)}, or \textit{ced-7(n1996)} single null mutants, which is consistent with the conclusions drawn in the preceding paragraph.

Overexpression of \textit{ced-10} cDNA under the control of heat shock promoters has been found to bypass the requirement for its upstream regulators \textit{ced-2, ced-5}, and \textit{ced-12} (Reddien and Horvitz, 2000; Gumienny et al., 2001; Wu et al., 2001; Zhou et al., 2001a). Furthermore, \textit{P}_{\text{hs}} \textit{ced-10} overexpression can also alleviate the engulfment defects of \textit{ced-1, ced-6}, and \textit{ced-7} mutants (Kinchen et al., 2005). We observed that \textit{ced-10} overexpression failed to reduce the number of cell corpses in \textit{unc-108(n3263)} embryos even though a significant alleviation of the Ced phenotype was observed in \textit{ced-1(e1735) and ced-5(n1812)} embryos that overexpress \textit{P}_{\text{hs}} \textit{ced-10} (Fig. S3 B). These observations indicate that \textit{unc-108} does not function upstream of \textit{ced-10}. Rather, the results of double mutant analysis and \textit{ced-10} overexpression suggest, among other possibilities, that \textit{unc-108} may act downstream of both pathways.

\begin{table}
\begin{tabular}{|c|c|c|c|c|}
\hline
Genotype & \# Germ Cell Corpses per Gonad Arm & Engulfed Cell Corpses & Unengulfed Cell Corpses & \textit{n} \\
\hline
wild-type* & \textit{3.4 ± 1.8} & 100 \% & 0 \% & 7 \\
\textit{unc-108(n3263)} & \textit{13.5 ± 3.5} & 83 \% & 17 \% & 12 \\
\hline
\end{tabular}
\end{table}

\textbf{Figure 4.} Most germ cell corpses in \textit{unc-108(n3263)} mutants are engulfed but remain undegraded. TEM of gonadal tissues containing one engulfed (A) and one unengulfed (B) germ cell corpse in \textit{unc-108(n3263)} adult hermaphrodites 48 h after the L4 larval stage. (b) A schematic diagram of panel a. GC, germ cell; SC, gonadal sheath cell. (c) 3x view of boxed region in panel a. Plasma membranes of sheath cells (arrows) and cell corpses (arrowheads) are marked. Bars, 1 \textmu m. (C) Percentage of engulfed cell corpses as scored by TEM in hermaphrodites 48 h after the L4 stage. The numbers of germ cell corpses scored under DIC optics are reported as mean ± SD (\textit{n} = 15). (asterisk) Data from Yu et al. (2006).
Figure 5. **unc-108(n3263)** causes defects in the engulfment and degradation of apoptotic cells. Time-lapse images of embryos expressing Pced-1 tet::ced-1::GFP (A) or coexpressing Phis-72 tet::his-72::GFP and Phis-72 tet::2x FYVE::mRFP1 (C and D). Insets are a 3× view of the boxed areas. The anterior is shown on top and the ventral side faces outward. (A) Engulfment of cell corpse C3 visualized by the clustering CED-1::GFP on extending pseudopods. Time (T) = 0 min, the time point immediately before budding pseudopods are detected. The enclosure of the CED-1::GFP circle marks the completion of engulfment. (B) Time required for the engulfment of C1, C2, and C3 in wild-type and **unc-108(n3263)** embryos given as mean ± SD (n = 3). (C) The degradation of C2 cell corpses. Nuclei of all cells are marked with HIS-72::GFP and phagosomal membranes are marked with 2x FYVE::mRFP1. T = 0 min, the completion of engulfment marked by recruitment of 2x FYVE::mRFP1. Bars, 5 μm. (E) Relative volumes of representative phagosomes containing C1 plotted against time. (F) Duration of apoptotic cell HIS-72::GFP in phagosomes. For wild-type samples, results are listed as mean ± SD (n = 3). Results for three individual cell
The degradation of cell corpses is severely delayed in unc-108(n3263) mutants

We performed transmission EM (TEM) on the hermaphrodite gonad to determine if cell corpses in unc-108(n3263) are engulfed (see Materials and methods). As in the wild type, apoptotic germ cells in unc-108(n3263) mutants cellularize and detach from the germline syncytium, appearing condensed and almost completely devoid of cytoplasm (Fig. 4, A and B). Phagosomes and plasma membranes are distinguishable around 10 of the 12 cell corpses that were scored, which indicates that these cell corpses have been internalized by gonadal sheath cells (Fig. 4 A). The two remaining cell corpses are not fully engulfed, although pseudopods from the sheath cells are seen extending around them (Fig. 4 B). In wild-type animals, all of the few germ cell corpses present are engulfed by sheath cells (Fig. 4 C; Yu et al., 2006). The presence of many additional germ cell corpses in unc-108(n3263) animals and the fact that most of them are internalized (Fig. 4 C) suggests that unc-108(n3263) mutants are primarily defective in the degradation of apoptotic cells.

To characterize the specific defects caused by the unc-108(n3263) mutation in the removal of cell corpses, we used time-lapse imaging to monitor the engulfment and degradation of three particular cells (C1, C2, and C3) that are located close to the ventral surface of an embryo and die at approximately the same time (see Materials and methods and Fig. 7 A; Yu et al., 2006). Unless otherwise specified, the expression of fluorescent reporters was driven in engulfing cells by Pced-1.

The engulfment of C1, C2, and C3 is monitored using CED-1::GFP, which clusters on the extending pseudopods (Zhou et al., 2001b; Yu et al., 2006). Although engulfment is initiated in unc-108(n3263) embryos, the speed of pseudopod extension appears to decrease and thus engulfment takes twice as long as in the wild type (Fig. 5, A and B; and Videos 1 and 2, available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1). However, compared with the severe defects in phagosome maturation (see the following paragraphs), this prolonged engulfment only makes a minor contribution to the Ced phenotype of unc-108(n3263) mutants.

To monitor cell corpse degradation, we developed reporters that label phagosomal membranes and the internalized cell corpses. Phosphatidylidylinositol-3-monophosphate (PI[3]P) is known to be enriched on the surface of early endosomes and phagosomes (Ellson et al., 2001; Vieira et al., 2001). By expressing the PI(3)P-specific reporter 2× FYVE::monomeric RFP1 (mRFP1) in engulfing cells (Yu et al., 2006), we observed that PI(3)P was enriched on the surfaces of nascent phagosomes. Phagosomes are easily distinguishable from 2× FYVE::RFP1 in engulfling cells (Yu et al., 2006). In embryos coexpressing Punc-108(n3263) his-72::gfp and Pced-1(2× FYVE::mRFP1), we observed an increase in HIS-72::GFP signal in cell corpses, reflecting the condensation of nuclear DNA during apoptosis (Video 3). Shortly afterward, the condensed pyknotic nuclei labeled with HIS-72::GFP were seen within 2× FYVE::mRFP1(+) phagosomes (Fig. 5 C and Video 3).

Within a period of 20–30 min, the HIS-72::GFP puncta decreased in size and subsequently disappeared, which indicates the degradation of nuclear chromosomes (Fig. 5, C and F; and Video 3). The decrease of GFP signal intensity might also be partially caused by the gradual acidification of the phagosomal lumen (see the following section). In contrast, the HIS-72::GFP signal in unc-108(n3263) remained within phagosomes for a minimum of 60 min and in most cases beyond ~102 min (Fig. 5, D and F; and Video 4).

The failure of cell corpse degradation observed in unc-108(n3263) embryos is not limited to phagosomes containing C1, C2, and C3. We examined all phagosomes labeled by PI(3)P in two- and fourfold-stage embryos and observed that many more phagosomes persist in unc-108(n3263) compared with the wild type (Fig. S4 D). In addition, undigested chromatin was present in almost all phagosomes in unc-108(n3263) compared with only half in wild-type embryos (Fig. 5 G). Together, the persistence of phagosomes and the failure to degrade apoptotic cell chromatin suggests that unc-108(n3263) causes severe defects in phagosome maturation.

UNC-108 is transiently recruited to the surface of phagosomes

To test if UNC-108 acts directly on phagosomes to control the degradation of cell corpses, we analyzed the localization of a

corpses are reported for unc-108(n3263). (G) The number of phagosomes observed in twofold stage embryos reported as mean ± SD (n = 15). Numbers in green represent the percentage of phagosomes containing HIS-72::GFP(+) cell corpses.
unc-108 (corresponding to the n3263 allele) appeared in a diffuse pattern in the cytoplasm and was not localized to the surface of phagosomes during cell corpse engulfment and degradation (Fig. 6B and Video 6, available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1). This localization pattern is consistent with the behavior of inactive Ras superfamily G proteins (Zerial and McBride, 2001) and supports the genetic observations indicating that G13Q completely inactivates UNC-108.

Functional N-terminal GFP::UNC-108 fusion (P_hsp gfp::unc-108(+); Fig. 3C). GFP::UNC-108 is localized to small cytoplasmic puncta that resemble intracellular organelles (Fig. 6A). In wild-type embryos, GFP::UNC-108 was recruited to the surface of nascent phagosomes labeled with 2× FYVE::mRFP1. Three distinct stages mark the dynamic localization of UNC-108 to phagosomes. During stage I, GFP::UNC-108(+) puncta are recruited to the surface of nascent phagosomes and gradually evolve into bright continuous circles (Fig. 6A). These bright circles last for 10–20 min (stage II). During the subsequent period of ∼10 min (stage III), GFP::UNC-108 gradually disappears from the phagosomal membrane (Fig. 6A and C; and Video 5, available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1).

We found that a GFP::UNC-108(G13Q) reporter (corresponding to the n3263 allele) appeared in a diffuse pattern in the cytoplasm and was not localized to the surface of phagosomes during cell corpse engulfment and degradation (Fig. 6B and Video 6, available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1). This localization pattern is consistent with the behavior of inactive Ras superfamily G proteins (Zerial and McBride, 2001) and supports the genetic observations indicating that G13Q completely inactivates UNC-108.

Figure 6. UNC-108 is transiently enriched on phagosomal surfaces. Time-lapse images of wild-type embryos coexpressing P_hsp gfp::unc-108 and P_ced-1 2× FYVE::mRFP1 (A) or P_hsp gfp::unc-108(G13Q) and P_ced-1 2× FYVE::mRFP1 (B). Insets are a 3× view of the boxed regions. The anterior is shown on top and the ventral side faces outward. Time (T) = 0 min, formation of a 2× FYVE::mRFP1 circle. (A) Transient enrichment of GFP::UNC-108 to phagosome membranes (i–p). GFP::UNC-108(+) puncta are indicated by arrows. (B) Diffuse cytoplasmic localization of GFP::UNC-108(G13Q) and the failure in recruitment to phagosomes (i–p). Bars, 5 μm. (C) Dynamic pattern of GFP::UNC-108 enrichment on phagosome surfaces in wild-type embryos. See text for the definition of the three stages. Results are reported as mean ± SD (n = 9).
unc-108(n3263) causes severe defects in the delivery of lysosomes to phagosomes

To identify specific cellular processes regulated by UNC-108, we tested whether several events that are essential for phagosome maturation occur in unc-108(n3263) mutants. Components of the endocytic pathway are recruited to phagosomes to deliver membrane and protein cargo required for their maturation (for review see Vieira et al., 2002). Previously, using the marker hepatocyte growth factor–regulated tyrosine kinase substrate (HGRS-1; the C. elegans homologue of mammalian Hrs), we demonstrated that early endosomes are recruited to the surface of pseudopods and phagosomes during the removal of cell corpses (Yu et al., 2006). Here, using time-lapse recording, we observed that HGRS-1::GFP was recruited to phagocytic cups and nascent phagosomes in unc-108(n3263) embryos with kinetics indistinguishable from those observed in the wild type (Fig. 7 A and not depicted). In addition, a similar fraction of DIC(+) cell corpses are labeled with HGRS-1::GFP in wild-type and mutant embryos (Fig. 7 C), which suggests that the recruitment of early endosomes is not affected by the unc-108(n3263) mutation.

We recently identified an essential role for the small GTPase RAB-7 in the removal of cell corpses in C. elegans. The GTP-bound form of RAB-7 is recruited to the surface of phagosomes shortly after the completion of engulfment and promotes the recruitment and fusion of lysosomal particles to phagosomes (unpublished data). Just as in the wild type, we found that virtually all phagosomes containing cell corpses in unc-108(n3263) embryos were labeled with GFP::RAB-7 (Fig. 7 B and C).

We then examined whether the recruitment of lysosomes to phagosomes was affected by unc-108(n3263) mutation. CTNS-1 is a C. elegans homologue of human lysosome-specific cystine transporter cystinosin (Town et al., 1998; Kalatzis et al., 2001) and was observed to colocalize on cytoplasmic puncta with a previously established lysosomal marker LMP-1 (unpublished data). In wild-type embryos, most DIC(+) cell corpses are surrounded by CTNS-1::GFP (unpublished data) circles, which indicates that lysosomes are recruited to maturing phagosomes (Fig. 8 E). We observed that CTNS-1::GFP was initially recruited to phagosomal surfaces as puncta. These puncta gradually progressed into a smooth circle, which suggests the subsequent fusion of lysosomes with the phagosomal membrane and the distribution of lysosomal membrane markers over phagosomal surfaces (Fig. 8 A and Video 7, available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1). In unc-108(n3263) mutants, we observed variable defects in the recruitment and fusion of CTNS-1::GFP(+) particles to phagosomes. In many cases, only a few CTNS-1::GFP(+) particles were observed to associate with phagosomal surfaces. Unlike in wild-type embryos, these puncta only covered a small portion of the phagosomal surface, which suggests that lysosomes are not efficiently recruited (Fig. 8, B and D; and Video 8). Quite often these particles did not evolve into continuous circles on phagosomal surfaces (Fig. 8, B and D; and Video 8), which suggests a failure of lysosomes to fuse with the phagosomal membrane (Fig. 8, B and D). In cases where lysosomes did fuse with phagosomes in unc-108(n3263), the progression of CTNS-1::GFP from phagosome-associating puncta to continuous circles took three to five times as long as in the wild type (Fig. 8, C and D; and Video 9). Consistent with these observations, a much smaller fraction of total phagosomes are covered with smooth CTNS-1::GFP(+) circles in unc-108(n3263) compared with the wild type at the twofold embryonic stage (12 vs. 77%; Fig. 8 E).

unc-108(n3263) mutants are defective in the acidification of phagosomal lumen

The acidification of the phagosomal lumen is an important step in the maturation of phagosomes. Low pH is required for the optimal activity of acid hydrolases and regulates key steps in membrane traffic (for review see Vieira et al., 2002). To measure the acidification of phagosome lumen, we stained animals using LysoSensor blue/yellow DND-160, a dual-emission wavelength dye that displays strong yellow fluorescence at a pH ≤ 5.0 (see Materials and methods).

To obtain a large number of cell corpses for analysis, we induced germ cell apoptosis in adult hermaphrodites by γ-ray irradiation (see Materials and methods). In wild-type animals, essentially all germ cell corpses are marked by 2× FYVE::GFP circles (Fig. 9, A and C), which indicates that germ cells undergoing DNA damaged–induced apoptosis are rapidly engulfed. Healthy germ cell nuclei display undetectable or faint LysoSensor staining, whereas 93.9% (n = 33) of phagosomes display
identifi ed Rab2 as a component of phagosomes containing latex beads (Garin et al., 2001; Stuart et al., 2007), its role in phagosome maturation remains unknown. Mammalian Rab2 was previously implicated in protein sorting and recycling events during ER-to-Golgi transport (Chavrier et al., 1990; Tisdale et al., 1992; Tisdale and Jackson, 1998). In addition, a Rab2 effector complex was suggested to regulate vesicle traffic between Golgi cisternae (Short et al., 2001).

In this paper, we describe the isolation and characterization of the fi rst loss-of-function alleles of \textit{unc-108}, which encodes \textit{C. elegans} Rab2. \textit{unc-108} mutations cause severe defects in the degradation of engulfed apoptotic cells. To our knowledge, intermediate to bright staining, refl ecting their effi cient acidifi cation (Figs. 9, B and C). In \textit{unc-108(n3263)} animals, only 9.1% (\(n = 33\)) of phagosomes are stained (Fig. 9), which suggests that \textit{unc-108} is required for the phagosome acidifi cation.

\section*{Discussion}

\textbf{Genetic studies reveal novel roles for UNC-108, the \textit{C. elegans} Rab2}

The biological functions of the Rab2 GTPase are much less characterized than several other Rab proteins. Although proteomic studies in \textit{Drosophila melanogaster} and mammals have identified Rab2 as a component of phagosomes containing latex beads (Garin et al., 2001; Stuart et al., 2007), its role in phagosome maturation remains unknown. Mammalian Rab2 was previously implicated in protein sorting and recycling events during ER-to-Golgi transport (Chavrier et al., 1990; Tisdale et al., 1992; Tisdale and Jackson, 1998). In addition, a Rab2 effector complex was suggested to regulate vesicle traffic between Golgi cisternae (Short et al., 2001).

In this paper, we describe the isolation and characterization of the fi rst loss-of-function alleles of \textit{unc-108}, which encodes \textit{C. elegans} Rab2. \textit{unc-108} mutations cause severe defects in the degradation of engulfed apoptotic cells. To our knowledge,
Structural models suggest that the two class II mutations (D122N and S149F) may partially affect the binding of the guanine nucleotide and the activation of this G protein. These mutant proteins may sequester guanine nucleotide exchange factors from wild-type UNC-108 in a heterozygous strain, eliciting a dominant-negative effect similar to that observed in GTP binding-deficient Rab2 mutants (Tisdale et al., 1992). The D122N and S149F mutant proteins may possess relatively low levels of UNC-108 activity, which is sufficient for the removal of cell corpses but not for supporting the neuronal regulation of locomotion.

Molecular functions of Rab2 in the removal of apoptotic cells

Previous work has demonstrated that lipids and proteins are delivered to phagosomes to drive phagosome maturation (for review see Vieira et al., 2002). Given the documented role for Rab2 in regulating protein sorting and recycling (Tisdale and Jackson, 1998), it is possible that the export of digestive enzymes and other factors required for phagosome maturation might be impaired in unc-108(n3263) mutants. However, we have not yet identified obvious defects in exocytosis in engulfing cells. For example, the transmembrane receptor CED-1 is normally localized to the cell surface and able to cluster around neighboring cell corpses in unc-108(n3263) embryos (Fig. 1E), suggesting that its transport from ER to the plasma membrane is relatively normal.

This is the first finding of Rab2 function in phagosome maturation. In addition, we demonstrate that UNC-108 contributes to the efficient extension of pseudopods during the engulfment of cell corpses. By participating in both the engulfment and degradation of cell corpses, UNC-108 plays an important role in the completion of apoptosis, which is important for animal development and homeostasis.

Both class I (recessive Ced and Unc) and class II (dominant Unc and non-Ced) unc-108 alleles display severe defects in locomotion. unic-108 is strongly expressed in all neurons and restricted expression of unc-108(+) cDNA in these cells specifically rescued the Unc phenotype of class I mutants. These observations, together with the previously described role for Rab2 in regulating protein sorting during vesicular transport, suggest that unc-108 may function in neurons during synaptic or dense-core vesicle biogenesis, neurotransmitter release, or receptor trafficking. It is possible that the neuronal and engulfment functions of unic-108 are related on the molecular level (see the following section).

Our genetic analyses indicate that n3263, a class I allele, causes a severe or total loss of UNC-108 activity, particularly with regards to the removal of apoptotic cells. Consistent with this conclusion, the G13Q mutation may result in overall protein structure changes. Two other class I alleles (ce363 and ce365) also appear to result in the loss of unic-108 activity. In addition, both the Ced and Unc phenotypes were reproduced by RNAi knockdown of unic-108. These results argue against the possibility that class I mutations affect a process not under the control of unic-108. Thus, locomotion and phagosome matura-
Phagosome maturation involves the sequential recruitment of different signaling molecules, the incorporation of intracellular organelles, and the gradual acidification of the phagosomal lumen (for review see Vieira et al., 2002). We examined these aspects of apoptosis are regulated by conserved mechanisms, we propose that Rab2 performs evolutionarily conserved functions. Mammalian Rab2 may play important roles in the removal of apoptotic cells and perhaps even other phagocytic targets such as invading pathogens and degenerating axons. In mammals, Rab2 may thus take part in important immune responses such as self-tolerance and host cell defense.

Materials and methods

Mutations and strains

C. elegans was grown as described previously by Brenner (1974). N2 was used as the wild type and CB4856 was used as the single nucleotide polymorphism–mapping strain. Mutations and integrated arrays were prepared as described in Riddle et al. (1997) except when noted as follows: LG I: bli-3(e767), lin-17(n677), unc-108(n3263), ce365, and ce365 (this study); unc-108(kl246) (C. elegans Gene Knockout Consortium; sem-4(n1378), dpy-5(e225), ced-1(n1725), ced-12(n3261) [Zhou et al., 2001]; and ok66 (myo-2::gfp, pax-10::gfp, and glut-4::gfp; a gift from M. Nonet, Washington University, St. Louis, MO); LG II: rrf-3(kg1426) (Simmer et al., 2002); LG III: ced-4(n1162), ced-6(n2095), and ced-7(n1996); LG IV: ced-2(n1994), ced-3(n1717), and ced-10(n1993); LG V: unc-76(e911) and zls-178 (punc-76::hsp-72::gfp; a gift of J. Priest, Fred Hutchinson Cancer Center, Seattle, WA; and R. Waterston, University of Washington, Seattle, WA; Ooi et al., 2002); LG X: ced-7(n1996) and lin-15(n765); and LG X: ced-7(n1996), and lin-15(n765), and lin-17(n677); a gift from M. Nonet, Washington University, Seattle, WA; and R. Waterston, University of Washington, Seattle, WA; Ooi et al., 2002).

Molecular cloning of unc-108

We assigned n3263 to chromosome I by linkage to the markers sem-4(n1378) and ok66. n3263 was originally isolated in a strain containing the sem-4(n1378) mutation, which causes an egg laying defect [Egl phenotype]. n3263 sem-4(n1378) hermaphrodites were crossed with wild-type males and 159 of 200 homozygous sem-4(n1378) F1 progeny contained Ced F1 embryos. n3263 hermaphrodites were also crossed to ok66 males. From this cross, 40 of 100 F2 embryos were both Ced and GFP (i.e., at least heterozygous for the dominant marker ok66). A bli-3(e767) n3263 sem-4(n1378) strain was crossed to wild-type males. From this cross, 24 of 25 Egl non-Bli F2 recombinants produced Ced progeny and 1 of 25 Bli non-Egl F2 recombinants gave rise to non-Ced progeny, which indicates that n3263 is flanked by these two markers. We narrowed the interval where n3263 is located using single nucleotide polymorphism [SNP] markers [Wicks et al., 2001]. In brief, we crossed CB4856 males to bli-3(e767) n3263 sem-4(n1378) and lin-17(n677) n3263 dpy-5(e225) hermaphrodites, cloned F2 recombinants that were either Bli non-Egl, non-Bli Egl, lin non-Dpy, or non-Lin Dpy, and then scored for the presence of selected SNP markers and the n3263 Ced and Unc phenotypes in the F3 generation. The left and right boundaries of the n3263 locus were SNP markers uCE1-797 (Fig. 2A), Cosmids T28F2, D1037, H26D21, T12F5, ZK770, and T28F2, D1037, H26D21, T12F5, ZK770, C32E8, F53F10, T03F1, C50F2, and F21A9 were injected either singly or in groups of three (at 10 ng/µl per cosmid) and transgenic animals were scored for the rescue of the Ced and Unc phenotypes. The molecular lesion in n3263 mutants was identified by sequencing the unc-108 locus.

Microscopy

Specimens were mounted on agarose pads and imaging was performed at 20–25°C. For DIC microscopy, a microscope [AxioPlan 2; Carl Zeiss, Inc.] equipped with a digital camera [AxioCam MRm; Carl Zeiss, Inc.] and imaging software [AxioVision; Carl Zeiss, Inc.] was used. A 100X Plan Neofluar objective (NA 1.30) was used with Immersol 518N oil (Carl Zeiss, Inc.). Cell corpses were counted at the indicated stages. The description of embryonic stages and time-lapse recording protocol were performed as described previously [Yu et al., 2006]. To record the duration of cell corpses, embryos ~350 min after the first cleavage were recorded for 80 min at 3-min intervals. 30 cell corpses per genotype were analyzed. To count the number of cell death events, we recorded embryos from 160–460 min after the first embryonic division at 3-min intervals. For each time point, 40 z sections at 0.5-µm intervals were taken. For fluorescent imaging, a microscope system [DeltaVision; Applied Precision] with an inverted microscope [IX70; Olympus] and a digital camera [CoolSNAP; Photometrics].
was used. A 100x UPlan Apo objective (NA 1.514, DeltaVision; Applied Precision). Serial z sections in 0.5-μm intervals spanning entire embryos were captured. Time-lapse imaging of fluorescent markers was performed as described previously (Yu et al., 2006). Images were deconvolved using softWoRx software (Applied Precision). Fluorescent images were analyzed using ImageJ. The radius (r) of each phagosome was determined using the measuring tool and the volume was approximated by the formula 4/3πr³ (volume of a sphere).

TEM
Preparation of specimens for TEM by high-pressure fixation has been described previously (Shaham, 2006). unc-108(n3263) animals were collected 48 h after the mid-L4 stage, mounted in specimen hats using Escherichia coli OP950, and high-pressure frozen (HPM 010; Bal-tec). Samples were freeze-substituted into 2% osmium tetroxide in acetone for 3 d at −90°C. Fixed specimens were rinsed in 100% acetone several times and embedded in Embed 812 resin (Electron Microscopy Sciences). Serial sections of 50 nm in thickness were collected onto Formvar-coated slot grids (Fulham), poststained for 1 h in a 2% aqueous solution of uranyl acetate, and counterstained in Reynold’s lead citrate. Sections were observed in a TEM (H-7500; Hitachi) equipped with a charge-coupled device camera (Sapera, Gatan).

Lysosemor staining
Hermaphrodites 24 h past the L4 larval stage were exposed to 180 Gy of γ radiation (Gammacell 1000 137Cs source; Atomic Energy of Canada Limited). 4 h after irradiation, animals were mounted on a microscope slide with M9 buffer supplemented with 5 mM lysosensor yellow/blue DND-160 (Invitrogen). The anterior gonad arms were dissected out by cutting open gonad stalks and 1000-RGY pharyngeal bulbs using a 21-gauge needle. Specimens were examined using the Axioiaplan microscope described in the Microscopy section. Excitation and emission wavelengths were 360 and 535 nm, respectively. Fluorescence signal intensity was measured using ImageJ. We observed that healthy germ cell cells displayed a fluorescence signal 10% brighter than the germline syncytium. No or faint staining corresponds to a ratio of germ cell corpse to syncytium signal intensity of ≤1.1, intermediate staining corresponds to a ratio >1.1 and <2, and bright staining corresponds to a ratio ≥2.

Plasmid construction
The 2.3-kb promoter of unc-108 (Punc-108) was PCR amplified from cosmid F53F10 (A. Coulson, Sanger Institute, Cambridge, UK) using primers PM149 and PM150 and cloned into the HindIII–PstI sites of pPD49.26 to generate pAOLO125. unc-108(+)-cdNA was amplified using primers PM146 or PM148 and PM147 and cloned into pCRII-TOPO to generate pAOLO112 and pAOLO113. To generate pAOLO135 (Punc-108) (unc-108(+)), the Smal-KpnI fragment from pAOLO12 was cloned into the corresponding sites of pAOLO125. The BamH–KpnI fragment from pAOLO135 was cloned into pAOLO125 to generate pAOLO121 and pAOLO122 (Punc-108 gfp:unc-108(+)). To generate pAOLO210, pAOLO211 (Punc-108 gfp:unc-108(n3263)), and ph11 (Punc-108 2x FVYE:mrfp1) were introduced to animals of the appropriate genetic background. Transgenic adults were incubated at 33°C, allowed to lay eggs for 1 h, and then removed. Embryos were incubated at 25°C for 2 h before the start of time-lapse recording. To overexpress ced-10(+), extrachromosomal arrays containing pR48, pR46 (Punc-108 ce365), Reddien and Horvitz, 2000), and pWH17 (Punc-108 gfp) were introduced to animals of the appropriate genetic background. Transgenic adults were incubated at 33°C, allowed to lay eggs for 1 h, and then removed. Embryos were then incubated at 25°C until they are scored at either two- or four-fold stages for the number of cell corpses.

Structural modeling
Structural models for UNC-108 were generated using the protein structure homology modeling platform SWISS-MODEL (Schweede et al., 2003). Crystal structures for GDP-bound human Rab2A (PDB ID 1Z0A) and GDP–PDB (PDB ID 10IW) and GTPyS-bound human Rab11A (PDB ID 10IW) were used as templates. The predicted structural models were then aligned to the Protein3Dfit algorithm (Lesel and Schomburg, 1994) and the resulting structures were viewed using PyMOL (Delano Scientific). Root mean square deviation values of the corresponding α-carbons of the structural predictions were calculated using Protein3Dfit.

Online supplemental material
Fig. S1 shows the phenotypes caused by ce363, ce365, and unc-108(RNAi). Fig. S2 shows structural modeling of UNC-108. Fig. S3 shows epistatic analysis between unc-108 and the engulfment of cad genes. Fig. S4 shows characterization of the 2x FYVE reporter as a phagosome marker. Fig. S5 shows the kinetics of 2x FYVE::mRFP1 recruitment to phagosomes in unc-108(n3263). Table S1 lists primer sequences. Videos are fluorescence time-lapse displays. Videos 1 and 2 show the engulfment of cell corpse C3 in wild-type (Video 1) and unc-108(n3263) (Video 2). Videos 3 and 4 show degradation of cell corpse C2 in wild-type (Video 3) and unc-108(n3263) (Video 4). Video 5 shows enrichment of UNC-108 on the phagosome containing cell corpse C2. Video 6 shows mislocalization of UNC-108(G13Q). Video 7 shows recruitment of lysosomes to the phagosome containing C2 in the wild type. Videos 8 and 9 show defects in lysosome recruitment in unc-108(n3263). Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200708130/DC1.

References

RNAi treatment
RNAi treatment was performed by feeding as described previously (Fraser et al., 2000). In brief, L4 larvae were treated to control (vector pPD129.36) or unc-108 (hr1121 [Fraser et al., 2000] or PAOLO230) RNAi. The numbers of germ cell corpses was scored in the P₀ generation 48 h after the transfer to RNAi plates. The locomotion phenotype was scored in the F₁ generation.

Heat shock expression
Extrachromosomal arrays containing pAOLO121 and pAOLO122 (Punc-108 gfp:unc-108(+)) or pAOLO210, pAOLO211 (Punc-108 gfp:unc-108(n3263)), and ph11 (Punc-108 2x FVYE:mrfp1) were introduced to animals of the appropriate genetic background. Transgenic adults were incubated at 33°C, allowed to lay eggs for 1 h, and then removed. Embryos were incubated at 25°C for 2 h before the start of time-lapse recording. To overexpress ced-10(+), extrachromosomal arrays containing pR48, pR46 (Punc-108 ce365), Reddien and Horvitz, 2000), and pWH17 (Punc-108 gfp) were introduced to animals of the appropriate genetic background. Transgenic adults were incubated at 33°C, allowed to lay eggs for 1 h, and then removed. Embryos were then incubated at 25°C until they are scored at either two- or four-fold stages for the number of cell corpses.

Structural modeling
Structural models for UNC-108 were generated using the protein structure homology modeling platform SWISS-MODEL (Schweede et al., 2003). Crystal structures for GDP-bound human Rab2A (PDB ID 1Z0A) and GDP–PDB (PDB ID 10IW) and GTPyS-bound human Rab11A (PDB ID 10IW) were used as templates. The predicted structural models were then aligned to the Protein3Dfit algorithm (Lesel and Schomburg, 1994) and the resulting structures were viewed using PyMOL (Delano Scientific). Root mean square deviation values of the corresponding α-carbons of the structural predictions were calculated using Protein3Dfit.

